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ABSTRACT PAGE

The recent prospect of efficient, reliable, and secure quantum communication

relies on the ability to coherently and reversibly map nonclassical states of light

onto long-lived atomic states. A promising technique that accomplishes this em-

ploys Electromagnetically Induced Transparency (EIT), in which a strong classical

control field modifies the optical properties of a weak signal field in such a way that

a previously opaque medium becomes transparent to the signal field. The accom-

panying steep dispersion in the index of refraction allows for pulses of light to be

decelerated, then stored as an atomic excitation, and later retrieved as a photonic

mode. This dissertation presents the results of investigations into methods for op-

timizing the memory efficiency of this process in an ensemble of hot Rb atoms. We

have experimentally demonstrated the effectiveness of two protocols for yielding the

best memory efficiency possible at a given atomic density. Improving memory effi-

ciency requires operation at higher optical depths, where undesired effects such as

four-wave mixing (FWM) become enhanced and can spontaneously produce a new

optical mode (Stokes field). We present the results of experimental and theoretical

investigations of the FWM-EIT interaction under continuous-wave (cw), slow light,

and stored light conditions. In particular, we provide evidence that indicates that

while a Stokes field is generated upon retrieval of the signal field, any information

originally encoded in a seeded Stokes field is not independently preserved during

the storage process. We present a simple model that describes the propagation

dynamics and provides an intuitive description of the EIT-FWM process.
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CHAPTER 1

Introduction

Technologies that enable perfect encryption and transmission of sensitive infor-

mation will harness the quantum world. While current classical encryption schemes

are generally successful because of the difficulty of performing certain mathematical

tasks—like finding the prime factors of a very large number—these schemes have

limitations. In general, if a person (Alice) wants to send a secure message to an-

other person (Bob), they must share a secret key that allows Alice to encrypt the

message and Bob to decode the message. A secure, but impractical, method of key

sharing would be for the two parties to meet and exchange a key. Since this pro-

tocol is inefficient, other methods are used wherein a key must also be transmitted

between the parties. A malevolent stranger, Eve, could intercept the transmissions

via eavesdropping techniques and, given enough time and resources, possibly crack

the encryption scheme—all without Alice and Bob realizing that their security was

jeopardized. Thus, the problem of secure communication reduces to the secure dis-

tribution of a shared key.

An alternative, absolutely secure, means of key distribution binds Eve to the

laws of quantum mechanics—specifically the fact that it is impossible to perfectly

2



3

copy a quantum state, a quantum mechanical phenomenon described by the no-

cloning theorem [2, 3]. In so-called Quantum Key Distribution (QKD) protocols,

the secret key is transmitted between Alice and Bob as a series of quantum states.

If Eve attempts to intercept the key, she destroys the quantum state, and thereby

alerts Alice and Bob of the attack.

More precisely, we draw an analogy between QKD and conventional classical key

distribution, the latter of which employs a series of bits, each one of which can take

one of two values, 0 or 1. Quantum bits, or qubits, can be in both states |0〉 and |1〉

at the same time—a phenomenon known as quantum superposition. In other words,

we can write a qubit as |ψ〉 = c0|0〉+c1|1〉; a measurement on this qubit will cause it

to “collapse” into one of its observable states, and will yield an outcome of either |0〉

or |1〉, with the probability of each outcome determined by the prefactors, as |c0|2

or |c1|2, respectively. Since the measurement is not deterministic, it is impossible

to faithfully reconstruct the original qubit after a single measurement. Herein lies

the difficulty of Eve’s task. Since Eve destroys the underlying quantum state when

she detects it, she cannot create a perfect clone to reconstruct it, and thereby alerts

Alice and Bob of her attack [4].

Current communications architectures use light to transmit classical informa-

tion through fiber optics networks. Corpuscles of light—photons—are a natural

choice for transmitting a quantum state, since they travel quickly and generally do

not interact with other photons [5]. For example, the states |0〉 and |1〉 can corre-

spond to the polarization state of a single photon (e.g., either left- or right-circularly

polarized). Other representations include photon path [6], photon-number [7, 8], or

time-bin encodings [9].

However, imperfect transmission lines can cause photonic quantum states to

degrade after a finite distance (typically several hundred kilometers in an optical

fiber) [5]. In classical communication, this attenuation problem is curtailed with
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a series of electronic repeaters, which amplifies the signal along the transmission

path. However, the same phenomenon that prevents Eve from perfectly copying a

quantum state also renders traditional amplification useless.

One solution employs a series of so-called quantum repeaters [10–12] along the

transmission line, which can permit quantum communication over arbitrary dis-

tances. Essentially, quantum repeaters must have sufficiently long coherence times

in order to entangle adjacent nodes together [13]. By using entanglement swapping

(i.e., teleportation), the shorter segments will all be linked to a single entangled

state containing Alice and Bob. One essential component of a quantum repeater is

a reliable quantum memory, which would store a photon’s quantum state at one of

the nodes for a controllable period of time and allow for synchronization between

adjacent quantum repeaters. This requires coherent control over the light-matter

interaction at the single photon level [14].

1.1 Optical quantum memory

As we have already mentioned, since they weakly interact with the environment

and travel quickly, photons are the only viable information carrier in long-distance

quantum communication schemes. There are many promising systems that readily

couple with photons and are good candidates for the building blocks of quantum

memory devices. For instance, experiments with cavity quantum electrodynamics

(QED) [15–17] have demonstrated the strong coupling between single optical or

microwave photons and individual atoms in high-finesse (Q ∼ 107 − 1011) micro-

cavities, which in itself requires the strong coupling of a single atom to a single cavity

mode. In this approach, the absorption and emission of single photons by an atom is

coherently controlled by a classical external control field. By cleverly manipulating

the control field’s temporal structure, it is possible to generate single, heralded
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photons on-demand [18–20]. Other promising avenues involves the manipulation of

pulses of light in an optically thick ensemble of atoms—either a warm or cold atomic

gas [21–31], in “atom-like” defects in solid-state systems [e.g., nitrogen vacancy (NV)

centers in diamond] [32–34], or nanostructures like quantum dots [35].

The interaction between light and atoms is very well understood: atoms strongly

couple to specific frequencies of light, exchanging information based on the atoms’

spin and orbital angular momentum and light polarization. Typically, when the

frequency of a light field is tuned near an atomic transition, the atomic medium

responds by strongly absorbing the light and then scattering it in all directions.

Thus, the challenge is to coherently control this interaction and mitigate any deco-

herent effects that result from spontaneous decay, atom-atom interactions, or other

dissipative processes.

Quantum interference makes this possible. Through a phenomenon called Elec-

tromagnetically Induced Transparency (EIT), the absorption pathways of two reso-

nant fields are canceled [36], and one can coherently control the propagation of light

through a near-resonant medium. We explore this effect briefly in the next section

and in more detail in Ch. 2.

1.2 Electromagnetically induced transparency

The prototypical atomic system for EIT is shown in Fig. 1.1(a). The atom is

modeled as a three-level Λ-type, comprised of two long-lived electronic ground states,

|g〉 and |s〉, and an excited electronic state, |e〉, which is the case, for example, for

sublevels of different angular momentum or spin within the electronic ground state

of alkali atoms. A weak optical signal field is tuned near the |g〉 → |e〉 transition.

A strong optical control field is tuned near the |s〉 → |e〉 transition.

The two fields collaborate to place an atom into a coherent superposition of the
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FIG. 1.1: (a) Three-level Λ system under EIT conditions. (b) In the absence of the
control field (dashed black lines), a broad range of signal frequencies is absorbed by the
medium. When the control field is illuminated (solid blue lines), a narrow transparency
window is created. (c) Refractive index seen by the signal field.

two ground states, which no longer interacts with the optical fields. In fact, despite

both fields being resonant, the atom ideally never occupies the excited state. Thus,

for a narrow range of signal frequencies, the previously-opaque medium is rendered

transparent. The width of this so-called EIT window is determined by the strength

of the control field, but is much narrower than the typically Doppler- or pressure-

broadened natural resonance. Fig. 1.1(b) depicts the transmission spectrum of the

signal pulse as a function of its detuning from resonance in the absence of the control

field (dashed black line) and the presence of the control field (solid blue line), the

latter of which clearly shows that EIT peak.

Because the atoms are decoupled from the light fields, the refractive index ex-

perienced by the signal field during propagation is near unity. However, according

to the Kramers-Kronig relations, an anomaly in the absorption spectrum is accom-

panied by an anomaly in the dispersion. Thus, the narrow transparency window

is accompanied by a very steep, linear change in the refractive index, as we see in

Fig. 1.1(c). Since different Fourier frequencies of a pulse of signal light experience

different indices of refraction, the pulse will travel with a group velocity, vg, which

can be much less than the speed of light—an effect known as slow light.
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During slow light propagation, information is coherently shared between the

signal field and the collective spin coherence (“spin wave”). Thus, slow light can

be the basis for a quantum memory. In essence, the EIT medium “remembers” the

incident photon’s quantum state for the duration of the propagation, but these times

are far too brief for practical purposes. We can write the photon’s quantum state

as [37],

|Ψφ(t)〉 =
∑

k

ck(t)a
†
k|0〉, (1.1)

where ck(t) is an amplitude coefficient for photon mode k, a†k is the creation operator

for mode k, and |0〉 is the vacuum state.

In order to extend the storage time of this type of quantum memory, a dynamic

form of EIT is employed. Specifically, as a signal pulse enters an EIT region, the

reduction in group velocity will result in pulse compression. Ideally, the entire pulse

would be spatially compressed inside the medium. At this time, the control field

can be turned off, thereby reducing vg to zero, collapsing the EIT window, and

completely mapping the signal pulse to the spin coherence. When the information

needs to be retrieved, the control field is turned on, and the spin wave is converted

into an optical signal pulse, which propagates out of the medium.

If, rather than using a classical pulse, one uses a single-photon wave packet,

then the above EIT description remains intact, but the spin wave and the photon

share the same quantum state. More precisely, prior to the arrival of the signal

pulse, all N atoms are prepared (e.g., by optical pumping) in the ground state, |g〉,

producing an initial collective atomic state of

|ψ0〉 = |g1 . . . gN〉. (1.2)

When a signal photon is stored, its quantum state is transferred to the collective
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spin excitation of the atoms,

|ψ1〉 =
∑

j

ψje
i∆kzj |g1 . . . sj . . . gN〉, (1.3)

where zj is the position of atom j along the field propagation direction, ∆k is the

difference in signal and control field wavevectors, and ψj is an amplitude chosen to

ensure normalization. In other words, one of the atom’s spin is flipped from |g〉 to

|s〉, but it is not known which one. Later, a pulse of the control field can read out

this coherence into an optical signal field.

1.3 Performance criteria for optical quantum mem-

ory

The above discussion is valid in a fictional world in which no dephasing or

decoherence mechanisms conspire to destroy a quantum memory. We can quantify

the extent of these effects by requiring the quantum memory to achieve certain

performance criteria, which we discuss in this section [12, 38].

The figure of merit for any memory device is the storage efficiency, which is

a measure of the total retrieved information or the probability of retrieving an

incoming photon after some time. Equivalently, this is the energy ratio between

retrieved signal pulse, Eout(t), and initial signal pulse, Ein(t):

η =

∫ τ+T

τ
|Eout(t)|2dt∫ T

0
|Ein(t)|2dt

, (1.4)

where τ is the storage time and T is the pulse duration.

This metric is fairly easy to determine experimentally with weak classical pulses,

but it does not account for possible detrimental effects such as excess noise from
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the storage medium, which would affect the shape of the output. To quantify any

distortion effects and to characterize the quality of the pulse shape generation, we

define an overlap integral J2 as [39]

J2 =
|
∫ τ+T

τ
Eout(t)Etgt(t)dt|2∫ τ+T

τ
|Eout(t)|2dt

∫ τ+T

τ
|Etgt(t)|2dt

, (1.5)

where Etgt(t) is the desired (target) shape.

The storage and retrieval of a signal photon in a nonideal passive quantum

memory produces a mixed state that is described by a density matrix [40]

ρ = (1− η)|0〉〈0|+ η|φ〉〈φ|, (1.6)

where |φ〉 is a single-photon state with envelope Eout(t) and |0〉 is the zero-photon

(vacuum) state. In general, a quantum memory stores a pure state or mixed state

that is represented by a density matrix, ρ. The output state, represented as ρ′,

should be “close” to ρ. The fidelity between the target single-photon state |ψ〉 with

envelope Etgt and the single-photon state |φ〉 is given by the overlap integral J2 [Eq.

(1.5)], while

F = 〈ψ|ρ′|ψ〉 = ηJ2 (1.7)

is the fidelity of the output state ρ′ with respect to the target state.

A final criteria for quantum memory performance is the storage time. A prac-

tical quantum memory must be able to faithfully store a state for long enough to

perform a particular task, which in the case of quantum repeaters, is how long it

takes to perform entanglement swapping. This, of course, depends on the number

of quantum repeaters (and thus the number of desired entangled photons) and the

distance between them. Jiang, et al. [41] have presented an analysis of the DLCZ

protocol (see Sec. 1.2) and found that with η = 90%, it is possible to generate one
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pair of entangled photons (and hence one pair of entangled quantum repeaters) per

three minutes over a distance of 1280 km with F = 78%, which is greater than the

classical limit of 67%.

For EIT-based light storage, the fulfillment of sufficiently high efficiency requires

the simultaneous balancing of two competing loss mechanisms that exist even in the

ideal case of no ground-state (spin-wave) decoherence. First, the group velocity of

the signal pulse must be low enough so that the entire pulse is compressed inside

the EIT medium of length L. If this requirement is not met, then the front part

of the pulse can exit the other side of a finite-sized medium (i.e., “leak”) and take

information with it before the control field is turned off. One might suspect that

the use of short pulses may curtail this problem, such that the duration of the

pulse, T , satisfies the condition T ≪ L/vg. However, the second requirement is

that the bandwidth of the signal pulse fit inside the narrow EIT window in order to

minimize absorption and spontaneous losses. Thus, 1/T ≪
√
dvg/L [22, 42]. The

simultaneous fulfillment of both requirements is only possible at high optical depths

d≫ 1 [22, 42, 43].

1.4 Experimental demonstrations of EIT

In 1999, a collaboration between Harvard and Stanford Universities, under the

direction of Stephen Harris, demonstrated slow light speeds of 17 m/s with weak

classical pulses through an ensemble of ultracold sodium atoms prepared under

EIT conditions [44]. Later that year, a research group at University of California,

Berkeley demonstrated weak classical light propagation at speeds of 8 m/s in an

ensemble of room temperature 85Rb [45]. Also in 1999, Marlan Scully’s group at

Texas A&M University demonstrated a group velocity reduction to vg = 90 m/s in

a hot (T = 320 K) vapor of 87Rb atoms, and demonstrated that the group velocity
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could be controlled by adjusting the intensity of the control field [46].

In 2001, L. V. Hau’s group at Harvard demonstrated the storage of weak clas-

sical pulses of light in cold (T = 0.9 µK) Sodium atoms. After 1 ms, they retrieved

the pulses with efficiencies of a few percent [24]. Also in 2001, Ronald Walsworth’s

group at Harvard demonstrated storage of weak pulses for up to 0.5 ms in hot 87Rb

vapor, with retrieval efficiencies of a few percent [25]. Later, the Texas A& M group

demonstrated that the storage process obeyed time-reversal symmetry—an impor-

tant step towards the optimization of memory efficiency [47], which we will discuss

in Ch. 4.

Storage of nonclassical states of light is a technologically challenging feat. While

lasers are adept at supplying light comprised of trillions of photons per second, single

photons and other nonclassical states of light are notoriously difficult to produce and

detect. In particular, since optical losses degrade quantum states, loss mechanisms

at all system components must be minimized. Further, detection of quantum states

of light, and measurement of the quantum properties, requires detectors with very

high quantum efficiency [48].

Moreover, the relatively narrow EIT window restricts the bandwidth of non-

classical optical fields to several MHz, and requires that the associated frequency be

near the two-photon resonance. Currently, the most common single photon source—

parametric down conversion in nonlinear crystals [48]—produces bandwidths that

are insufficiently high, due in part to the large spectral bandwidth of the optical

nonlinearity of the crystals. Narrow-band pump lasers and the use of high-quality

cavities is a promising, albeit challenging, avenue for spectrally narrow single pho-

tons [49–53].

Despite these challenges, important steps towards the storage of quantum states

of light were made in 2004, when Akamatsu, et al. observed a squeezed vacuum state

under EIT conditions [54]. Since 2008, several research groups have demonstrated
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that the storage process preserves the nonclassical quadrature noise properties of

squeezed light [55–58]. Progress in the storage of single photons will be discussed

briefly in Sec. 1.5.2.

The problem inherent to all of these demonstrations is that the memory ef-

ficiency is low. On one hand, this is not surprising, since EIT-based storage of

quantum light suffers from background noise from the repopulation of |s〉 due to

atomic diffusion [59], which results in absorption of the control field upon retrieval,

and producing thermal photons via spontaneous decay from |e〉. On the other hand,

the detrimental effects of this noise become significant in the experimental parameter

space of interest. In order to combat this problem, memory efficiency protocols must

be established. We discuss an important optimization protocol and demonstration

thereof in Ch. 4.

Another drawback of these memory demonstrations is that they rely on the

coupling of photons to a single ensemble of atoms. Thus, EIT-based quantum mem-

ory of the type described above does not clearly lend itself to long-distance quantum

communication protocols.

1.5 Progress towards long distance quantum com-

munication using atomic ensembles

In 2001, Luming Duan, Mikhail Lukin, Juan Ignacio Cirac, and Peter Zoller

(DLCZ) published a theoretical protocol for achieving a realistic quantum repeater

scheme, which would enable long-distance quantum communication by entangling

adjacent ensembles of atoms [13]. Their proposal has similarities to the EIT scheme.

They consider two identical atomic ensembles, separated by some distance, which is

less than the decoherence length of photons through an optical fiber, of three-level
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Λ-type atoms [see Fig. 1.2(a)] each possessing a single excited state |e〉, and two

ground states, |g〉 and |s〉. An initiatory step of the DLCZ procedure involves the

creation of a spin excitation of the type described by Eq. 1.3. In contrast with EIT,

the spin excitation is created not by an incoming signal field, but by the ensemble

interacting with a far-detuned control field.

More precisely, a far detuned Raman pulse of light, as shown in Fig. 1.2(a) is

sent through two atomic ensembles, labeled L1 and R1. This procedure is repeated

at adjacent pairs of ensembles. There is a small but finite probability that an atom

in one of the ensembles will complete a virtual transition and flip its spin state from

|g〉 to |s〉, thereby creating a spin excitation and releasing a Stokes photon. The

probability of this event occurring in both ensembles is low. Thus, it is impossible to

know which atom has completed this transition; consequently, one of the ensembles

can be described by the wavefunction in Eq. 1.3.

The outputs from both ensembles are coupled to optical fibers and interferes

on a 50/50 beam-splitter. Two photodetectors, D1 and D2 monitor the ports of

the beam-splitter, such that if there is a ‘click’ in either detector, it is impossible

to ascertain whether the detected photon originated in either the left or the right

ensemble, and thus L1 and R1 (and, by similar results, L2 and R2, and L3 and

R3) become entangled by post-selection. The detection of a ‘click’ heralds this

phenomenon. Since this protocol is probabilistic, one can repeat it until a ‘click’ in

either detector is registered.

At this point, adjacent pairs of ensembles are mutually entangled. The second

step in the DLCZ protocol is to swap the entanglement, for instance from entangled

pair 1 to entangled pair 2 [see Fig. 1.2(b)]. This is performed by sending an EIT-

like “read” pulse of light tuned on the |s〉 → |e〉 transition. This reads out the spin

excitations and produces an anti-Stokes pulse. As before, the outputs from adjacent

ensembles (e.g., R1 and L2) are coupled into optical fibers, and the signals interfere
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FIG. 1.2: A schematic of the (a) entanglement creation, and (b) entanglement swapping
stages of the DLCZ protocol. (a) All atoms in identical ensembles L1,2,3 and R1,2,3

are prepared in the ground state |g〉. A far-detuned ‘write’ pulse incident on adjacent
ensembles can, with a finite probability, induce a spin flip in one of the ensembles. This
spin flip is accompanied by the release of a Stokes photon, which leaves the ensemble
and is split at a 50/50 beamsplitter. Since the likelihood of this process happening in
both ensembles is low, then the detection of a ‘click’ at detector D1 or D2 will create
entanglement of ensembles L1 and L2 via post-selection. (b) Entanglement is swapped by
sending an EIT-like ‘read’ pulse on adjacent ensembles (e.g., R1 and L2). This reads out
the spin excitation and creates an anti-Stokes field. The anti-Stokes fields from adjacent
ensembles interfere at a 50/50 beamsplitter, and the detection of a ‘click’ signifies that
the entanglement has been extended, for instance, from L1 to R2. This process can be
repeated to extend the entanglement farther.
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at a 50/50 beamsplitter.

Since each photon is still entangled with the corresponding atomic spin excita-

tion in each pair of ensembles, a ‘click’ at either detector signifies the entanglement

between the two distant ensembles (e.g., L1 and R2). This process can be repeated

and the entanglement can be spread over a longer distance. The readout of the spin

wave can be used to swap entanglement between different adjacent states, thereby

enabling teleportation of quantum data [60].

1.5.1 Experimental demonstration of DLCZ components

The promise of the DLCZ protocol has led to much experimental interest. While

the current state of the art has not produced a DLCZ quantum repeater scheme

in full, many important building blocks have already been experimentally demon-

strated.

In 2003, two research groups experimentally demonstrated quantum correla-

tions between the incoming Stokes and outgoing anti-Stokes photons by measuring

the photon-number fluctuations using a Hanbury-Brown-Twiss type of experiment

[61] to compute the second-order correlation function [62–64],

g(2) = (nAS, nS) =
〈: n̂ASn̂S :〉
〈n̂AS〉〈n̂S〉

, (1.8)

where n̂i = a†iai is the photon number operator for either the Stokes or anti-Stokes

fields, and : . . . : denotes operator normal ordering. For classical sources of light, the

value of the correlation function is g
(2)
class. ≥ 1, while for ideally correlated photons,

g
(2)
ideal = 0. Smaller values of g(2) < 1 indicate stronger non-classical correlations

between the fields.

H. Jeffrey Kimble’s group at the California Institute of Technology demon-

strated correlations below the classical limit in the photon number of fields associ-
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ated with the retrieval of atomic coherences of Cs in a magneto-optical trap (MOT)

[65]. In the same year, Ronald Walsworth’s group at Harvard University demon-

strated nonclassical intensity correlations between two photon fields comprised of a

large number of photons (103−104), which were retrieved from an atomic coherence

in a warm vapor of 87Rb [66]. Since these two proof-of-principle experiments were

conducted, several other experiments have demonstrated the quantum correlations

and similar entanglement with controllable waveform shapes in ensembles of cold

[67–69] and hot atoms [26, 70].

Later experiments demonstrated that entanglement exists between the spin

excitation and the released Stokes field. These results confirmed the feasibility of the

DLCZ protocol within long-lived spin coherences in ensembles of alkali atoms [71–73]

and led to the demonstration of entanglement between adjacent atomic ensembles

[74–78].

1.5.2 Towards storage of single photons

Quantum repeaters require the development of long-lived quantum memories

for few-photon pulses of light. Several research groups have directed the output

from DLCZ-type experiments to quantum memory devices. Essentially, the outgoing

quantum state could be stored for long enough to ensure that entanglement swapping

has produced a network of entangled quantum repeaters. As discussed above, a

significant hurdle to quantum memory based on EIT is that the bandwidth and

frequency associated with a few-photon wavepacket must match the EIT window

in order to achieve optimal storage. Using the heralded photons from DCLZ-based

entanglement as a source for EIT-based storage can alleviate this problem, since

the bandwidth of the retrieved anti-Stokes photon (which was retrieved with EIT

techniques) matches the EIT bandwidth used for storage in a different, but identical
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atomic ensemble [77, 79, 80].

In 2005, Alexander Kuzmich’s group at the Georgia Institute of Technology

demonstrated the storage of single photons in a magneto-optical trap (MOT) of

cold 85Rb atoms for 15 µs with a retrieval efficiency of a few percent [27]. Also that

year, Eisaman, et al. produced single photons in one laboratory, sent them 100 m via

an optical fiber and stored them in a vapor cell containing hot 87Rb atoms for a few

microseconds, with approximately 10% memory efficiency [26]. Other experiments

have refined these techniques using ensembles of cold atoms [81–83] hot atoms [28],

and atoms trapped in an optical lattice [84].

However, all of these demonstrations suffer from a similar fate—the retrieval ef-

ficiency is too low for practical purposes. As discussed above, the memory efficiency

for EIT-based devices is improved by increasing the optical depth (or, equivalently

the atomic concentration) of the ensemble. This is technologically challenging with

cold trapped atoms (although it has recently been demonstrated [85]), but readily

achievable in hot atomic vapors.

1.6 Outline of this dissertation

This thesis presents experiments that investigate the optimization of storage

efficiency using EIT in a hot vapor of 87Rb atoms. We exploit the correspondence

between the quantum and the classical equations of motion and use weak classical

signal pulses of light to demonstrate the efficacy of two memory optimization pro-

tocols. Large optical depth is readily achieved with hot atoms, but this can lead to

unwanted effects, which we explore in more detail.

Chapter 2 presents a detailed semi-classical theoretical derivation and discussion

of EIT and the stored light phenomenon. Chapter 3 discusses how 87Rb is a fairly

good approximation for a three-level Λ atom and describes the basic experimental
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apparatus used in this investigation. In Ch. 4, we present the results of experiments

that tested two proposals to achieve optimal efficiency. One technique involves

optimizing the envelope of the input signal field. The second technique involves

shaping the control field temporal profile to achieve optimal storage of a desired

input field. We also tested the time-reversal of the storage protocol and show that it

is possible to have full control over the output. We show that both of these protocols

are successful for achieving the memory efficiency that is predicted by the theoretical

model, up to an optical depth of αL . 25. In Ch. 5, we show that the ability to shape

the output can be used to generate time-bin qubits of sufficiently high fidelity. Thus,

EIT based quantum memory can also be a source for non-classical states of light.

Chapter 6 presents a detailed investigation of one effect that we suspected resulted

in the degradation of memory efficiency at high optical depths: resonant four-wave

mixing (FWM). We present experimental results of FWM in the continous-wave

(cw), slow light, and stored light regimes, and present a novel theoretical model

of the FWM-EIT interference effect that successfully describes all three regimes.

Chapter 7 discusses the results of experiments that investigated sources for spin-

wave decay. Finally, Ch. 8 summarizes the findings. We include the details of the

control pulse shaping algorithm in Appendix A. Appendix B provides some of the

details of the FWM model that were omitted from Ch. 6.



CHAPTER 2

Review of the theory

In this chapter, we review the theoretical concepts governing the propagation

of light through a medium comprised of three-level Λ-type atoms. The analysis

presented in this thesis is conducted mostly within the semiclassical approximation,

wherein the electromagnetic field is treated classically while the atomic medium is

quantized. However the quantum treatment of light fields produces similar results,

as we will briefly outline [43].

The chapter is organized as follows. First, we work from Maxwell’s Equations

to describe light propagation through an atomic medium in terms of slowly-varying

electric field envelopes. We then derive the Hamiltonian in the dipole and rotating

wave approximations, for a simple three-level Λ atom illuminated simultaneously by

a strong control field and a weak signal field. We derive the time evolution equations

for the density matrix elements and use them to show that, for a narrow range of

signal field frequencies, the near-resonant signal field propagates with minimal loss—

a phenomenon known as electromagnetically induced transparency. As a result of

this narrow transparency window, there is a steep change in the medium’s index of

refraction, which results in a reduced group velocity of the signal field (“slow light”).

19



20

We find that the group velocity of the signal pulse is determined by the intensity of

the control field, indicating that a signal pulse can essentially be slowed to zero group

velocity and preserved in a long-lived collective atomic coherence (“stored light”). At

high optical depth of the medium, the effects of four-wave mixing become relevant

and can interfere with EIT. We derive the effective Hamiltonian for this system

using Floquet theory and derive density matrix evolution equations and propagation

equations for the signal and Stokes fields.

2.1 Maxwell’s Equations

The propagation of an electromagnetic field propagating in atomic vapor is

described by Maxwell’s Equations (in SI units) [86]:

∇× E = −∂B
∂t

(2.1)

∇ ·D = ρf (2.2)

∇×H = Jf +
∂D

∂t
(2.3)

∇ ·B = 0. (2.4)

Here, E is the electric field, H is the magnetic field, D = ǫ0E + P is the electric

displacement, P is the medium’s macroscopic polarization, B = µ0(H +M) is the

magnetic induction, and M is the medium’s magnetization. ρf and Jf are the free

electric charge and current densities inside the medium. Since there are typically

no unbound charges or currents in an atomic vapor, ρf = 0 and Jf=0. Further,

we are interested only in the effects on the electric polarization, and ignore any

effects arising from magnetization. Hence, M = 0 and B = µ0H. As usual, ǫ0

and µ0 are the vacuum permittivity and permeability, respectively. Under these

assumptions, we find from taking the curl of Eq. 2.1, employing the vector identity
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∇× (∇× E) = ∇(∇ · E)−∇2
E, and inserting the corresponding expression from

Eq. 2.3:

∇× (∇×E) = − ∂

∂t
(∇×B)

∇(∇ · E)−∇2
E = −µ0ǫ0

∂2E

∂t2
− µ0

∂2P

∂t2
,

(2.5)

Let us assume that the electromagnetic field is a plane wave propagating along

the z-direction, so we neglect the x− and y− dependence of E. Thus, ∇ · E = 0,

and Eq. 2.5 then reduces to

(
∂2

∂z2
− 1

c2
∂2

∂t2

)
E =

1

c2ǫ0

∂2P

∂t2
, (2.6)

where we have used c = 1/
√
ǫ0µ0. This is the wave equation for the electromagnetic

field, where the polarization P acts as a source term for the radiation field. If we were

to treat the medium macroscopically, we would relate the material’s polarization to

the electric field via the electric susceptibility tensor, χ, via

P = ǫ0χE, (2.7)

however, since χ is presently unspecified, the problem remains unresolved. Rather, in

what follows, we relate the macroscopic polarization, P, to the quantum mechanical

dipole moment of the atom.

2.2 General model of the atomic system

P is the induced macroscopic polarization of the atomic vapor, which can be

written as the average per unit volume of the dipole moments of the atoms in the

interaction region, assuming that there is no mutual phasing of the dipole moments.
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Specifically,

P =
N

V
〈d〉 = −eN

V
〈r〉, (2.8)

where N is the number of atoms in volume V and 〈d〉 = −e〈r〉 is the dipole moment

of an individual atom averaged over the ensemble. Here, e is the charge of the

electron, and r is taken to be a Hermitian operator describing the position of the

electron. In the Schrödinger picture,

〈r〉 = 〈ψ(t)|r|ψ(t)〉

=
∑

n,m

a∗m(t)an(t)〈m|r|n〉,
(2.9)

where ai are the amplitudes of basis state |i〉. At this point, we introduce the density

matrix,

ρ̂(t) = |ψ(t)〉〈ψ(t)|, (2.10)

which has the property

ρnm = 〈n|ρ̂(t)|m〉 = 〈n|ψ(t)〉〈ψ(t)|m〉 =
∑

p,p′

〈n|ap(t)|p〉〈p′|a∗p‘(t)|m〉 = an(t)a
∗
m(t).

(2.11)

Diagonal elements of the density operator, ρnn = 〈n|n〉, correspond to the

probability that the atom occupies state |n〉. Off-diagonal elements, ρnm = 〈m|n〉,

correspond to the expectation value of the coherence between levels |n〉 and |m〉,

e.g., the atomic dipole, in the case of an electric dipole transition.

Inserting Eq. 2.11 into Eq. 2.9, 〈d〉 can be written in terms of the density matrix

as,

〈d〉 = −e
∑

n,m

ρnm〈m|r|n〉 =
∑

n,m

ρnm℘nm = Tr [−eρ̂(t)r] , (2.12)

where we define ℘nm = −e〈m|r|n〉 as the dipole moment corresponding to the
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|n〉 → |m〉 atomic transition and we assume it to be real. We recognize that the

sum is simply the trace of the product of the density and position operators.

Using Eq. 2.12, the propagation of the electric field (Eq. 2.6) can be described

with, (
∂2

∂z2
− 1

c2
∂2

∂t2

)
E =

1

c2ǫ0

N

V

∑

n,m

℘nm
∂2

∂t2
ρnm, (2.13)

where the time evolution of the density operator is determined by the Liouville-Von

Neumann equation:

∂

∂t
ρ̂(t) = − i

~

[
Ĥ, ρ̂(t)

]
, (2.14)

where Ĥ is the Hamiltonian describing the atomic response to the electric field.

It is convenient to extract the fast-oscillating time dependence of the electric

field and the polarization by employing the slowly-varying amplitude and phase

approximation (SVAPA) [87]. A nearly-monochromatic electric field can be param-

eterized as the product of its polarization unit vector, ε̂, and an envelope function,

E(z, t),

E(z, t) = E(z, t)eikz−iνtε̂+ complex conjugate, (2.15)

where E varies slowly in t and z, when compared to the optical frequency ν and the

wavevector k = ν/c:

∂E
∂z

≪ kE ; ∂E
∂t

≪ νE (2.16)

Similarly, the oscillation frequency of the electric dipole moment is largely deter-

mined by the frequency of the electric field, and we can write the density matrix

elements in the SVAPA

ρ̂(z, t) = ρ̃(z, t)eikz−iνt + c.c., (2.17)

where c.c. indicates usage of the complex conjugate.
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Substituting Eqs. 2.15 and 2.17 into Eq. 2.13 and ignoring higher order deriva-

tives, we obtain a wave equation for the slowly-varying envelopes [87]:

(
∂

∂z
+

1

c

∂

∂t

)
E(z, t) = i

k

2ǫ0

N

V

∑

m,n

℘nmρ̃(z, t). (2.18)

2.3 Interaction of a bichromatic electromagnetic field

with a three-level Λ system

FIG. 2.1: A three-level Λ-type atom comprised of two ground states, |g〉 and |s〉, which
in our case are separated in energy by the hyperfine interaction, and a single excited
state |e〉. One optical light field, E1 at frequency ν1 is near resonance with the |g〉 → |e〉
transition, so that its single-photon detuning is ∆1 = ν1 − ωeg. A second optical light
field, E2 at frequency ν2 is near resonance with the |s〉 → |e〉 transition, so that its
single-photon detuning is ∆2 = ν2 − ωes.

In this section, we derive the time evolution equations for the density matrix

elements in a general three-level Λ scheme, which is depicted in Fig. 2.1. In the case

of interest, a signal optical field, E1 = ε̂1E1(z, t)eik1z−iν1t + c. c. couples the ground

state |g〉 to the excited state |e〉. A control optical field, E2 = ε̂2E2(z, t)eik2z−iν2t +

c. c. couples the second ground state |s〉 to the excited state. ε̂1,2 are the optical
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field polarization unit vectors. The combined optical field has the form

E(z, t) = ε̂1E1(z, t)eik1z−iν1t + ε̂2E2(z, t)eik2z−iν2t + c.c.

= E
(+)(z, t) + E

(−)(z, t),

(2.19)

where we have introduced E
(±) as the positive and negative rotating components of

the field [88]:

E
(±) = ε̂1E1(z, t)e±ik1ze∓iν1t + ε̂2E2(z, t)e±ik2ze∓iν2t. (2.20)

The atomic Hamiltonian for a three-level atom at rest is

Ĥ0 = ~ωsgσ̂ss + ~ωegσ̂ee, (2.21)

where we have taken the ground state to have zero energy. σ̂ij = |i〉〈j| is the atomic

spin-flip operator.

In the dipole approximation, the Hamiltonian describing the atom-field inter-

action is

Ĥ1 = −d̂ ·E. (2.22)

By applying the completeness relationship, |g〉〈g|+ |s〉〈s|+ |e〉〈e| = 1, to both

sides of d̂, and observing that 〈i|d̂|i〉 = 0 for i = (g, s, e) by symmetry, and selecting

|g〉 and |s〉 such that the transition between the two is electric dipole forbidden, so

that 〈s|d̂|g〉 = 〈g|d̂|s〉 = 0, we find that

d̂ = |e〉〈e|d̂|g〉〈g|+ |e〉〈e|d̂|s〉〈s|+H.c.

= ℘egσ̂eg + ℘esσ̂es +H.c.,

(2.23)

where ℘ij is the matrix element of the electric dipole moment of the transition and
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H.c. indicates usage of the Hermitian conjugate.

As we did with the electric field, we can decompose d into positive and negative

rotating components by observing that the expectation value of, for instance σ̂ge =

|g〉〈e| has the unperturbed time dependence e−iωegt, while σ̂†
ge = σ̂eg = |e〉〈g| rotates

oppositely, ∼ e+iωegt. Thus, the quantity d · E is rewritten:

d · E =
(
d
(+) + d

(−)
)
·
(
E

(+) + E
(−)
)

= d
(+) · E(+) + d

(+) ·E(−) + d
(−) · E(+) + d

(−) · E(−).

(2.24)

At this point, we implement the assumption that E1(2) couples near-resonantly

to the |g〉 → |e〉 (|s〉 → |e〉) transition, although we will later relax this assumption

and treat off-resonant interactions perturbatively, as in Ch. 6. Additionally, we can

perform the rotating wave approximation and replace rapidly oscillating terms in

Eq. 2.24 [e.g., e±i(ν1,2+ωeg)t, e±i(ν1,2+ωes)t] with their time average value, 0. Thus,

Ĥ1 = 〈e|d · ε̂1|g〉E1(z, t)σ̂egeik1ze−iν1t + 〈e|d · ε̂2|s〉E2(z, t)σ̂eseik2ze−iν2t +H.c. (2.25)

We define the Rabi frequencies of the fields as follows:

Ω = 〈e|d · ε̂2|s〉E2/~ (2.26)

α = 〈e|d · ε̂1|g〉E1/~, (2.27)

so that the full atomic Hamiltonian in the dipole approximation is

Ĥ

~
= ωsgσ̂ss + ωegσ̂ee −

(
Ωσ̂ese

ik2z−iν2t + ασ̂ege
ik1z−iν1t +H.c.

)
. (2.28)

It is helpful to remove the explicit time dependence from the Hamiltonian by
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moving to a rotating frame. We do this by applying the unitary transformation

U = e−iν1t|e〉〈e|−i(ν1−ν2)|s〉〈s|. (2.29)

Specifically, the wavefunction |ψ〉 → |ψ̃〉 ≡ U †|ψ〉. Schrödinger’s Equation is

modified to be

i~
∂

∂t
|ψ̃〉 =

(
i~U̇ †U + U †ĤU

)
|ψ̃〉

= H̃|ψ̃〉.
(2.30)

Observing that

iU̇ †U = − [ν1σ̂ee + (ν1 − ν2)σ̂ss] (2.31a)

U †σ̂egU = eiν1tσ̂eg (2.31b)

U †σ̂esU = eiν2tσ̂es (2.31c)

U †σ̂eeU = σ̂ee (2.31d)

U †σ̂ssU = σ̂ss, (2.31e)

and defining the two-photon detuning δ = ν1−ν2−ωsg and simplifying the notation

for the control field single-photon detuning: ∆ ≡ ∆2, the Hamiltonian becomes

H̃ = −~(∆ + δ)σ̂ee − ~δσ̂ss − ~ (Ωσ̂es + ασ̂eg +H.c.) . (2.32)

To meticulously account for decay and dephasing mechanisms that affect the

atomic equations of motion, we employ a master equation [89, 90],

∂ρ̃

∂t
=

1

i~

[
H̃, ρ̃

]
+

Γe→g

2
[2σ̂geρ̃σ̂eg − {σ̂ee, ρ̃}] +

Γe→s

2
[2σ̂seρ̃σ̂es − {σ̂ss, ρ̃}]

+
γs,deph

2
[2σ̂ssρ̃σ̂ss − {σ̂ss, ρ̃}] +

γe,deph

2
[2σ̂eeρ̃σ̂ee − {σ̂ss, ρ̃}] .

(2.33)
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The second and third terms on the right-hand side describe spontaneous emis-

sion from states |e〉 to |g〉 and states |e〉 to |s〉 at rates Γe→g and Γe→s, respectively,

such that Γe ≡ Γe→g+Γe→s is the total spontaneous emission rate out of |e〉, and thus

1/Γe is its lifetime. Additionally, we have phenomenologically introduced energy-

conserving dephasing processes (e.g. collisions with inert atomic species) with rates

γs,deph and γe,deph. We further define the coherence decay rates as

γeg =
1

2
(Γe + γe,deph) ≡ γ (2.34a)

γsg =
1

2
γs,deph ≡ γ0 (2.34b)

γes =
1

2
(Γe + γs,deph + γe,deph). (2.34c)

It is notable that in the limit of radiative decoherence (γi,deph = 0) , γej will be

equal to half of the spontaneous decay rate out of |e〉. The density matrix equations

of motion are

∂tρ̃gg = Γ31ρ̃ee − iαρ̃ge + iα∗ρ̃eg (2.35)

∂tρ̃ss = Γ32ρ̃ee − iΩρ̃se + iΩ∗ρ̃es (2.36)

∂tρ̃eg = − [γ − i(∆ + δ)] ρ̃eg + iΩρ̃sg + iα(ρ̃gg − ρ̃ee) (2.37)

∂tρ̃es = −(γes − i∆)ρ̃es + iαρ̃gs + iΩ(ρ̃ss − ρ̃ee) (2.38)

∂tρ̃sg = −(γ0 − iδ)ρ̃sg + iΩ∗ρ̃eg − iαρ̃se. (2.39)

We are interested in the case of a sufficiently weak signal field, so that α≪ Ω.

Under this condition, the atom is quickly prepared in |g〉, so that the density matrix

populations are ρgg ≈ 1 and ρss = ρee ≈ 0. Additionally, we set ρ̃es = 0, since |s〉

and |e〉 are unpopulated to lowest order in α. Under this approximation, we note

that the the control field propagates at a speed of c without absorption, since its
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propagation equation is (c.f., Eq. 2.18),

(∂t + c∂z)Ω(z, t) = i
ω2

2ǫ0

N

V
℘esρ̃es(z, t) = 0. (2.40)

This is the celebrated undepleted pump approximation.

We define the optical polarization P (z, t) =
√
Nρ̃eg(z, t) and the collective

spin wave of the atomic ensemble S(z, t) =
√
Nρ̃sg(z, t), where N is the number

of atoms in the interaction region of volume V . We define g
√
N = ℘eg

√
ωN

2~ǫ0V
as

the collectively enhanced coupling constant between the signal field and the atomic

medium [87], and redefine the signal field amplitude as E ≡ E1℘eg/(g~). Under these

approximations, the three equations that govern light propagation and the atomic

response are:

(∂t + c∂z)E(z, t) = ig
√
NP (z, t), (2.41)

∂tP (z, t) = −[γ − i(∆ + δ)]P (z, t) + iΩ(z, t)S(z, t)

+ig
√
NE(z, t), (2.42)

∂tS(z, t) = −(γ0 − iδ)S(z, t) + iΩ∗(z, t)P (z, t). (2.43)

2.4 Electromagnetically Induced Transparency

Equations 2.41–2.43 fully describe the time evolution of the two atomic coherences—

the optical coherence, P (z, t), and the spin coherence, S(z, t)—and a weak signal

field. At this point, we restrict ourselves to cases where the control field intensity

is constant in time, so that Ω(z, t) = Ω(z). We can perform a Fourier transform
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(t→ ω, ∂t → −iω), so that Eqs. 2.41–2.43 become:

(−iω + c∂z)E(z, ω) = ig
√
NP (z, ω), (2.44)

−iωP (z, ω) = −[γ − i(∆ + δ)]P (z, ω) + iΩ(z)S(z, ω)

+ig
√
NE(z, ω), (2.45)

−iωS(z, ω) = −(γ0 − iδ)S(z, ω) + iΩ∗(z)P (z, t). (2.46)

It is straight-forward to solve the algebraic expression in Eqs. 2.45–2.46 for the

coherences,

P (z, ω) = i
Γ0

F
g
√
NE(z, ω) (2.47)

S(z, ω) = −Ω∗(z)

F
E(z, ω), (2.48)

where we have defined Γ0 ≡ [γ0 − i(δ + ω)], Γ ≡ [γ − i(∆ + δ + ω)], and F ≡

|Ω(z)|2+Γ0Γ. The induced polarization in Eq. 2.47 determines the optical properties

of the medium, as far as the signal field is concerned. Recalling that the induced

polarization is (c.f., Eq. 2.7)

Pind.(ω) = N〈g|ǫ̂1 · d|e〉ρ̃eg(ω) = ǫ0χ(ω)E(ω), (2.49)

we find the following expression for the electric susceptibility, χ(ω) of the medium:

χ(ω) =
N℘2

eg

V ǫ0~

δ + ω + iγ0
|Ω(z)|2 + Γ0Γ

. (2.50)

2.4.1 A brief aside on two-level atoms in a resonant laser field

We wish to contrast the effects of EIT with the response of a two-level atom

in a near-resonant field. In this limit, there is a single optical polarization, which
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evolves according to (c.f. Eq. 2.37 with ρ̃sg = 0, ρ̃gg − ρ̃ee = 1, Ω = 0, and ∆2 = 0):

∂tρ̃eg = −(γ − i∆1)ρ̃eg + i℘egE1/~, (2.51)

so that the steady-state optical polarization, when atoms populate the ground state

|g〉 is,

ρ̃eg =
i℘eg

~(γ − i∆1)
E1 (2.52)

The propagation of the single near-resonant laser field envelope (c.f., Eq. 2.18),

in a co-moving frame is:

∂zE1 = i
k℘eg

2ǫ0

N

V
ρ̃eg

= − k

2ǫ0

N

V

℘2
eg

~(γ − i∆1)
E1.

(2.53)

where we have used Eq. 2.52. The imaginary part of the term on the right-hand

side changes the refractive index, while the real part defines the optical depth, 2d,

via

∂zE1 = − d

L
E1, (2.54)

where

d =
kL

2ǫ0

N

V

℘2
eg

~

γ

γ2 +∆2
1

(2.55)

Notice that by integrating Eq. 2.54 from 0 to L, we find that the amplitude

of resonant light has been attenuated according to E1(L) = E1(0)e−d, or that the

intensity becomes attenuated by a factor 2d = α0L, where α0 can be thought of

as the on-resonant absorption coefficient. We note that in this dissertation, we use

both 2d and α0L terminologies when referring to the optical depth.

We can write the dipole matrix element of a real atom as the product of a
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reduced dipole moment [89], ℘0, and a Clebsch-Gordan coefficient: ℘eg = CGeg℘0.

Using k = ν1/c, λ = 2π/k, and recognizing the spontaneous emission rate as [89, 91]

Γsp =
ν31℘

2
eg

3πǫ0~c3
, (2.56)

we obtain the following expression for the optical depth of a two-level atom,

d =
3

8π
λ2L

N

V

Γsp

γ
CG2 γ2

γ2 +∆2
1

. (2.57)

Furthermore, it can be shown that

g
√
N =

√
γcd/L. (2.58)

2.4.2 Complex refractive index of a three-level Λ system

We now return to the case of a three-level system with a resonant control field

(∆2 = ∆ = 0), in which case the two-photon detuning, δ, and the signal field’s

single-photon detuning, ∆1, have the same interpretation. We rewrite the electric

susceptibilty in Eq. 2.50 in terms of the optical depth, in order to contrast the

three-level case with the two-level case,

χ =
2c(δ + iγ0)

ν1FL

(
℘2
eg

ǫ0~

ν31
3πc3

)(
3πc2L

2ν21

N

V

)
(2.59a)

=
2

k1
γ
d

FL
(δ + iγ0), (2.59b)

Recalling that the complex refractive index is related to the square root of the

dielectric constant, n =
√
1 + χ ≈ 1 + χ

2
, limiting ourselves to the continuous-wave
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case (ω = 0), and expanding Eq. 2.59b to O(δ2), we obtain [89, 90],

ñ(δ) ≈ 1 +
d/Lcγ

ν1|Ω(z)|2
(
δ + i

γδ2

|Ω(z)|2 +O(δ3)

)
. (2.60)

We find that the transmission of the signal field, as a function of the two-photon

detuning is

T (δ, z) = exp {−kz Im[χ]} ≈ exp[−δ2/Γ2
E], (2.61)

where

ΓE = |Ω|2/(γ
√
dz/L) (2.62)

is the characteristic width of the EIT transmission resonance [90].
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FIG. 2.2: (a) In the absence of a control field (dashed black lines), a broad range of
frequencies is absorbed by the atomic medium, as is characteristic of a two-level system
in a near-resonant field. When the control field is illuminated (solid blue line), a narrow
window of transparency is created for the signal field. (b) The refractive index seen by
the signal field. We note that the presence of the control field produces a steep, linear
change in the refractive index near the two-photon resonance (see solid blue line), which
leads to a dramatic reduction in the signal field group velocity.

Contrast this with the two-level, near-resonant field case, where a broad range

of signal frequencies are absorbed by the atoms. We show the typical transmission
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of a near-resonant light field as a function of detuning in the dashed black curves in

Fig. 2.2(a). We note that on resonance (δ = 0), there is no transmission. The blue

curve in Fig. 2.2(a) depicts the transmission of the signal field through an ensemble

of three-level Λ-type atoms. Here, we see that the presence of the control field

has opened a narrow window of transparency, of width ΓE around the two-photon

resonance—this phenomenon is known as Electromagnetically Induced Transparency

(EIT). We note an important result—that on the two-photon resonance, δ = 0, Eq.

2.61 predicts perfect signal field transmission under EIT conditions. We remind

the reader that Eq. 2.61 is valid for the ideal case of no spin-wave decay (γ0 =

0). Inclusion of decoherence mechanisms will transform the EIT window from a

Gaussian to a Lorentzian profile, and will limit the maximum value of transmission.

2.5 Dark state description of EIT

It is convenient to describe the effects of EIT by considering the response of the

atoms to the presence of both fields. It is a straight-forward exercise to show that

there is an eigenfunction, |D〉, of the Hamiltonian (Eq. 2.32) with a corresponding

eigenvalue of 0, i.e., Ĥ|D〉 = 0. This so-called dark-state is,

|D〉 = Ω|g〉 − αeiφ|s〉√
|Ω|2 + |α|2

, (2.63)

where we have introduced φ as the phase difference between the signal and control

fields. If φ = 0, then the eigenenergy of this state is 0, and once an atom is pre-

pared in this state, it will stay there indefinitely (in the absence of any decoherence

mechanisms). Since this new state is no longer coupled to either field, it does not

interact with them. In other words, the two resonant absorption pathways interfere

destructively. Thus, none of the atoms are promoted to the excited state and the
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usual resonant absorption of the light fields vanishes.

2.6 Slow light and stored light

Since the atomic response is causal—an atom does not respond until it sees

light—the absorption and index of refraction (i.e. the imaginary and real parts of

the linear susceptibility) are related by the Kramers-Kronig relations [86],

Re[χ(ω)] = 1 +
1

π
P

∫ +∞

−∞

Im[χ(ω)]

ω′ − ω
dω′ (2.64)

Im[χ(ω)] =
1

π
P

∫ +∞

−∞

Re[χ(ω)]− 1

ω′ − ω
dω′, (2.65)

where P denotes that the Cauchy principal-values should be taken. Thus, we expect

that the narrow window of transparency will be accompanied by a steep dispersion

in the material’s index of refraction dn
dδ

. Figure 2.2(b) depicts the refractive index

experienced by the control field in the absence of the control field (dashed black

line) and in the presence of the control field (solid blue lines). Indeed, near the two-

photon resonance, the refractive index changes rapidly and linearly with respect

to ω. This leads to a modification of the group velocity experienced by the signal

pulse [86, 92]

vg =
c

n(ω) + ω dn
dω

. (2.66)

We see from the expression for the complex refractive index in Eq. 2.60, that

ng = n+ ν1
dn

dν1
= n+ ν1

dn

dδ
(2.67a)

≈ 1 +
dγcδ

ν1L|Ω|2
+

dγc

L|Ω|2 (2.67b)

Near the two-photon resonance, ng is dominated by the third term, so that the
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group velocity experienced by a pulsed signal field is

vg = c/ng ≈
|Ω|2L
γd

. (2.68)

In other words, the presence of the control field results in a dramatic reduction of the

signal field’s group velocity. Importantly, the intensity of the control field dictates

the propagation velocity of the signal field (Eq. 2.68) by determining the spectral

width of the EIT window (Eq. 2.62).

We can clearly see this by returning to the time domain, and considering a reso-

nant (δ = 0) signal field in the absence of any ground state decoherence mechanisms

(γ0 = 0), we find via Eq. 2.43 that

P (z, t) = − i

Ω∗(z)

∂

∂t
S(z, t), (2.69)

so that Eq. 2.41 becomes,

(
∂

∂t
+ c

∂

∂z

)
E(z, t) = − g2N

|Ω(z)|2
∂

∂t
E(z, t), (2.70)

which, with Eqs. 2.58 and 2.68, can be written as

(
∂

∂t
+ vg

∂

∂z

)
E(z, t) = 0. (2.71)

This equation describes the lossless, distortion-free propagation of a light field E

at a reduced group velocity vg, and confirms the interpretation of the expression

for χ(ω) in Eq. 2.59b. We note an additional important distinction: under these

conditions, the spin coherence is

S(z, t) = −g
√
N

Ω
E(z, t). (2.72)
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In other words, there is a one-to-one correspondence between the spin wave and the

signal field. In fact, since it is proportional to its amplitude, the spin coherence

simply propagates alongside the signal field at the same reduced group velocity.

|e

|s
|g

|e

|s
|g

|e

|s

|g

|||ss

|e

|s
|g

signal field

control field

a) b) c) d)

d

d

E E E

FIG. 2.3: (a)The control field (red) optically pumps all of the atoms (green dots) into the
ground state |g〉 Before the EIT medium, the signal pulse (blue) propagates with vg ≈ c.
(b) The intensity of the control field remains constant. Upon entering the cell, the signal
pulse experiences a reduced vg ≪ c, causing the signal pulse to spatially compress. An
atomic spin wave is created along the cell in the direction of the pulse propagation, as
illustrated by the rotated atomic spins. (c) When most of the signal pulse is inside the
cell, the control field is extinguished, which sends vg = 0, and maps any information
encoded in the signal pulse onto the spin wave. (d) After a prescribed amount of time,
the control field is turned on, releasing the spin wave into the signal field, which leaves
the cell.

We now consider the dynamics experienced by a pulsed signal field whose band-

width fits inside the EIT window ΓE. As portrayed in Fig. 2.3(a), Λ-type atoms are

initially pumped into ground state |g〉 by the strong control field, represented in red.

Outside of the interaction region, the signal pulse (blue) propagates with vg ≈ c.

Upon entering the atomic region, the front portion of the signal field abruptly slows

down because of the medium’s low group velocity. Since the rear portion of the

signal pulse still travels with an unaltered group velocity, the spatial length of the

pulse, ∆l is compressed according to

∆l =
vg
c
∆l0, (2.73)

as compared to a free-space value ∆l0. As the pulse propagates through the medium

[see Fig. 2.3(b)], the atoms respond by being in a superposition of ground states
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|g〉 and |s〉, thereby creating the spin coherence, S(z), which shares a mapping with

the signal field. As a result, the spin wave travels along with the signal field, until E

reaches the end of the interaction region and reaccelerates to vg ≈ c (see Fig. 2.3).

As a result of the reduced group velocity, this pulse has been delayed by a time

τD =
L

vg
− L

c
≈ L

vg
=

dγ

|Ω|2 , (2.74)

when compared to a pulse that propagated through vacuum.

Slow light can be a basis for quantum memory. If, rather than using a classical

signal pulse, one uses a quantum state of light (i.e., single photon wavepackets,

squeezed states, etc.), then the above EIT description remains intact, due to the

linearity of the equations of motion. We discuss this correspondence more precisely

in Sec. 2.7. The only difference is that the signal field must be described in terms of

field creation and annihilation operators, and appropriate Langevin noise operators

must be used to account for the effects of quantum noise fluctuations [93–95]. Since

the information originally encoded in the signal pulse was shared with the spin

coherence during propagation, in essence, the EIT medium “remembers” the incident

state for a time τD.

In order to extend the storage time of this type of quantum memory, a dynamic

form of EIT is used. As we discussed earlier, it is notable that the group velocity,

and hence the delay time, is dictated by the intensity of the control field. Therefore,

by varying the control field’s intensity, one is able to control the dynamics of the

signal pulse. In particular, reducing the control field intensity to zero reduces the

group velocity to zero [see Fig. 2.3(c)]. At this point, all of the information about

the signal field’s quantum state is mapped onto the atomic spin wave, which, in

the absence of dephasing mechanisms, is frozen for a prescribed period of time, a

phenomenon known as stored light. In order to retrieve this information, the control
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field is turned on, thereby increasing vg from zero and converting the spin wave back

into a pulse of signal field light, which propagates out of the medium.

2.7 Dark state polariton description of stored light

For the above case of no decoherence between states |g〉 and |s〉, it is helpful

to describe light storage by introducing a quasi-particle called a dark-state polari-

ton [22, 23, 42], which has contributions from both photons and atoms. Here, we

treat the signal field quantum mechanically, although we will find that the resulting

equations of motion are identical to the semi-classical picture. We can describe the

signal field by the electric field operator [87],

Ê(z, t) =
∑

k

âk(t)e
ikz +H.a., (2.75)

where the sum is over the free-space photonic modes, âk are the corresponding

bosonic field annihilation operators, and H.a. indicates usage of the Hermitian

adjoint. The quantum properties of the medium are described by the collective

atomic spin-flip slowly-varying operators,

σ̂µν(z, t) =
1

Nz

Nz∑

j=1

|µj〉〈νj|e−iωµν t, (2.76)

where the sums are over all Nz atoms in a slice of atoms at position z that is thick

enough so that Nz ≫ 1 but thin enough so that the resulting collective fields are

continuous [96]. In particular, the atomic polarization is described by the operator

P̂ (z, t) =
√
Nσ̂ge(t), which oscillates at the optical frequency. The spin coherence

(spin wave) is described by the operator Ŝ(z, t) =
√
Nσ̂gs(z, t) which oscillates at

the frequency splitting of |g〉 and |s〉. We treat the control field classically.
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The effective rotating frame Hamiltonian is [96],

Ĥ = −~g
√
N
∑

j

[
σj
egÊ(zj) + H.a.

]
− ~

∑

j

[
σj
esΩ(zj , t) + H.a.

]
, (2.77)

where g
√
N is the collectively enhanced coupling constant of atoms with the signal

field. The evolution of the atomic coherences is governed by a set of Heisenberg

equations,

i~∂tÂ =
[
Â, Ĥ

]
+ Γ̂ + F̂ , (2.78)

where Â ∈ {P̂ , Ŝ} and Ĥ is the atom-field interaction Hamiltonian, Γ̂ describes

decay and decoherence processes, and F̂ is describes the Langevin noise operators

for the atomic operators [87, 89].

We assume that the signal field is weak (which is valid in the case of few photons)

and that Ê and Ω vary adiabatically. Under reasonable experimental conditions, the

normally-ordered noise correlations of the Langevin operators are zero, such that

the incoming noise is vacuum [40, 43, 97–99]. Thus, to leading order in Ê , we find

[96],

(∂t + c∂z) Ê(z, t) = ig
√
NP̂ (z, t) (2.79)

P̂ (z, t) = − i

Ω
∂tŜ (2.80)

Ŝ(z, t) = −g
√
N Ê
Ω

. (2.81)

These three equations are exactly analogous to their semi-classical counterparts in

Eqs. 2.41–2.43. This is precisely the reason why we justify using weak pulses of light

to study quantum memory experimentally; at least theoretically, there is a direct

applicability of any findings to the realm of non-classical light.

We can obtain a solution to Eqs. 2.79–2.81 by introducing a new quantum field,
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the dark-state polariton [22, 23, 42]

Ψ̂(z, t) = cos θÊ(z, t)− sin θŜ(z, t). (2.82)

The mixing angle θ determines the weighting of the photonic and atomic con-

tributions and is defined as,

tan θ =
g
√
N

Ω
. (2.83)

It can be shown that the dark-state polartion’s time evolution is described by

[22, 23, 42]
[
∂t + c cos2 θ∂z

]
Ψ̂(z, t) = 0. (2.84)

This equation describes the shape-preserving propagation of a field that moves

with velocity vg = c cos2 θ ≈ c|Ω|2/(g2N):

Ψ̂(z, t) = Ψ̂

(
z − c

∫ t

0

dt′ cos2 θ(t′), t = 0

)
. (2.85)

The dark-state polariton picture allows us to see clearly how it is possible

to control the polariton properties via the control field intensity. Specifically, by

reducing Ω to 0, the group velocity is reduced to zero, and θ is rotated to π/2.

Thus, the polariton is purely spin-wave-like when the control field is off. Likewise,

in the limit of a strong control field, |Ω|2 ≫ g2N , then θ → 0, and the polariton

has purely photonic character with vg → c. This suggests that a stationary (spin

wave) polariton can be reaccelerated to the vacuum speed of light. i.e., The stored

quantum state is transferred back to the light field. Recent experiments have shown

the efficacy of dynamic EIT for storing and retrieving classical light pulses [24, 25]

and preserving phase coherence [100].
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2.8 Efficiency of EIT-based storage

The figure of merit of any memory device is its memory efficiency, or the prob-

ability of retrieving an incoming single photon after storage for a time τs. Equiva-

lently, this is the energy ratio of the initial and retrieved signal pulses,

η =

∫ τs+T

τs
|Eout(t)|2dt

∫ 0

−T
|Ein(t)|2dt

, (2.86)

where the variable T is the pulse duration.

Even under the assumption of no atomic decoherence, achievement of 100%

memory efficiency requires the simultaneous balancing of losses due to the finite

EIT window ΓE = |Ω|2/(γ
√
d) and a finite vg/L = |Ω|2/γd [43, 99].

On one hand, the group velocity vg must be low enough to compress the entire

signal pulse into the interaction region of length L. If vg is too high during the

writing stage of storage, then the pulse can “leak” out of the end of the cell before

the control field is turned off—taking information with it. Thus, we require that

vgT ≪ L. On the other hand, if one shortens the temporal length of the pulse to

compensate for this effect, then its bandwidth increases, possibly extending outside

of the EIT window, so parts of the pulse are lost to absorption. Thus, 1/T ≪ ΓE.

The simultaneous satisfaction of these criteria is possible at very high optical depth

d≫ 1 [43, 99].

Further decohering physical effects conspire to limit the efficiency. For instance,

gas atoms can diffuse during all stages of storage, but most importantly during the

waiting time. If the diameters of the light beams are smaller than the diameter of

the vapor cell used to contain the atoms, then the atoms can leave the interaction

region and take information away [101]. Additionally, atomic collisions cause the

spin coherence to dephase and thus negatively effect the fidelity of retrieval [102,
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103]. Unfortunately, many of these degradation factors are more prominent at high

atomic densities. Furthermore, the off-resonant interaction of the control field on

the |g〉 → |e〉 transition can spontaneously produce a new Stokes light field at an

optical frequency of (ν2 −∆hf) via four-wave mixing.

2.9 The effects of four-wave mixing

In the limit of low optical depth, it is sufficient to take into account only the

effects of the single Λ system described above. However, many applications require

operation at high optical depth [43, 104], where additional nonlinear effects may be-

come important [105–108]. One such effect is resonant four-wave mixing (FWM)—a

nonlinear process arising from the far off-resonant interaction of the control field.

Earlier studies [109, 110, 110–119] found that the propagation of the signal field in

this case is strongly affected by the presence of the Stokes field.

The effect of four-wave mixing can be advantageous or detrimental, depending

on the details of the application. For example, in quantum memory applications,

the resonant mixing reduces the fidelity by adding extra noise into the signal field.

In addition, FWM may limit the storage efficiency at higher optical depth [120]. On

the other hand, non-classical correlations between the signal and Stokes fields can

individually carry quantum information and produce entangled photons [53, 121]

and images [122]. Similarly, for slow light applications, the conversion of an original

pulse from the signal to Stokes channel may reduce the readout efficiency [123].

However, under certain conditions, FWM may lead to gain for both the signal and

Stokes fields, which could compensate for any optical losses [124].

In this section, we review the relevant theory governing the off-resonant inter-

action of the control field on the |g〉 → |e〉 transition, which can coherently and effi-

ciently create a new Stokes field, which is detuned from the |s〉 → |e〉 transition. We
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theoretically model this effect by considering a double-Λ configuration, consisting of

a near-resonant Λ system formed by the control and signal fields and of the additional

far-detuned Λ system formed by the same control field (νC = ωes, Rabi frequency

Ω′), applied to the state |g〉 and by an additional Stokes field (ν ′ = ωes −∆hf − δ,

Rabi frequency α′). In Fig. 2.4, we provide an illustration of the double-Λ system.

FIG. 2.4: The double-Λ system used in theoretical modeling of the FWM interaction with
EIT. In our case, |g〉 and |s〉 correspond to the 87Rb ground state sublevels |F,mF 〉 =
|1, 1〉, |2, 2〉, respectively; |e〉 corresponds to the excited state |F ′,mF 〉 = |2, 2〉. Ω and
Ω′ (in black) represent the Rabi frequencies of the same control field applied to two
different transitions, as depicted. α (in blue) and α′ (red) represent the Rabi frequencies
associated with the signal and Stokes fields, respectively.

To account for such an interaction, we must append to the original Hamiltonian

(Eq. 2.28) terms that describe the interaction of Ω′ and α′ with the corresponding

atomic levels. In what follows, we consider an atom at position z = 0 for simplicity,

and find

Ĥ = ωsgσ̂ss + ωegσ̂ee −
[
αe−iνtσ̂eg + α′e−iν′tσ̂es + Ωe−iνdtσ̂es + Ω′e−iνdtσ̂eg +H.c.

]

(2.87)

As before, we seek to remove the optical frequencies and time dependence by
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use of a rotating frame, which is invoked via the unitary transformation in Eq. 2.29.

Employing this, and assuming resonant control fields, we find that

H̃/~ = −δσ̂ss − δσ̂ee −
[
ασ̂eg + Ωσ̂es + α′ei(∆hf+δ)tσ̂es + Ω′ei(∆hf+δ)tσ̂eg +H.c.

]
.

(2.88)

It is clear in this case that a rotating frame, in which the Hamiltonian is time-

independent, does not exist. In order to remedy this, it is necessary to employ a

Floquet basis [125]. In what follows, we work with Schrödinger’s equation and wave-

functions, rather than the Master Equation for the density matrix, for simplicity.

We can expand the wavefunction |ψ̃〉 as an infinite series representation as,

|ψ̃〉 =
(
. . .+ c(−1)

g ei(∆hf+δ)t + c(0)g + c(+1)
g e−i(∆hf+δ)t + . . .

)
|g〉

(
. . .+ c(−1)

s ei(∆hf+δ)t + c(0)s + c(+1)
s e−i(∆hf+δ)t + . . .

)
|s〉

(
. . .+ c(−1)

e ei(∆hf+δ)t + c(0)e + c(+1)
e e−i(∆hf+δ)t + . . .

)
|e〉.

(2.89)

We now equate i~∂t|ψ̃〉 = H̃|ψ̃〉 and collect terms in the same power of ei(∆hf+δ).

Doing so, we find the following recursion relations,

iċ(n)g = −n(∆hf + δ)c(n)g − α∗c(n)e − Ω′∗c(n−1)
e (2.90)

iċ(n)s = − [n(∆hf + δ) + δ] c(n)s − Ω∗c(n)e − α′∗c(n−1)
e (2.91)

iċ(n)e = − [n(∆hf + δ) + δ] c(n)e − α′∗c(n)g − Ωc(n)s − α′c(n+1)
s − Ω′c(n+1)

g . (2.92)

We’ve now essentially exchanged time-dependence for an ∞×∞ matrix,
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i
d

dt




...

c
(−1)
g

c
(−1)
s

c
(−1)
e

c
(0)
g

c
(0)
s

c
(0)
e

c
(+1)
g

c
(+1)
s

c
(+1)
e

...




=




. . .
...

...
...

...
...

...
...

...
... . .

.

. . . ∆hf + δ 0 −α∗ 0 0 0 0 0 0 . . .

. . . 0 ∆hf −Ω∗ 0 0 0 0 0 0 . . .

. . . −α −Ω ∆hf − δ −Ω′ −α′ 0 0 0 0 . . .

. . . 0 0 −Ω′∗ 0 0 −α∗ 0 0 0 . . .

. . . 0 0 −α′∗ 0 −δ −Ω∗ 0 0 0 . . .

. . . 0 0 0 −α −Ω −δ −Ω′ −α′ 0 . . .

. . . 0 0 0 0 0 −Ω′∗ −(∆hf + δ) 0 −α∗ . . .

. . . 0 0 0 0 0 −α′∗ 0 −(∆hf + 2δ) −Ω∗ . . .

. . . 0 0 0 0 0 0 −α −Ω −(∆hf + 2δ) . . .

. .
. ...

...
...

...
...

...
...

...
...

. . .







...

c
(−1)
g

c
(−1)
s

c
(−1)
e

c
(0)
g

c
(0)
s

c
(0)
e

c
(+1)
g

c
(+1)
s

c
(+1)
e

...




(2.93)
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It is notable that the diagonal blocks are identical but shifted relative to each

other by multiples of (∆hf+δ). The off-diagonal blocks connect the nearest diagonal

blocks and are identical. At this point, we elect to adiabatically eliminate all of the

Hilbert space except for {|g〉(0), |s〉(0), |e〉(0)}, which provides an effective Hamiltonian

to lowest order in the small parameter ∆−1
hf . The result is,

i
d

dt




c
(0)
g

c
(0)
s

c
(0)
e




=




−|Ω′|2
∆hf

−Ω′∗α′

∆hf
−α∗

−Ω′α′∗

∆hf
−δ − |α′|2

∆hf
−Ω∗

−α −Ω −δ + |Ω′|2
∆hf

+ |α′|2
∆hf







c
(0)
g

c
(0)
s

c
(0)
e



. (2.94)

Here, we see that the presence of Ω′ results in AC-Stark shifts of levels |e〉

and |g〉 by δs = |Ω′|2/∆hf and −δs, respectively, and an effective Rabi frequency

Ω′α′/∆hf , which couples |g〉 to |s〉. Further, the presence of α′ results in small AC-

Stark shifts of levels |s〉 and |g〉 of O(|α′|2), which we elect to ignore, since α and

α′ are sufficiently weak. We shift all energy levels down by δs, so that |g〉 has zero

energy. This gives an effective time-independent Hamiltonian,

H = −(δ − δs)|s〉〈s| − (δ − 2δs)|e〉〈e| −
[
α|e〉〈g|+ Ω|e〉〈s|+ Ω′α′∗

∆hf
|s〉〈g|+H.c.

]
.

(2.95)

As before, we can solve for the time evolution of the density matrix elements

to find,
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∂tρ̃sg = −[γ0 − i(δ − δs)]ρ̃sg + iΩ∗ρ̃eg + i
Ω′

∆hf
α′∗(ρ̃gg − ρ̃ss)− iαρ̃se (2.96)

∂tρ̃eg = −[γ − i(δ − 2δs)]ρ̃eg + iΩρ̃sg + iα(ρ̃gg − ρ̃ee)− i
Ω′

∆hf
α′∗ρ̃es (2.97)

∂tρ̃es = −(γes + iδs)ρ̃es + iαρ̃gs − i
Ω′∗

∆hf
α′ρ̃eg − iΩ(ρ̃ee − ρ̃ss) (2.98)

∂tρ̃gg = Γegρ̃ee + i(α∗ρ̃eg − αρ̃ge) + i

(
α′Ω′∗

∆hf
ρ̃sg −

α′∗Ω′

∆hf
ρ̃gs

)
(2.99)

∂tρ̃ss = Γesρ̃ee + i (Ω∗ρ̃es − Ωρ̃se)− i

(
α′Ω′∗

∆hf
ρ̃sg −

α′∗Ω′

∆hf
ρ̃gs

)
. (2.100)

For completeness, we remark that the coherences above are related to the zeroth

order amplitude coefficients from Eq. 2.89, i.e., ρ̃ij = c
(0)
i c∗j

(0). To first order in the

weak light fields α and α′, we find that all of the atoms are prepared in |g〉, so that

ρ̃gg ≈ 1, and ρ̃ee = ρ̃ss = 0. In other words, the off-resonant interaction of Ω′ on

the |g〉 → |e〉 transition does not result in significant optical pumping out of |g〉.

With this approximation, we can adiabatically eliminate ρ̃es by setting the right

hand side of Eq. 2.98 to zero. We find that it contributes at first order in the weak

like fields α and α′. Thus, contributions involving this coherence in Eqs. 2.96 and

2.97 contribute at second order of these light fields, so we can ignore them.

The propagation of the signal field through these atoms is described by Eq.

2.18. Correspondingly, the Stokes field propagates according to a form like

(
∂

∂t
+ c

∂

∂z

)
E ′∗(z, t) = − iν1

2ǫ0

N

V
℘esρ̃se, (2.101)

however, we must be careful about the coherence ρ̃se. The polarization that drives

the Stokes field is the one that oscillates at a similar frequency, which, in the rotating

frame is ∆+ δ (see Fig. 2.4). In particular, from the Floquet decomposition in Eq.

2.89, we are looking for products of amplitude coefficients of the form c
(−1)
s c∗e

(0)
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or c
(0)
s c∗e

(−1). By analyzing the recursion relations in Eqs. 2.90–2.92, we observe

that c−1
s ∝ 1/∆2

hf ≈ 0 to our degree of expansion. We also find that c
(−1)
e ≈

α′

∆hf
c
(0)
s + Ω′

∆hf
c
(0)
g . Therefore,

ρ̃se = c(0)s c∗e
(−1) ≈ α′∗

∆hf
|c(0)s |2 + Ω′∗

∆hf
c(0)s c∗g

(0) ≈ Ω′∗

∆hf
ρ̃sg. (2.102)

Thus, the following four equations suffice to describe the interaction of two

weak light pulses through a collection of Λ-type atoms:

(
∂

∂t
+ c

∂

∂z

)
E(z, t) =

iν1
2ǫ0

N

V
℘egρ̃eg (2.103)

(
∂

∂t
+ c

∂

∂z

)
E ′∗(z, t) = − iν2

2ǫ0

N

V
℘es

Ω′∗

∆hf
ρ̃sg (2.104)

∂tρ̃sg = −[γ0 − i(δ − δs)]ρ̃sg + iΩ∗ρ̃eg + i
Ω′

∆hf

α′∗ (2.105)

∂tρ̃eg = −[γ − i(δ − 2δs)]ρ̃eg + iΩρ̃sg + iα. (2.106)

We will discuss the solutions and interpretation of Eqs. 2.103–2.106 in greater

detail in Chapter 6.



CHAPTER 3

Experimental Arrangements

In this chapter, we describe the experimental arrangements; it is organized as

follows. First, we discuss the physical properties of 87Rb atoms and discuss the

correspondence with the theoretical model. We then describe how we created the

signal and control light beams for EIT-based experiments. We further describe the

experimental apparatus and outline the experiments that were performed.

3.1 The atoms

There are no such things as three-level atoms. However, if one is clever about

light polarizations and frequencies, then a three-level interaction can be experimen-

tally realized in alkali atoms. In our experiments, we employ vapor cells of 87Rb. In

this section, we describe in detail these vapor cells and their contents.

There are two naturally occurring isotopes of Rb: 85Rb, which is stable and

has an natural abundance of 72.17(2)%, and radioactive 87Rb, which has a natural

abundance of 27.83(2)% and decays to β−+87Sr with a half-life of 4.88 × 1010 yr,

making it effectively stable. The Rb atom has 37 electrons in the electronic con-

figuration [Kr]5s1, such that only one unbound electron is in the outermost shell,

50
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much like Hydrogen. In Rb, the unbound electron is in the 52S1/2 ground state,

thus, its quantum numbers are n = 5, ℓ = 0, s = 1
2
, ms = ±1

2
, and j = 1

2
. Because

of selection rules, the ground state electron can be optically excited into the 5P

orbital.

Due to the coupling of spin and orbital angular momentum (LS), the excited

states are separated in energy. In particular, the total electron angular momen-

tum, J, is the vector sum of its orbital angular momentum L and its spin angular

momentum S:

J = L + S. (3.1)

Using the convention that the expectation value for magnitude of J is
√
J(J + 1)~

and the eigenvalue of the z-component, Jz is mj~, the corresponding quantum num-

ber J must lie in the range

|L− S| ≤ J ≤ L+ S. (3.2)

For the ground state of either isotope of Rb, L = 0 and S = 1
2
, so J = 1

2
. For the

first excited state, L = 1, so J = 1
2

or J = 3
2
. The optical transition 5S1/2 → 5P1/2,

commonly referred to as the D1 line, has a wavelength of λ = 794.978 850 9(8)

nm with a radiative excited state lifetime of 27.70(4) ns, corresponding to natural

line width of Γ = (2π) 5.746(8) MHz (FWHM). The wavelength of the 5S1/2 →

5P3/2 (D2) line is λ = 780.241 209 686(13) nm, with a lifetime of 26.24(4) ns [Γ =

(2π) 6.065(9) MHz (FWHM)] [1].

As a result of the coupling between the electron angular momentum J and

nuclear angular momentum I, each of the fine-structure transitions have hyperfine

structure. The total atomic angular momentum is:

F = J+ I, (3.3)
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whose magnitude can take values

|J − I| ≤ F ≤ J + I. (3.4)

The actual structure depends on the isotope, as 85Rb, which has 48 neutrons, has

nuclear spin I = 5
2

and 87Rb, which has 50 neutrons, has I = 3
2
. At this point,

we restrict our discussion to the D1 transition of 87Rb, since this is the transition

relevant to the experiment. For the 87Rb ground state, with J = 1
2

and I = 3
2
,

there are two hyperfine manifolds, F = 1 or F = 2, which are split by a frequency

difference of 6.834 682 610 904 29(9) GHz [1]. Likewise, for the first excited state

of the D1 line (52P1/2), F = 1 or F = 2, which are split by 816.656(30) MHz [1]. In

Fig. 3.1, we plot the hyperfine structure of 87Rb.

52S1/2

52P1/2

794.978 851 156(23) nm

377.107 463 380(11) THz

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

305.43(58) MHz

509.05(96) MHz

814.5(15) MHz

F′ = 2

F′ = 1

FIG. 3.1: 87Rb D1 hyperfine structure with frequency splitting between the hyperfine
energy levels [1].
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3.1.1 Zeeman sub-structure and transitions

Additionally, within each hyperfine manifold there are 2F + 1 magnetic sub-

levels, whose degeneracy is lifted by a magnetic field. These levels possess a magnetic

quantum number mF ranging from −F to F . Specifically, we can compute the shift

experienced by an atom in state |F,mF 〉 in the presence of an external magnetic

field, B = Bẑ along the z-axis. The Hamiltonian describing this interaction is

[88, 91]

ĤB = −µ ·B, (3.5)

where µ is the magnetic dipole moment. For a weak magnetic field, the Zeeman

splitting is small compared to the hyperfine splitting, and so F and mF are a good

quantum number [91]. In other words, the total angular momentum operator, F =

I+J commutes with the interaction Hamiltonian. We can then relate the magnetic

dipole moment, µB to the Bohr magneton, µB = e~/(2me), via µ = gFµBFz. Here,

e and me are the electron’s charge and mass respectively, and gF is called the total

angular momentum g-factor. Finally, the energy shift experienced by state |F,mF 〉

in the presence of this external magnetic field is

E(F,mF ) =
µB

~
gF 〈F,mF |FzBz|F,mF 〉 (3.6)

= µBgFmFBz. (3.7)

In the absence of the magnetic field, these mF levels are degenerate, and we wish

to study transitions between various hyperfine manifolds. Specifically, the probabil-

ity of an electron in state |F,mF 〉 being excited to state |F ′, mF ′〉 is determined in

part by the square of the electric dipole matrix element,

℘ = 〈F,mF |ǫ̂ · d|F ′, mF ′〉. (3.8)
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It is useful to employ the Wigner-Eckart theorem [126, 127] to factor out the

angular dependence and write ℘ as a product of a Clebsch-Gordan coefficient and a

reduced matrix element,

〈F,mF |ǫ̂ · d|F ′, mF ′〉 = 〈F ||ǫ̂ · d||F ′〉(−1)F
′−1+mF

√
2F + 1




F 1 F ′

mF q −mF ′


 ,

(3.9)

where the double bars indicate a reduced matrix element, and the Wigner 3-j symbol

is related to the Clebsch-Gordan coefficient, as we will show presently. The variable

q indicates the ellipticity of the laser light (q = ±1 for right/left circularly polarized

light, and q = 0 for linearly polarized light. The Wigner 3-j symbol is non-zero only

if

mF ′ = mF + q, (3.10)

which is essentially a transition selection rule effected by conservation of angular

momentum.

We further simplify by factoring out the F and F ′ dependence into a Wigner

6-j symbol, which leaves us with a reduced matrix element in the J basis [126, 127]:

〈F ||ǫ̂ · d||F ′〉 = 〈J I F ||ǫ̂ · d||J ′ I ′ F ′〉

= 〈J ||ǫ̂ · d||J ′〉(−1)F
′+J+1+I

√
(2F ′ + 1)(2J ′ + 1)





J J ′ 1

F ′ F I




.

(3.11)
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Combining Eqs. 3.9 and 3.11 we find [126],

℘ =〈J ||ǫ̂ · d||J ′〉(−1)2F
′+J+I+mF

√
(2F + 1)(2F ′ + 1)(2J + 1)

×




F 1 F ′

mF q −mF ′








J J ′ 1

F ′ F I





≡CG℘0,

(3.12)

where ℘ is the reduced dipole matrix element and we have related the Clebsch-

Gordan coefficients to the Wigner symbols. The reduced dipole matrix element can

be calculated if the radial wavefunctions are known (e.g. for Hydrogen). It is more

convenient to calculate them from the measurements of the lifetime of the excited

state, τ , via [88, 91]

1

τ
=

ν3

3πǫ0~c3
2J + 1

2J ′ + 1
|℘0|2. (3.13)

For the D1 line of 87Rb [1],

℘0 = 〈J =
1

2
||ǫ̂ · d||J ′ =

1

2
〉 = 2.537(3)× 10−29C ·m (3.14)

For the particular case of transitions driven by right-circularly polarized light

(σ+, or q = 1), as depicted in Fig. 3.2. In this case, selection rules dictate that

mF ′ = mF + 1. The Clebsch-Gordan coefficients for transitions |F = 1, mF 〉 →

|F ′, mF ′ = mF + 1〉 are given in Table 3.1. The corresponding Clebsch-Gordan co-

efficients for transitions |F = 2, mF 〉 → |F ′, mF ′ = mF + 1〉 are given in Table 3.2.

3.1.2 Vapor cells

For our experiments, 87Rb was housed in cylindrical Pyrex cell of length L = 75

mm and diameter 22 mm. At room temperatures, 87Rb is in the solid phase, but

it readily becomes liquid above its melting point of 39.31◦C (312.46 K). Above this
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mF = −1 mF = 0 mF = +1

F ′ = 2 −
√

1
12

−
√

1
4

−
√

1
2

F ′ = 1 −
√

1
12

−
√

1
12

0

TABLE 3.1: 87Rb D1 (52S1/2 → 52P1/2) Clebsch-Gordan coefficients for σ+ transitions,
|F = 1,mF 〉 → |F ′,mF ′ = mF + 1〉

mF = −2 mF = −1 mF = 0 mF = +1 mF = +2

F ′ = 2
√

1
6

√
1
4

√
1
4

√
1
6

0

F ′ = 1
√

1
2

√
1
4

√
1
12

0 0

TABLE 3.2: 87Rb D1 (52S1/2 → 52P1/2) Clebsch-Gordan coefficients for σ+ transitions,
|F = 2,mF 〉 → |F ′,mF ′ = mF + 1〉

temperature, the dependence of the pressure, Pv [Torr] of the Rb vapor inside the

cell on the temperature, T [K], is given by [1]

log10 Pv = −94.048 26− 1961.258

T
− 0.037 716 87 T + 42.575 26 log10 T. (3.15)

The atomic weight of 87Rb is 86.909 atomic units, or 1.443 × 10−25 kg [1].

Assuming a classical gas of non-interacting atoms, the atomic speeds are described

by a Maxwell-Boltzmann distribution about a most probable speed vm [128]:

vm =

√
2kT

mRb
(3.16)
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The average speed in one dimension is computed as

〈v〉 = 4√
πv3m

∫ ∞

0

dv v3 exp

(
− v2

v2m

)

=
2√
π
vm =

√
8

π

kT

mRb
.

(3.17)

For 87Rb at a temperature of T = 60◦C (333.15 K), 〈v〉 ≈ 300 m/s. Thus, even

an atom that is traveling longitudinally down the cell will take less than 200 µs,

which is too short for atomic memory experiments. As described in Sec. 3.3, typical

laser beam diameters were on the order of 5 mm. Thus, a transversely-moving atom

will leave the beam in only 20 µs. Collisions of atoms with the walls are generally

undesirable, since the atom will experience an additional potential energy, which can

result in shuffling of the Zeeman levels. Additionally, atoms experience a random

phase shift during collisions, and dephasing of the collective spin state can occur.

3.1.3 Neon buffer gas

In order to curtail the loss of atoms out of the laser beam (and reduce the

number of thermal atoms entering the laser beam), an inert buffer gas is added

to the cell. Elastic collisions between Rb and Ne limit the mean free path of the

Rb atoms while, at least to some extent, preserving any ground state coherence.

The vapor cells are commercially filled, and the specifications indicate that the

pressure of Neon is approximately 30 torr (4 kPa). For our operation temperature

the estimated density of Ne atoms is found by the ideal gas law:

nNe =
PNe

kBT

= 8.7× 1017 cm−3,

(3.18)

where kB = 1.38066× 10−23 J/K is Boltzmann’s constant.
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3.1.4 Diffusion time

The diffusion time depends on several factors, including the Rb-Ne collisional

cross section, σRbNe and the temperature. The collision rate of Rb with other Rb

atoms produce a small correction to this term, which can become significant at

higher temperature. Rb-Ne collisions typically preserve ground-state coherence at

low buffer gas pressures, since Ne does not have a free electron. However, Rb-Rb

collisions can result in an exchange of spin, which tends to destroy coherent states.

We discuss this effect in more detail in Ch. 7. A detailed calculation would lead us

too far astray, and so we ignore the effects of Rb-Rb collisions on diffusion. We can

estimate the diffusion time for an atom to leave a laser beam of radius r as [128, 129]

τdiff = r2/(4D), (3.19)

where

D =
1

3
〈v̄〉lmf (3.20)

is the diffusion coefficient in three dimensions and lmf = 1/(nNeσRbNe) is the mean

free path. Here, 〈v̄〉 is the mean relative speed of Rb and Ne, which is the same as

the speed of a single atom with a reduced mass [129],

µ =
mRbmNe

mRb +mNe

. (3.21)

With mNe = 3.35 × 10−26, inserting Eq. 3.21 into Eq. 3.17, we find 〈v̄〉 ≈ 650

m/s.
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Rb-Ne collisional cross-section, σRbNe

A fair approximation of the collisional cross section is obtained by considering

the area of a single Rb-Ne molecule of radius r0:

σRbNe = πr20. (3.22)

The potential energy curves of the ground-state Ne-Rb molecule [130, 131]

allow for a rough estimate of r0 = 0.35 nm. More difficult calculations assuming a

Leonard-Jones interaction potential [132, 133] find that r0 = 0.366 nm. Since these

results agree approximately, we shall take the mean value to compute,

σRbNe ≈ 4× 10−15 cm2. (3.23)

It is important to note that this value is likely temperature-dependent, but we are

only interested in an approximate value.

With Eqs. 3.18 and 3.23, we find that the diffusion coefficient (Eq. 3.20) is

D ≈ 6.28 cm2/s. (3.24)

The classic review of optical pumping by William Happer [134] notes that dif-

fusion coefficients are typically determined experimentally, and are related to the

buffer pressure P and a bare diffusion constant D0 by an alternate expression,

D =
760 Torr

P
D0. (3.25)

A value of D0 = 0.23 cm2/s is found in Ref. [135] which, with Eq. 3.25, yields

D ≈ 5.83 cm2/sec, which agrees fairly well with the previous analysis. Since we are

simply interested in an approximation of the Rb diffusion rate out of the beam, we
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will take D = 6 cm2/sec to find that, for a typical beam diameter of 5 mm, Eq. 3.19

predicts,

τdiff = r2/(4D) ≈ 2.6 ms, (3.26)

Which is an improvement by several orders of magnitude compared to ballistic

atomic motion.

3.1.5 Collisional broadening

For Rb atoms in a bath of Ne buffer gas, the energy splitting between two

states, ~ωeg = Ee − Eg, is modified by the interaction potential between the two

species, which typically depends upon the separation between atoms. An alterna-

tive, but equally valid picture, is that collisions cause random phase shifts in the

time-dependent density matrix elements describing the Rb atoms, which collectively

results in a spectral broadening of the absorption line. Quantitatively, this can be

accounted for by appending an additional term to the dephasing rate of the corre-

sponding coherence,

γ = Γsp + γcoll, (3.27)

where Γsp is the natural spontaneous emission rate from Eq. 3.13 and γcoll is the

correction due to buffer gas collisions, which depends on the buffer gas pressure via

γcoll = aPNe. (3.28)

The prefactor a is a constant that depends on the two species and is a non-

trivial function of the collisional cross-section σRbNe, the reduced mass µ, and the

temperature [136]. A full theoretical treatment of this process is complicated, and

so γcoll is typically determined experimentally. Here, we summarize a review of the

literature and relate the experimental findings to our model.
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Ottinger, et al. [137] investigated the broadening of both D1 and D2 Rb res-

onance lines in the presence of several pressurized inert gases (including Ne) at a

temperature of T = 320 K and found that the FWHM of the D1 broadening is

2γOtt. = 0.28 ± 0.04 cm−1/nOtt.
Ne in units of 1/λ, where the Ne concentration was

nOtt.
Ne = 2.69 × 1019 cm−3. Rotondaro, et al. [138] later used the temperature of

T = 320 K to convert Ottinger’s value to standard units:

2γOtt. = 9.4± 1.3 MHz/Torr. (3.29)

Rotondaro, et al. also used high resolution laser absorption spectra to determine a

more precise value for the broadening at T = 394 K:

2γRot. = 9.84± 0.1 MHz/Torr. (3.30)

The experiments described in this dissertation were conducted in a temperature

range between T = 50◦C (323 K) and T = 80◦C (353 K). There is no simple for-

mula for the temperature dependence of broadening, and it has not been carefully

measured in this range. Ottinger, et al. [137] quotes an approximate theoretical

dependence of T 0.3, but comments that this does not hold for Rb-Ne. Since this

temperature dependence is unknown, we will use the more precise value from Ro-

tondaro, et al., and assume that it holds at our operating temperatures. Thus, the

excited state depolarization rate is,

2γ = (2π) nNe × 9.84 MHz/Torr

= (2π) 290 MHz,

(3.31)

where we have used our value Ne pressure of 30 Torr. Notice that this value is

much larger than the FWHM of the natural linewidth, so we simply ignore the
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contribution of the latter to the total linewidth.

3.1.6 Doppler broadening

In order to achieve sufficiently-high optical depth, it is necessary to heat the

vapor cell to a high temperature, as described in more detail in Sec. 3.1.8. Atoms at

higher temperatures are given more kinetic energy, which can result in broadening of

absorption lines due to the Doppler effect, although for the operating temperature

range for these experiments, changes in the Doppler width are negligible. Neverthe-

less, we consider the effects of Doppler broadening in this section.

Since atoms in a vapor cell are moving, they can experience different frequencies

of light, depending on the relative difference in their velocity vector, v, and k, the

wavevector of the laser light. Thus, laser light at a frequency of ν0 in the lab frame

will be Doppler shifted to

ν ′ = ν0 − k · v +O(|v|2), (3.32)

where k = kẑ, with k = 2π/λ. Specifically, if the atom is moving in an opposite

direction to k, then the observed frequency will be shifted to the blue with respect

to ν0. Likewise, the observed frequency will be red-shifted if k · v < 0.

We recall the Maxwell-Boltzmann distribution of each velocity component from

the discussion of Eq. 3.17. Here, we are only interested in the distribution of ve-

locities vz, so we integrate over the two other velocity components (in Cartesian

coordinates) to find that the density of atoms with z-velocities between vz and
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vz + dvz is [128]

n(vz)dvz = n

(
1

vm
√
π

)3 [∫ +∞

−∞
e−v2x/v

2
mdvx

∫ +∞

−∞
e−v2y/v

2
mdvy

]
e−v2z/v

2
mdvz

=
n√
πvm

e−v2z/v
2
mdvz,

(3.33)

where n is the total density of atoms and vm =
√

2kT
mRb

(see Eq. 3.16). We use

Eq. 3.32 to change variables, we find that the number of atoms with absorption

frequencies shifted from ν0 into the interval [ν, ν + dν] is [136]

n(ν)dν =
n√
πvm

exp

[
−
(
ν − ν0
kvm

)2
]
dν. (3.34)

This is a Gaussian profile with a HWHM

ΓD =
√
ln 2kvm

= (2π)
1

λ

√
2kBT

mRb
ln 2.

(3.35)

For 87Rb at T = 60◦C (333 K), this evaluates to ΓD = (2π) 264 MHz ≈ 1.8γ.

Since the collisional width and the Doppler width are roughly equal, we can justify

ignoring the effects of Doppler broadening in our simple model. Thus, the value

of the polarization decay rate γ from the model is related to only the pressure-

broadened linewidth from Eq. 3.31.

3.1.7 Optical pumping

Let us consider in more detail the response of 87Rb to strong σ+-polarized

(q = +1) laser light in resonance with the D1 F = 2 → F = 2 transition, as depicted

in Fig. 3.2. An atom prepared in the ground state sublevel |F = 2, mF = −2〉 will

“absorb” a σ+ photon, and, with a probability proportional to the square of the
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appropriate Clebsch-Gordan coefficient, be excited to state |F ′ = 2, mF ′ = −1〉. The

lifetime of this excited state is typically very short, and the atom will spontaneously

decay into any dipole-allowed ground state, again with probability proportional to

the square of the corresponding Clebsch-Gordan coefficient. In this case, the atom

can decay into either |F = 2, mF = −2,−1, 0〉 or |F = 1, mF = −1, 0〉. If it decays

into one of |F = 2, mF = −2,−1, 0〉, the atom will then “absorb” another resonant

photon of σ+ polarization and the process will repeat. If the atom decays into the

|F = 1〉 manifold, then it will not “see” the off-resonant light, so the atom will stay

there.

mF=–2 –1 0 +1 +2

795 nm

25%25%25%

25%

6.834 GHz

817 MHz

52S1/2

52P1/2

F = 2

F = 1

F′ = 2

F′ = 1

FIG. 3.2: 87Rb D1 hyperfine structure and Zeeman substructure with σ+ light resonant
to the F = 2 → F ′ = 2 transition.

If the laser light illuminates a collection of these atoms for a sufficient time

(determined by the spontaneous decay rate), the atoms are optically pumped into

one of four states: |F = 1, mF = −1, 0, 1〉, or |F = 2, mF = 2〉. In reality, there is a

redistribution of the population between the eight excited states, with an associated

cross section on the order of the cross section that leads to collisional broadening.
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The mixing of the F states is caused by mixing of the total electron angular mo-

mentum, J , which can be modeled by simple randomization [134, 139]. The relative

rate of F mixing, γm, is on the order of the spontaneous emission rate, γ: γm = 35
54
γ

[140]. We solve the density matrix equations of motion for the 16 populations and

7 driven coherences, and allow excited state shuffling to find that the final popula-

tion distributions are independent of the pumping field power, and the population

distribution is,

p−1 = 0.24 (3.36)

p0 = 0.25 (3.37)

p+1 = 0.255 (3.38)

pdark = 0.255. (3.39)

In other words, we find that the atoms populate each state approximately equally:

p−1,0,1,dark ≈ 0.25.

3.1.8 Optical depth

In Section 2.4.1, we computed the optical depth of a medium comprised of

two-level atoms in a near-resonant light field. This result was based on the linear

susceptibility of a single transition. We consider the optical depth experienced by

a weak signal field tuned to the F = 1 → F ′ = 2 D1 transition of 87Rb, after the

atoms have been optically pumped with a stronger control field, as in the previous

section, and as shown in Fig. 3.4. The two laser fields differ in frequency by the

hyperfine splitting, ∆hf = 6.835 GHz.

Since linear susceptibilities simply add, the contributions of different transitions

to the optical depth simply add. We recall that the atoms equally populate each of
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the three |F = 1, mF = −1, 0, 1〉 ground states and the |F = 2, mF = 2〉 state, the

latter of which is dark since it cannot “see” the σ+ light. Using the appropriate

Clebsch-Gordan coefficients from Table 3.1, the optical depth (Eq. 2.57) becomes:

d =
3

8π
λ2L

Γsp

γ
nRb

[
p1
1

2
+ p0

(
1

4
+

1

12

γ2

∆2
hf,P + γ2

)
+ p−1

(
1

12
+

1

12

γ2

∆2
hf,P + γ2

)]
,

(3.40)

where ∆hf,P = (2π) 817 MHz is the hyperfine splitting of the 52P1/2 excited state,

Γsp = (2π) 5.7 MHz is the spontaneous emission rate, γ = (2π) 145 MHz is the

collisionally-broadened polarization decay rate from Eq. 3.31, λ = 795 nm is the

wavelength corresponding to the D1 transition, L = 7.5 cm is the cell length, and

the total Rb concentration nRb is determined by calculating the vapor pressure at

a given temperature from Eq. 3.15 and using the ideal gas law:

nRb =
Pv(T )

kBT
. (3.41)

In Fig. 3.3, we plot the value of d as a function of temperature. It is notable

that since the signal field is weak, one might attempt to experimentally measure the

optical depth by recording the intensity attenuation after the cell according

|E1(L)|2 = |E1(0)|2e−2d, (3.42)

but this measurement is difficult for large d.

In Fig. 3.4, we plot the contribution to the optical depth from the three signal

field transitions, and we signify the weight of each contribution by the correspond-

ing line thickness. 10% of the contribution to the optical depth comes from the

|F = 1, mF = −1〉 → |F ′ = 2, mF = 0〉 transition, 30% from the|F = 1, mF = 0〉 →

|F ′ = 2, mF = +1〉 transition, and due to the large Clebsch-Gordan coefficient, 60%
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FIG. 3.3: Optical depth of the 87Rb F = 1 → F ′ = 2 87Rb D1 transition as a function
of temperature.

from the |F = 1, mF = +1〉 → |F ′ = 2, mF = +2〉 transition. Since the value of

the optical depth determines the efficiency of the light storage process, the domi-

nant single-Λ system will be formed with the signal field linking |F = 1, mF = 1〉 →

|F ′ = 2, mF = 2〉 and the control field linking |F = 2, mF = 1〉 → |F ′ = 2, mF = 2〉.

Recalling the discussion of the simple Λ description from Sec. 2.3, we find that

under the conditions described above, the D1 structure of 87Rb can approximate a

single-Λ system with

|e〉 = |52P1/2, F
′ = 2, mF = 2〉, (3.43)

|s〉 = |52S1/2, F = 2, mF = 1〉, (3.44)

|g〉 = |52s1/2, F = 1, mF = 1〉. (3.45)



68

mF=–2 –1 0 +1 +2

795 nm

25%25%25%

25%
6.834 GHz

817 MHz

52S1/2

52P1/2

F = 2

F = 1

F′ = 2

F′ = 1

FIG. 3.4: A weak signal field tuned to the F = 1 → F ′ = 2 87Rb D1 transition.
10% of the contribution to the optical depth comes from the |F = 1,mF = −1〉 →
|F ′ = 2,mF = 0〉 transition, 30% from the |F = 1,mF = 0〉 → |F ′ = 2,mF = +1〉 transi-
tion, and due to the large Clebsch-Gordan coefficient, 60% from the |F = 1,mF = +1〉 →
|F ′ = 2,mF = +2〉 transition.
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3.1.9 Rabi frequency of the control field

With this approximation, we can calculate the Rabi frequency of the control

field, Ω. From Eq. 2.26, we have:

Ω = ℘esE2/~, (3.46)

where ℘es = 1√
6
℘0 is the dipole matrix element of the |e〉 → |s〉 transition, since

1√
6

is the corresponding Clebsch-Gordan coefficient. We assume that the transverse

intensity distribution of the laser beam is a uniform circle with radius R. It is stan-

dard practice to experimentally measure laser powers, P . Thus, the laser intensity

is simply P/(πR2). We recall that the intensity of light depends on the square of

the electric field, E2 as [86]:

I = ǫ0c〈E2
2〉. (3.47)

The oscillatory part of the electric field will average to 1
2
, so we have the following

expression for the Rabi frequency,

|Ω|2 = P

πR2

|℘eg|2
2~2ǫ0c

. (3.48)

In reality, the laser beam will have a Gaussian profile, so that different atoms at

different radial positions experience different Rabi frequencies. In the experiments

described later, we use an aperture to detect the central portion of the beam, which

has a more or less uniform intensity distribution.

3.2 Experimental description

In this section, we provide a general overview of the experimental apparatus.

We describe each individual component in more detail in subsequent sections. Mea-
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FIG. 3.5: A schematic of the experimental arrangements. See text for abbreviations.

surements were performed using the configuration in Fig. 3.5. We tuned an External

Cavity Diode Laser (ECDL) manufactured by Toptica Photonics (model number

DL100) near the Rubidium D1 transition (λ = 795 nm).

After sending the output through a pair of anamorphic prisms (APP) to correct

for astigmatism, a polarizing beam splitter (PBS) was used to separate a fraction of

the beam for use as a reference frequency. The main beam then passed through an

electro-optical modulator (EOM), which modulated its phase near the frequency of

the ground state hyperfine splitting of 87Rb [∆hf = (2π) 6.835 GHz], and produced

sidebands separated by that frequency from the main beam. All optical fields then

passed through an acoustic optical modulator (AOM) operating at 80 MHz, which

shifted the frequencies of the fields to the red by that amount. We tuned the zeroth

order (carrier frequency) field to the 52S1/2F = 2 → 52P1/2F
′ = 2 transition; this

beam acted as the control field. The +1 modulation sideband functioned as the

signal field, and was tuned near the 52S1/2F = 1 → 52P1/2F = 2 transition. The −1

sideband acted as the far-detuned Stokes field. A saturated absorption spectrum
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through a vapor cell containing natural abundance of both 87Rb and 85Rb is shown

in Fig. 3.6. We label the frequencies of the control and signal fields for convenience.

87Rb F=2

85Rb F=3

85Rb F=2

87Rb F=1

Control Field Signal Field

FIG. 3.6: Saturated absorption spectrum for a vapor cell containing natural abundance
Rb. The control field is tuned near the F = 2 → F ′ = 2 transition, as indicated.
The signal field is tuned near the F = 1 → F ′ = 2 transition, which is approximately
∆hf = 6.835 GHz away.

For spectral measurements, the control field was always on, thereby ensuring

that most of the atoms were in |g〉, and we swept the modulation frequency of the

EOM, which simultaneously swept the frequencies of the Stokes and signal field. For

slow light measurements, we used the control field to optically pump the atoms into

|g〉. We then adjusted the RF power of the EOM and AOM to produce Gaussian

temporal pulses on the signal and Stokes channels.

Since, for some experiments, we were interested in observing the effects of reso-

nant four-wave mixing, it was essential to independently manipulate the amplitudes

of the signal (+1 sideband) and Stokes (−1 sideband) fields. The use of a temper-

ature tunable Fabry-Pérot étalon (Free Spectral Range = 20 GHz, finesse ≈ 100)
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enabled us to do this. By tuning the étalon (see Sec. 3.3.2) in resonance with the

−1 sideband and reflecting the frequency comb off of the étalon, we were able to

reduce the intensity of the Stokes field while preserving the intensity of both the

control and signal fields.

The beam was weakly focused to either 2.6 mm or 4 mm diameter, as we indi-

cate below, and circularly polarized with a quarter-wave plate (λ/4). Typical peak

control field and signal field powers were approximately 19 mW and 50 µW, respec-

tively. A cylindrical Pyrex cell, of length 75 mm and diameter 22 mm, contained

isotopically enriched 87Rb and 30 Torr Ne buffer gas, so that the pressure-broadened

optical transition linewidth was 2γ = 2π × 290 MHz [138] (see Sec. 3.1.5 for a dis-

cussion). The cell was mounted inside tri-layer magnetic shielding, as to reduce

the effects of stray magnetic fields. The temperature of the cell (and thus the con-

centration of Rb in the vapor phase) was controlled via a bifilar resistive heater

wound around the innermost magnetic shielding layer. The temperature range for

this experiment was between 50◦C and 80◦C, which corresponded to Rb densities

of 1.1× 1011 atoms/cm3 and 1.2× 1012 atoms/cm3, and to optical depths of 10 and

110, respectively.

After the cell, the output laser fields were recombined with the unshifted ref-

erence beam, coupled into a multi-mode optical fiber (MMOF), and sent to a fast

photodetector, and the amplitude of each field was analyzed with a microwave spec-

trum analyzer. Because of the 80 MHz frequency shift introduced by the AOM, the

beat note frequencies of the +1 and −1 modulation sidebands differed by 160 MHz,

which allowed for independent measurement of the amplitudes of all three fields.
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3.3 The light fields

A requirement for EIT is that signal and control fields have a stable relative

phase with one another. In particular, if they are not in phase, then the atomic

dark state (see Eq. 2.63),

|D〉 = Ω|g〉 − αeiφ|s〉√
|Ω|2 + |α|2

, (3.49)

can evolve into an atomic bright state,

|B〉 = Ω|g〉+ α|s〉√
|Ω|2 + |α|2

, (3.50)

if the phase difference between E and Ω is π. Thus, whereas the dark state |D〉 was

decoupled from the light fields, resulting in the effects of EIT, the bright state |B〉

(which is a basis vector along with |D〉 and |e〉), has an associated non-zero eigenen-

ergy and is thus not a steady-state to which the atom evolves. In our experiments,

we used opto-electronical devices to create a signal field from a control field, and

ensure a steady relative phase. In this section, we describe the optics components

used to create, manipulate, and detect the light fields.

3.3.1 Light field modulation

After the PBS, the main beam was focused with a lens to the center of an electro-

optical modulator (EOM) operating at the frequency of the ground state hyperfine

spitting of 87Rb [∆hf = (2π) 6.835 GHz]. The EOM employed the electro-optic

effect to phase-modulate the main beam, in turn producing sideband frequencies at

multiples of ±∆hf of nearly equal magnitudes and opposite phases.

More precisely, we can describe the incoming beam as a mono-chromatic plane

wave of the form

Ψi = Aeiνt+iφ, (3.51)
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where A is the wave amplitude, and ν = c/λ is the frequency corresponding to the

D1 transition in 87Rb (ν = (2π) 377.1 THz), and φ is the phase. The EOM is made

of lithium niobate (LiNbO3) crystal with a nominal index of refraction which can

be changed by applying a voltage, V , across the crystal. Thus, after traversing this

device, we find that the outgoing wave has accrued a phase,

∆φ =
2π

λ

(
1

2
n3
0rzz

)
L

d
V ≡ β, (3.52)

where n0 is the unperturbed refractive index, rzz is the appropriate electro-optic

tensor element, and L/d is the ratio of the crystal’s length to thickness.

By modulating the voltage sinusoidally with a driving frequency νd, we can

produce an outgoing wave of the form,

Ψo = Aeiνt+iβ sin(νdt) (3.53a)

= Aeiνt

(
J0(β) +

∞∑

k=1

Jk(β)e
ikνdt +

∞∑

k=1

(−1)kJk(β)e
−ikνdt

)
(3.53b)

= AJ0(β)e
iνt + AJ1(β)e

i(ν+νd)t − AJ1(β)e
i(ν−νd)t + . . . (3.53c)

where Ji are Bessel functions of the first kind, and we have employed the Jacobi-

Anger Identity in the second step [141]. For small β ≪ 1, the main field amplitude

(oscillating at frequency ν, first term in Eq. 3.53c) is largely unaffected (the power

that remains in the first beam is proportional to [J0(β)]
2). We clearly see that the

main beam is accompanied by additional fields in a frequency comb with spacing

determined by the driving frequency, νd. We note that since β ≪ 1, the sideband

amplitudes are significantly smaller than the main field amplitude (the power trans-

ferred to the first order beams is proportional to [J1(β)]
2). For our experiments,

νd = ∆hf , so the +1 modulation sideband functioned as the signal field (oscillating
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at ν + ∆hf , second term in Eq. 3.53c), while the −1 sideband was the Stokes field

(oscillating at ν−∆hf , third term in Eq. 3.53c). We note that the signal and Stokes

field phases differ by π. Higher order sidebands, with smaller amplitudes and larger

detunings from the atomic resonance, can be ignored for practical purposes.

All optical fields passed through an acousto-optical modulator (AOM) operating

at 80 MHz. Thus, the −1 first diffraction order contained beams with frequencies

shifted by this amount to the red. This resulted in the control field shifting back

to the 87Rb F = 2 → F ′ = 2 resonance and the signal field being tuned near the

87Rb F = 1 → F ′ = 2 resonance, as shown in Fig. 3.6.

The total light power to the experiment (and, therefore, Rabi frequency Ω) was

adjusted by changing the RF power to the AOM. In Sec. 3.3.5, we describe how

we can modulate this RF power to produce a control field envelope, Ω(t). Since

all fields traversed the AOM, the intensities and envelopes of all modulation comb

fields were also changed. Thus, we accordingly adjusted the RF power at the EOM

input, which controls the strength of the modulation sidebands, to compensate for

any changes in the signal or Stokes field amplitudes caused by AOM modulation.

In Sec. 3.3.5, we describe how we modulate the RF power to the EOM to produce

the signal field envelope, E(t).

After the AOM, a lens was used to collimate the beam. All optical beams passed

through another PBS and then were circularly-polarized with a quarter-wave plate

(λ/4). In the next section, we discuss the mechanisms used to independently adjust

the input signal and Stokes amplitude.
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FIG. 3.7: A diagram of the Fabry-Pérot under filtering operation. (1) The three light
fields are polarized horizontally (H) and are incident on a polarizing beam splitter (PBS),
aligned to permit transmission of H polarized light. (2) After the PBS, the fields are
circularly polarized with a quarter-wave plate (λ/4). (3) The Fabry-Pérot étalon in this
case is tuned to permit the transmission of the Stokes frequency. The signal and Control
field are reflected, and the λ/4 converts their polarization to vertical (V). (4) Since the
polarizations are vertical, the PBS will reflect them into the experiment. The light fields
are spatially separated for demonstration purposes only.

3.3.2 Spectral filtering with a temperature-tunable Fabry-

Pérot Filter

Phase modulation of the main beam with the EOM produced signal and Stokes

sidebands with equal amplitudes but opposite phases. To evaluate carefully the

effects of four-wave mixing, we used a temperature-tunable Fabry-Pérot (FP) étalon

to adjust the relative amplitudes of either pulse.

An étalon is an optical device that uses the phenomenon of light interference

to permit transmission of certain frequencies of light, while other frequencies are

reflected. This is the operating principle of our Fabry-Pérot étalon: we use temper-

ature to tune the resonant frequency of an étalon mounted inside of a Fabry-Pérot

-type cavity. The unwanted light field (with a frequency matching the transmission

frequency of the étalon) will pass, while the other two light fields will reflect.

Figure 3.7 depicts the operation of the FP to filter the Stokes field, which, as

we will discuss in Ch. 4, was necessary to suppress the effects of four-wave mixing.

The three fields, separated in frequency by ∆hf , are polarized horizontally, and thus
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become transmitted through a polarizing beam splitter (PBS) (stage 1 in Fig. 3.7).

After the PBS, the fields are circularly polarized with a quarter-wave plate (λ/4)

(stage 2 in Fig. 3.7) and enter the FP device (stage 3 in Fig. 3.7). Since the resonant

frequency of the étalon, in this case, was tuned to the frequency of the Stokes field,

most of that field (approximately 95%) will transmit, while the signal and control

fields will reflect. The two reflected fields will then pass through the λ/4 again, and

become vertically polarized. The PBS will reflect vertically polarized beams into

the experiment (stage 4 in Fig. 3.7). While it is not shown pictorially, in reality

a small fraction of the Stokes field will enter the experiment, owing to imperfect

transmission of the étalon.

The Fabry-Pérot étalon housing was constructed of a cylindrical tube of alu-

minum inner diameter 2.54 cm (1 in.)], o.d. 3.82 cm (1.5 in.), length 6.35 cm (2.5

in.) mounted to a larger (6.35×6.35×2.54 cm3) block of aluminum, which operated

as a heat sink. This assembly was mounted to a dual-axis stage. A 2.54 cm diam-

eter étalon [Free Spectral Range (FSR) 20 GHz, finesse ≈ 100] was mounted inside

the aluminum tube. Smaller aluminum spacers (o.d. 2.54 cm, i.d. 1.91 cm) were

used to hold the étalon in place, and infrared-coated glass windows were inserted

on the ends of the aluminum tube. We tuned the resonance frequency of the étalon

by changing the temperature of the étalon with a Peltier element and a commercial

Thermoelectric temperature controller (ThorLabs model TED200C) placed between

the cylindrical tube and the heat sink.

For demonstration purposes, we show the filtering spectra when the FP was

tuned to filter the amplitude of the signal field. We note that this example is

not pertinent to the experiment, but it elucidates the operation of the filtering.

For attenuation of the signal field, we tune the étalon to be in resonance with the

87Rb F = 1 → F = 2 frequency, as shown in Fig. 3.8. The black trace is from the

saturated absorption reference cell. At the same time, the control and Stokes fields
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87Rb F=2

85Rb F=3

85Rb F=2
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Control Field Signal Field

FIG. 3.8: Transmission spectrum of the Fabry-Pérot filter tuned to the signal field fre-
quency. The black trace depicts the saturated absorption spectrum from a reference cell.
The red curve shows the transmission after the FP, and demonstrates that, in this case,
the signal field is filtered.
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were far from the étalon resonance, and were reflected back with minimal losses. A

photodiode after the FP detected the red curve, indicating that only the signal field

was transmitted. Such filtering allowed for suppression of the unwanted sideband

intensity by a factor of approximately 10.

3.3.3 Vapor cell enclosure

After the spectral filtering, the polarization of the reflected beams is converted

to vertical, and so they are reflected by the PBS. We then used another λ/4 to

convert the polarization to circular for the EIT experiment. The vapor cell described

in Sec. 3.1.2 was mounted in three-layer magnetic shielding, which was constructed

with a material with a large magnetic permeability, in order to reduce stray magnetic

fields.

We controlled the temperature of the vapor cell (and correspondingly the optical

depth) by adjusting the current through a bifilar resistive heater that was wound

around the inner-most shield layer. Experimental temperatures ranged between

50◦C to 80◦C, which corresponded to changes in Rb density from 1.1 × 1011 cm−3

to 1.2 × 10−12 cm−3, and to a range of optical depths 2d between 10 and 110. The

temperature was set on a commercially available temperature controller (Newport

Electronics, Inc. model i8-53).

3.3.4 Light detection

After the light beams exited the vapor cell housing, they were linearly polar-

ized with a λ/4 wave plate, recombined with the reference beam, and coupled into a

multi-mode optical fiber (MMOF). The fiber sent the light to a fast photodetector

(PD) (New Focus model 1554). For EIT measurements, we are interested in inde-

pendently monitoring the change in time of the signal and Stokes field amplitudes,
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E(t) and E ′(t), respectively. We employed a microwave spectrum analyzer (Agilent

model E4405B) for this purpose.

Because of the frequency shift induced by the AOM, the act of combining the

reference beam with the beams from the vapor cell created beat notes of ∆hf ± 80

MHz. More precisely, the reference beam had a single frequency, which matched

the output of the laser, ν0. The AOM induces a −80 MHz shift, and the EOM

creates ±∆hf sidebands, ν0 − 80 MHZ ± ∆hf . Thus, the PD records beat notes of

|∆hf ± 80 MHz|. Thus, the signal field could be recorded by observing the spectrum

around a frequency of 6.7547 GHz, while the Stokes field was recorded around 6.9107

GHz.

A wide span on the spectrum analyzer will show three beat notes in the vicinity

of ∆hf—a central one at ∆hf , the amplitude of which is determined by the combined

amplitudes of the signal, Stokes, and control fields; a peak at ∆hf −80 MHz, whose

amplitude is determined only by the signal field; and a peak at ∆hf + 80 MHz,

whose amplitude is determined only by the Stokes field. Higher order harmonics

(at frequencies ∼ 2∆hf) exist, while the amplitude of the beat note at 80 MHz is

determined by the control field amplitude.

We are interested in measuring the time dependence of the signal (or Stokes)

amplitude, and so we work with the spectrum analyzer in “zero-span mode” (actually

a very small, 100 Hz span, for data acquisition convenience). A single sweep was

completed in 1 s. The resolution bandwidth (RBW) was chosen to be 5 MHz, in

order to encompass the entire EIT profile. In order to prevent clipping of the signal,

a video bandwidth (VBW) of 3 MHz was chosen.

The spectrum analyzer was used to record the EIT spectra. In order to over-

come the limitations of the slow sweep time of the spectrum analyzer, and collect

information regarding pulse shapes for slow and stored light experiments, we at-

tached the Auxiliary Video Out port of the Spectrum Analyzer to a digital oscillo-
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scope (Textronix model TDS 2014B). All electronic devices were synchronized with

a nominal 10 MHz reference signal from the spectrum analyzer, and triggered using

an additional function generator. The spectrum analyzer was connected to a com-

puter with a GPIB cable, and traces were recorded with LabView software. The

oscilloscope had a USB interface, and its traces were also recorded with LabView

software.

3.3.5 Control of AOM and EOM inputs

The total power to the experiment was controlled by the amount of power in the

first diffraction order from the AOM, which was driven by a commercial amplifier

(IntraAction model ME). By controlling the driving voltage to the AOM, we could

control the intensity of light in the −1 diffraction order. We could modulate the

amplitude to the AOM with another arbitrary waveform generator (SRS model

DS345), which was connected via GPIB to a computer. Thus, the overall amplitude

of the light fields [A in Eq. 3.53c] is time-dependent. Additionally, the power to

the EOM was driven by the an RF synthesizer (Agilent model E8257D) operating

at ∆hf = 6.8346932 GHz 1, which was capable of sweeping the driving frequency,

νd = νd(t) and also modulating the amplitude of β = β(t) to produce pulses.

Thus, the fields entering the experiment can be described by a modified version

of Eq. 3.53c(c):

Ψo = A(t)J0[β(t)]e
iνt+A(t)J1[β(t)]e

i(ν+νd(t))t−A(t)J1[β(t)]ei(ν−νd(t))t+ . . . , , (3.54)

where the first term describes the control field amplitude, and the second and third

1This value was experimentally determined to be the pressure-shifted EIT resonance by mea-
suring the light shift as a function of control power and extrapolating to zero. We note that the
unshifted resonance is at a frequency of 6.834 682 610 GHz [1]. The pressure shift that we measured
(+11.4 kHz) is in good agreement with the literature (392 Hz/Torr, or +11.8 kHz for 30 Torr of
Ne) [134].
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terms describe the shapes of the signal and Stokes fields, respectively.

For cw (EIT) experiments, the RF frequency was swept around ∆hf : νd(t) =

∆hf + δ(t), where δ(t) is the two-photon detuning, while the amplitude modulation

was off, keeping A(t) = A and β(t) = β constant. The span of the RF sweep was

typically between 250 kHz and 1.5 MHz. For slow and stored light experiments, νd

was parked at a desired two-photon detuning, while the collaboration of A(t) and

β(t) produced control field and signal field envelopes.

3.3.6 Calibration of AOM and EOM

In this section, we describe the correspondence between the signal field’s theo-

retical lineshape, E(t), and the amplitude produced from modulation, A(t)J1[β(t)].

The desired lineshape was described by a function, e.g. a Gaussian of the form

y0 + A exp[−4 ln 2(x− x0)
2/w2] x ∈ [1, 1000], (3.55)

where the data point x ∈ [1, 1000] will correspond to a list of 1000 elements, y0 is a

vertical offset (background), x0 is the horizontal offset, A is the amplitude, and w

is the FWHM pulse duration, which we encode as a data list and send via a GPIB

interface to an arbitrary waveform generator (SRS model DS345). The arbitrary

waveform generator encoded this pulse in a carrier wave with frequency 10 MHz, so

that 1 data point corresponded to 1/(10 MHz) = 0.1 µs. The modulation amplitude

was 2.0 Vpp, and the offset was −1 Vpp.

Since the correspondence between E(t) and A(t)J1[β(t)] is not a trivial relation,

it was more feasible to calibrate the EOM and AOM experimentally. Specifically, it

was necessary to know the correspondence between the desired waveform sent from

the computer to the function generator, which in turn provides a voltage, VAOM (EOM)

to the AOM or EOM drivers, and the resultant power of laser pulse after the AOM
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and EOM, PAOM (EOM). Equivalently, this is the correspondence between A(t) and

Ji[β(t)] from Eq. 3.54] and the resultant shape of the laser pulse after the AOM and

EOM [e.g., E(t), E ′(t), or Ω(t)].

A(t) is largely controlled by the AOM, which suffers from saturation effects,

and thus providing more RF power to the AOM may not result in a linear increase

in the power in the first order diffraction beam. Furthermore, the presence of the

Bessel function indicates that the transfer function between input RF power to the

EOM and output beam shape is not linear.

The strategy is to send simple lineshapes to the drivers and detect the pulse-

shape of the signal field after it traverses the experiment. We first tune the laser

far from any 87Rb resonances, so that the laser is unaffected by the atoms and vice

versa. We first describe the calibration of the AOM. We turn the RF synthesizer’s

modulation off, so that it creates cw signal and Stokes fields. We program a ‘flat’

data set of 10000 elements, {1, 1, 1, . . . , 1, 1}, to both the AOM and EOM function

generators. We record the trace from the oscilloscope and determine the points xstart

and xstop as shown on Fig. 3.9(a). These points correspond to the start times and

the stop of the pulse. We then loaded a ‘ramp’ data set of 10000 elements according

to f(x) = x/10000 to the AOM function generator. We record the trace from the

oscilloscope; this trace represents the light power after only the AOM, so we name

these data PAOM. A sample trace is shown in Fig. 3.9(b). Lastly, to calibrate the

EOM, we load the ‘flat’ data set to the AOM function generator and the ‘ramp’

data set to the EOM function generator. We turn the RF synthesizer’s modulation

on and record the trace from the oscilloscope, which we name PEOM. These data

look qualitatively similar to the AOM data in Fig. 3.9(b).

We then process the data. We first subtract the background and cut all data

in time according to the points xstart and xstop and normalize the amplitude to

1. We plot VAOM vs. PAOM and fit the data with a polynomial of order eight,
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FIG. 3.9: Sample data from the calibration of the AOM and EOM. (a) Raw data from
the timing measurement obtained with the ‘flat’ trace. (b) Sample raw data from the
‘ramp’ programmed to the AOM. These data are qualitatively similar for the EOM. (c)
Fitting an eighth order polynomial to the VAOM vs PAOM. The red trace is the processed
data; the black trace is the fit. (d) Fitting an eighth order polynomial to the VEOM vs
PEOM. The red trace is the processed data; the black trace is the fit.

fit(x) =
∑8

i=0Kix
i, as shown in Fig. 3.9(c). This fit represents the transfer function

between the voltage sent to the function generator and the power measured after

the AOM. We do the same thing for the EOM data, which are shown in Fig. 3.9(d).

3.3.7 A typical cw (EIT) experiment

In this section, we describe the experimental procedure for measuring a cw EIT

spectrum. For these experiments, we were not interested in the behavior of pulses, so

the EOM amplitude modulation was turned off at the RF synthesizer, and the AOM

function generator’s amplitude modulation amplitude was 0 Vpp. We adjusted the

power of the control field by changing the offset of the AOM function generator and
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measuring the photo-current, iph produced by a photodiode whose responsivity was

0.56 at λ = 795 nm. Thus light power was then calculated as P = 1.8× iph.

As described in Sec. 3.2, we tuned the laser near the 87Rb D1 F = 2 → F ′ = 2

transition. We adjusted the FP étalon to filter the desired light field, as described in

Sec. 3.3.2. We swept the RF output from the RF synthesizer by a desired ‘SPAN,’

which depended on the control power, and thus the width of the EIT window (see

Eq. 2.62), and was typically on the order of 250 kHz to 3 MHz. The spectrum

analyzer was used to record the spectrum of either the signal or the Stokes field. A

sample data set, taken at a cell temperature of T = 60◦C (2d = 52) and a control

Rabi frequency of Ω = (2π) 9 MHz (control power of 12 mW in a beam diameter of

4 mm) is shown in the black trace in Fig. 3.10. In this case, the Stokes seed was

attenuated to approximately
√
0.05 of the signal field’s amplitude.
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FIG. 3.10: Signal spectra at an optical depth of 2d = 52 with a beam diameter of 4 mm
and Ω = (2π) 9 MHz. The black curve is experimental data. The red curve is a fit of
the data to a Lorentzian function.

A fit to a Lorentzian profile (red trace) finds that the FWHM of the trans-

parency window is (2π) 100±34 kHz. We can naïvely compare this to the predicted
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FWHM of the EIT window, ΓE = |Ω|2/(
√
dγ) ≈ (2π)106 kHz. These results agree

fairly well, considering that the spectrum that we measured in Fig. 3.10 demon-

strates some of the effects of FWM, as evidenced in the slight asymmetry about

the central frequency of δ0 = 34.3 ± 0.37 kHz. It is notable that the central fre-

quency is not exactly at the two-photon detuning of δ = 0. This is because the

of the light shift (see Sec. 2.9), which shifts the resonant two-photon detuning by

δs = 3|Ω|2/∆hf ≈ 35.6 kHz, which agrees quite well with the measured resonance

location. More of the spectral features of this trace will be discussed in Ch. 6.

3.3.8 A typical slow/stored light experiment

In this section, we describe the experimental procedure for a generic slow light

or stored light experiment. The experimental variables that we changed were control

field power (which determined Ω), the lineshape of the input signal pulse, the two-

photon detuning δ, the storage time τ , and the amplitude ratio of the signal and

Stokes pulses. As described in Sec. 3.2, we tuned the laser near the 87Rb D1

F = 2 → F ′ = 2 transition. We adjusted the FP étalon to filter the desired

light field, as described in Sec. 3.3.2, and dialed a desired δ on the RF synthesizer

(typically several kHz). In the example below, and in many of the experiments, we

were working with signal envelopes Ein(t) with Gaussian lineshapes, but in principle,

we can use any reasonable function. We will discuss the details of pulse shaping in

Ch. 4.

The pulseshapes that we sent to the AOM and EOM enable us to optically

pump the atoms, obtain a cw reference level, and perform the three stages of light

storage: 1) writing the signal pulse to the spin-wave, 2) storing for a time τ (τ = 0

for slow light), and 3) reading out the spin coherence. We create a list of 6000 real

numbers that describe the desired control field lineshape, as shown in the top graph
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of Fig. 3.11. The level ‘1.0’ corresponds to the maximum possible Rabi frequency

(i.e., full laser power), and, as in this example, the level of ‘0.7’ corresponds to a

control field Rabi frequency of Ω = 0.7Ωmax. Similarly, we create a list of 6000 real

numbers to describe the signal field trace, as plotted in the bottom graph of Fig.

3.11. We note that the levels discussed here take into account the calibration from

Sec. 3.3.6.
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FIG. 3.11: The shapes of the control field train (top) and the signal field train (bottom)
sent to the AOM and EOM function generators, respectively, during a typical stored
light experiment.

During first 400 points, the signal field is off, and the Control field optically

pumps the atoms to the desired state. For the next 1000 points, the control field

is maximum, and the signal field is set to a nominal level of 0.3. Essentially, the

light is cw during this time, so this allows us to compare the cw EIT lineshape

from the spectrum analyzer to the light traces on the oscilloscope. This level also
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allows us to normalize subsequent trials to a common level, so as to account for

small fluctuations in the overall laser light intensity. After this (from 2500 to 3000),

we turn off the signal field, in order to readout any spin coherence that was created

during the cw reference portion, and prepares all of the atoms in state |g〉. Then, we

perform the storage experiment by sending a desired writing control field envelope

ΩW(t) and the input signal field Ein(t). These functions are programmed for 1000

points. After the writing stage, we turn off the control field for the desired storage

time—in this case, 1000 points. Again, τ = 0 for slow light. Lastly, we retrieve the

spin-wave into the signal field by turning on just the retrieval control field, ΩR(t),

which can be different that ΩW, but in this case is the same. Figure 3.12 displays

the raw data obtained from the oscilloscope during a stored light experiment.

FIG. 3.12: An example trace from the oscilloscope which depicts the raw data obtained
during a stored light experiment.

Post-processing of the raw data involves the standard practice of background

subtraction, followed by a scaling to the reference level, which we show in Fig. 3.12.

We detune the laser away from any 87Rb resonances and retake the storage data,
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and gives us a reference pulse which does not interact with the atoms. This tells us

the actual shape of Ein. We process the raw data from the reference pulse, and we

then numerically compute the storage efficiency,

η =

∫ τ+T

τ
|Eout(t)|2∫ τ+T

τ
|Ein(t)|2

(3.56)

Figure 3.13 shows the post-processed data.

FIG. 3.13: Normalized off-resonant pulse, Ein, the leakage, and the retrieval from storage,
Eout during a typical stored light experiment.

3.3.9 Measuring spin decay time

The remaining variable in the model is the spin decay time, γ0. In Chapter 7

we discuss experiments designed to investigate in detail the source of spin decay. In

this section, we describe the experimental procedures used to extract the spin-wave

decoherence time. We make an important assumption: that the duration of the

pulses is short enough that spin decay during the writing and retrieval stages was

negligible (although we do include this parameter in the numerical modeling). Thus,

the spin-wave decay largely occurs in the dark—when all light fields are off during

the storage time.

We varied the storage time between τ = 15 µs and τ = 1000 µs and then

measured the reduction of the retrieved pulse energies as a function of storage time.
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FIG. 3.14: Dependence of retrieved signal energies as a function of storage time at
T = 70◦C (α0L = 52). Here, τs = 300± 15 µs. We normalized the memory efficiencies
so that the zero-storage-time memory efficiency is unity.

The spin-wave decoherence time, τs was extracted by fitting the data to an expo-

nential decay e−t/τs . Fig. 3.14 presents a sample measurement of the decay rate at

T = 70◦C (α0L = 52), for which we measured τs = 300± 15 µs.



CHAPTER 4

Optimization of memory efficiency

The ability to store light pulses in matter and then retrieve them while pre-

serving their quantum state is an important step in the realization of quantum

networks and certain quantum cryptography protocols [10, 13]. Mapping quantum

states of light onto an ensemble of identical radiators (e.g., atoms, ions, solid-state

emitters, etc.) offers a promising approach to the practical realization of quantum

memory [23, 28, 33, 42]. Recent realizations of storage and retrieval of single-photon

wave packets [26, 27, 81], coherent states [28], and squeezed vacuum pulses [55, 56]

constitute an important step in demonstrating the potential of this method. How-

ever, the efficiency and fidelity of the storage must be significantly improved before

practical applications become possible.

In this chapter, we present a comprehensive analysis of two recently demon-

strated memory optimization protocols [142] that are based on a recent theoretical

proposal [40, 43, 97–99]. The first protocol iteratively optimizes the input pulse

shape for any given control field [142]. The second protocol uses optimal control

fields calculated for any given input pulse shape. We experimentally demonstrate

their mutual consistency by showing that both protocols yield the same optimal

91
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control-signal pairs and memory efficiencies. We also show that for moderate opti-

cal depths (. 25), the experimental results presented here are in excellent agreement

with a simple three-level theoretical model [43, 99] with no free parameters (see Eqs.

2.41–2.43); we discuss the details of the correspondence between the actual atomic

system and this simple model. Lastly, we study the dependence of memory effi-

ciency on the optical depth. We show that for higher optical depths (& 25), the

experimental efficiency falls below the theoretically predicted values; we discuss pos-

sible effects, such as spin-wave decay and four-wave mixing, which may limit the

experimentally observed memory efficiency.

4.1 Signal pulse optimization

One approach to the optimization of light storage is based on important time-

reversal properties of photon storage that hold even in the presence of irreversible

polarization decay [99]. In particular, for co-propagating1 writing and retrieval con-

trol fields, the following is true under optimized conditions: if a signal pulse Ein(t)

is mapped onto a spin wave using a particular control field Ω(t) and retrieved after

some storage time τ using the time-reversed control field Ω(T − t), the retrieved

signal pulse shape Eout(t) is proportional to the time-reversed input signal pulse

Ein(T− t), but attenuated due to imperfect memory efficiency. This symmetry also

gives rise to an experimentally realizable iteration procedure, which, for any given

writing control field, determines the optimal incoming signal pulse shape. This

procedure has been first demonstrated experimentally in Ref. [142]. The present

experiment was performed independently on a different (although similar) exper-

1The present experiment uses co-propagating writing and retrieval control fields, which corre-
sponds to “forward retrieval," using the terminology of Refs. [40, 43, 97–99]. Although backward
retrieval is more efficient than forward retrieval for degenerate lower levels |s〉 and |g〉 of the
Λ-system [43, 99], for the present experiment the hyperfine splitting between |s〉 and |g〉 makes
forward retrieval more efficient [99]



93

imental setup. Therefore, in order to use this procedure in Sec. 4.3 to study the

dependence of memory efficiency on the optical depth, we verify in this section its

successful performance in the present experimental setup. In addition, the imple-

mentation of iterative signal optimization in this experimental setup will allow us, in

Sec. 4.2, to compare and verify the consistency of signal and control optimizations.

The sequence of experimental steps for the iterative optimization procedure is

shown in Fig. 4.1. The plots show the control field and the measured and simulated

signal fields (solid red lines in the top panel, solid black lines, and dashed blue lines,

respectively). Before each iteration, we optically pumped all atoms into the state

|g〉 by applying a strong control field. We started the optimization sequence by

sending an arbitrary signal pulse E (0)
in (t) into the cell and storing it using a chosen

control field Ω(t). In the particular case shown in Fig. 4.1, the group velocity was

too high, and most of the input pulse escaped the cell before the control field was

reduced to zero. However, a fraction of the pulse, captured in the form of a spin

wave, was stored for a time period τ = 100 µs. We then retrieved the excitation

using a time-reversed control field Ω(t) = Ω(τ − t) and recorded the output pulse

shape E (0)
out(t). For the sample sequence shown, the control fields at the writing

and retrieval stages were constant and identical. This completes the initial (zeroth)

iteration step. The efficiency of light storage at this step was generally low, and

the shape of the output pulse was quite different from the time-reverse of the initial

pulse. To create the input pulse E (1)
in (t) for the next iteration step, we digitally time-

reversed the output E (0)
out(t) of the zeroth iteration and renormalized it to compensate

for energy losses during the zeroth iteration: E (1)
in (t) ∝ E (0)

out(τ − t). Then, these steps

were repeated iteratively until the rescaled output signal pulse became identical to

the time-reversed profile of the input pulse. As expected, the memory efficiency

grew with each iteration and converged to 43± 2%.

To verify that the obtained efficiency is indeed the maximum possible at this
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FIG. 4.1: Iterative signal pulse optimization. The experimental data (solid black lines)
is taken at 60.5 ◦C (α0L = 24) using 16 mW constant control field during writing and
retrieval (solid red line in the top panel) with a τ = 100 µs storage interval. Numerical
simulations are shown with blue dashed lines. Left : Input pulses for each iteration.
Right : Signal field after the cell, showing leakage of the initial pulse for t < 0 and the
retrieved signal field Eout for t > 100 µs. All pulses are shown on the same scale, and all

input pulses are normalized to have the same area
∫ 0

−T
|Ein(t)|2dt = 1, where t is time in

µs.
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shown by the dashed line. The temperature of the cell was 60.5 ◦C (α0L = 24).

optical depth and to confirm the validity of our interpretation of the results, we

compare the experimental data to numerical simulations in Fig. 4.1. Using the

calculated optical depth and the control Rabi frequency (see Secs. 3.1.8 and 3.1.9),

we solve Eqs. 2.41–2.43 analytically in the adiabatic limit Tα0Lγ ≫ 1 [99], which

is valid for the experiments discussed throughout this dissertation. There is a clear

agreement between the calculated and measured lineshapes and amplitudes of the

signal pulses. Also, theory and experiment converge to the optimal signal pulse

shape in a similar number of iteration steps (2-3), and the experimental efficiency

(43± 2%) converged to a value close to the theoretical limit of 45% (see below).

As in our previous study [142], we confirmed that the final memory efficiency

and the final signal pulse after a few iteration steps are independent of the initial

signal pulse E (0)
in (t). We also confirmed that the optimization procedure yields the

same memory efficiency for different control fields. While constant control fields of

three different powers yield different optimal signal pulses [Fig. 4.2(a)], the measured

efficiency [Fig. 4.2(b)] converged after a few iteration steps to the same value of

43±2%. With no spin-wave decay, the highest achievable memory efficiency for the
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FIG. 4.3: Storage of three signal pulses (a′, b′, c′) using calculated optimal storage
(t < 0) control fields (a), (b), (c). Input signal pulse shapes are shown in black dotted
lines. The same graphs also show the leakage of the pulses (solid black lines for t < 0)
and retrieved signal pulses (t > 100 µs) using flat control fields at the retrieval stage
(dashed red lines), or using time-reversed control fields (solid red lines). Graphs (a′′, b′′,
c′′) show the results of numerical calculations of (a′, b′, c′). The temperature of the cell
was 60.5 ◦C (α0L = 24).

optical depth α0L = 24 is 54% [99]. Taking into account spin-wave decay during the

100 µs storage time by a factor of exp[−100µs/500µs] = 0.82, the highest expected

efficiency is 45% [dashed line in Fig. 4.2(b)], which matches our experimental results

reasonably well.

4.2 Control pulse optimization

The iterative optimization procedure described in the previous section has an

obvious advantage: the optimal signal pulse shape is found directly through ex-

perimental measurements without any prior knowledge of the system parameters

(e.g., optical depth, control field Rabi frequency, various decoherence rates, etc.).

However, in some situations, it is difficult or impossible to shape the input signal
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pulse (e.g., if it is generated by parametric down-conversion [143]). In these cases,

the control field temporal profile must be adjusted in order to optimally store and

retrieve a given signal pulse.

To find the optimal writing control field for a given input pulse shape Ein(t),

we maximize η (Eq. 5.1) within the three-level model (Eqs. 2.41–2.43). In this

model, for a given optical depth α0L and a given retrieval direction (coinciding

with the storage direction in the present experiment), there exists an optimal spin

wave Sopt(z), which gives the maximum memory efficiency. One way to calculate

the control field required to map the input pulse onto this optimal spin wave is

to first calculate an artificial “decayless” spin-wave mode s(z), which, like Sopt(z),

depends only on the optical depth and not on the shape of the incoming pulse.

This “decayless" mode s(z) hypothetically allows for unitary reversible storage of an

arbitrary signal pulse in a semi-infinite and polarization-decay-free atomic ensemble,

in which the group velocity of the pulse is still given by Eq. 2.68. The unitarity of

the mapping establishes a 1-to-1 correspondence between a given input signal pulse

shape Ein(t) and an optimal writing control field that maps this input pulse onto

s(z). The same control field maps this input pulse onto the true optimal spin wave

Sopt(z), once polarization decay and the finite length of the medium are taken into

account. The details of this construction are described in Ref. [99].

As an example of control field optimization, we consider the storage of three

different initial pulse shapes, shown by dotted black lines in the middle row in

Fig. 4.3: a step with a rounded leading edge (a′), a segment of the sinc-function (b′),

and a descending ramp (c′). The top row (a,b,c) shows the corresponding calculated

optimal writing (t < 0) control pulses. Since the shape and power of the retrieval

control pulse do not affect the memory efficiency [43, 99], we show, in the top row of

Fig. 4.3, two retrieval control fields for each input pulse: a flat control field (dashed)

and the time-reverse of the writing control (solid). As expected, the flat control
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FIG. 4.4: (a) Eight randomly selected signal pulse shapes (black lines) and their cor-
responding optimal control fields (red lines). (b) Memory efficiency for the eight signal
pulse shapes using calculated optimized control fields at the writing stage, and flat con-
trol fields (open red diamonds) or inverted writing control fields (solid black circles) at
the retrieval stage. Theoretically predicted optimal memory efficiency is shown by a
dashed line. The temperature of the cell was 60.5 ◦C (α0L = 24).

field (the same for all three inputs) results in the same output pulse [dashed in (a′,

b′, c′)] independent of the input signal pulse, because the excitation is stored in the

same optimal spin wave in each case. On the other hand, using the time-reversed

writing control field for retrieval yields output pulses that are time-reversed (and

attenuated) copies of the corresponding input pulses. This means that the time-

reversal iterations of Sec. 4.1 starting with these control-signal pairs converge on

the zeroth iteration, which proves the consistency of the signal optimization of Sec.

4.1 with the control optimization of the present section. The experimental data also

agrees very well with numerical simulations [bottom row (a′′, b′′, c′′) in Fig. 4.3],

supporting the validity of our interpretation of the data.

To further test the effectiveness of the control optimization procedure, we re-

peated the same measurements for eight different randomly selected pulse shapes,

shown as black lines in Fig. 4.4(a). Pulses #4, #6, and #8 are the same as the

input pulses (a′), (b′), and (c′) in Fig. 4.3. For each of the eight input pulses, we

calculated the optimal writing control [red lines in Fig. 4.4(a)] and then measured
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the memory efficiency [Fig. 4.4(b)], retrieving with either a constant control pulse

or a time-reversed writing control pulse (open red diamonds and solid black circles,

respectively). The measured efficiencies are in good agreement with each other and

with the theoretically calculated maximum achievable memory efficiency of 45%

(horizontal dashed line) for the given optical depth.

By performing these experiments, we found that knowledge of accurate values

for the experimental parameters, such as optical depth or control field intensity, is

critical for calculations of the optimal control field. Even a few percent deviation

in their values caused measurable decreases in the output signal pulse amplitude.

In our experiment, effective optical depth and control field Rabi frequency were

computed accurately directly from measurable experimental quantities with no free

parameters. The accuracy of the parameters was also verified by the excellent agree-

ment of experimental and theoretical results of iterative optimization in Sec. 4.1.

We note that for some other systems, the necessary experimental parameters may be

difficult to compute directly with high accuracy; in that case, they can be extracted

from the iteration procedure of Sec. 4.1.

4.3 Dependence of memory efficiency on the optical

depth

In the previous two sections, we verified at optical depth α0L = 24, the consis-

tency of the signal and control optimization methods and their agreement with the

three-level theory. In this section, we study the dependence of memory efficiency

on optical depth. To verify the theoretical prediction that the optimal efficiency

depends only on the optical depth of the sample, we repeated the iterative signal

optimization procedure (Secs. 3.1.8 and 3.1.9) for several constant control field pow-



100

0.6

0.4

0.2

0.0

E
ff
ic

ie
n
c
y

806040200

Optical depth

 P=4mW

 P=8mW

 P=16mW

0.6

0.4

0.2

0.0

E
ff
ic

ie
n
c
y

806040200

Optical depth

 P=4mW

 P=8mW

 P=13mW

 P=16mW

(a) (b)

FIG. 4.5: Memory efficiency as a function of optical depth obtained by carrying out
iterative signal optimization until convergence. (a) At each optical depth, we considered
constant control fields at four different power levels (indicated on the graph) during
writing and retrieval stages. Note that many experimental data points overlap since the
converged efficiencies are often the same for different control fields. Dashed lines are to
guide the eye. Thin and thick black solid lines show the theoretically predicted maximum
efficiency assuming no spin-wave decay and assuming an efficiency reduction by a factor
of 0.82 during the 100 µs storage period, respectively. (b) Thin and thick black lines are
the same as in (a), while the three lines with markers are calculated efficiencies for three
different control fields (indicated on the graph) assuming spin-wave decay with a 500 µs
time constant during all three stages of the storage process (writing, storage, retrieval).
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FIG. 4.6: Results of the optimization procedures for different optical depths: α0L = 24
(red), α0L = 40 (black), and α0L = 50 (green). The top panel [(a) and (b)] shows
storage and retrieval (b) of the optimized input signal pulses (a) obtained by running
iterative optimization until convergence for a constant control field of power 8mW [dash-
dotted line in (b)]. Solid lines correspond to experimental results, while dashed lines
show the results of numerical simulations. In the bottom panel [(c) and (d)], (c) shows
the calculated optimal writing control fields (t < 0) for a step-like signal pulse [dotted
line in (d)] and the time-reverses of these control fields used during retrieval (t > 100 µs),
while (d) shows the resulting storage followed by retrieval.

ers at different temperatures of the Rb cell ranging from 45◦C (α0L = 6) to 77◦C

(α0L = 88). In Fig. 4.5(a), we plot the measured efficiencies (markers) along with

the maximum achievable efficiency predicated by the theory without spin decay

(thin black line) and with spin decay during the storage time (thick black line).

This graph allows us to make several important conclusions.

First of all, it demonstrates that for relatively low optical depths (α0L ≤ 25),

the optimized memory efficiency for different control fields is the same, to within the

experimental uncertainty, and approximately matches the theoretical value (thick

black line). This confirms that the optimization procedure yields the maximum

efficiency achievable for a given optical depth. However, for α0L > 20, the efficiency

obtained with the lowest control field power (black empty circles) dropped below
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the efficiency obtained for higher control powers. As we will now show, the most

probable reason for such deviation is spin-wave decay during writing and retrieval.

As the optical depth increases, the duration of the optimal input pulse increases

as well, as shown in Fig. 4.6(a), following the underlying decrease of group veloc-

ity: T ∼ L/vg ∝ α0L [99]. Thus, above a certain value of α0L, the duration of

the optimal pulse for a given control field becomes comparable with the spin wave

lifetime, and the spin-wave decoherence during storage and retrieval stages can no

longer be ignored. Further increase of the optical depth leads to a reduction of

retrieval efficiency, even though the iterative optimization procedure is still valid

[99] and produces signal pulses that are stored and retrieved with the highest effi-

ciency possible for a given control field and α0L. Fig. 4.5(b) shows the calculated

maximum achievable efficiencies for different constant control powers as a function

of the optical depth, taking into account spin-wave decay with a 500 µs time con-

stant during all three stages of light storage. For each control field power, the

efficiency peaks at a certain optical depth, and then starts to decrease as optical

depth increases further. Since lower control powers require longer optimal input

pulses T ∼ L/vg ∝ 1/|Ω|2 [see Fig. 4.2(a)], the corresponding efficiency reaches its

peak at lower optical depths. Thus, the problem of efficiency reduction posed by

spin-wave decay during writing and retrieval can be alleviated by using higher con-

trol powers, and hence shorter optimal signal pulses. While this effect explains the

reduction of maximum memory efficiency attained with the lowest control power for

α0L > 20 [Fig. 4.5(a)], other effects, discussed below, degrade the efficiency for all

other control powers for α0L > 25, as indicated by the divergence of experimental

data in Fig. 4.5(a) from the corresponding theoretical efficiencies in Fig. 4.5(b) (red

and green lines). Remarkably, at these optical depths, the iterative signal optimiza-

tion procedure still yields efficiencies that grow monotonically at each iteration step

for the three highest control powers. This suggests that iterative signal optimization
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may still be yielding the optimum efficiency, although this optimum is lower than

what the simple theoretical model predicts.

To further test the applicability of our optimization procedures at higher opti-

cal depths, we complemented the signal-pulse optimization [Fig. 4.6(a,b)] with the

corresponding control field optimization [Fig. 4.6(c,d)]. We stored and retrieved in-

put pulse #4 from Fig. 4.4(a) using calculated optimal writing control fields [t < 0

in Fig. 4.6(c)] at different optical depths α0L = 24, 40, and 50. As expected, the

overall control power was higher at higher optical depths to keep the group velocity

unchanged: L/T ∼ vg ∝ Ω2/(α0L). For each optical depth, we used a time-reversed

writing control field to retrieve the stored spin wave. This resulted in the output

signal pulse shape identical to the time-reversed (and attenuated) copy of the in-

put pulse, as shown in Fig. 4.6(d). Although the memory efficiency drops below

the theoretical value at these high optical depths [α0L = 50 for the green lines

in Fig. 4.6(c,d)], the results suggest that the calculated control field may still be

optimal, since it yields the time-reverse of the input signal at the output.

To gain insight into what may limit the memory efficiency for 25 < α0L < 60,

we investigated the effect of resonant four-wave mixing. Thus far, we have considered

only the ground-state coherence created by the control and signal fields in the one-

photon resonant Λ configuration (Fig. 2.1). However, the strong control field applied

to the ground state |g〉 can also generate an additional Stokes field E ′, as shown in

Fig. 4.7(a). This process is significantly enhanced in EIT media [110, 144–147].

In particular, it has been shown that a weak signal pulse traversing an atomic

ensemble with reduced group velocity generates a complimentary Stokes pulse that

travels alongside with a comparably low group velocity [148, 149].

To determine the effect of resonant four-wave mixing on light storage, we first

carried out iterative signal optimization for a constant control field pulse of 16 mW

power at different optical depths, but then detected not only the signal field, but also
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the Stokes field, at the retrieval stage [see Fig. 4.7(b)]. We see that at low optical

depths, the retrieved Stokes pulse [blue empty diamonds] is negligible compared to

the output signal pulse [red filled diamonds, which are the same as the red filled

diamonds in Fig. 4.5(a)]. However, at α0L & 25, the energy of the output pulse in the

Stokes channel becomes significant. While the energy of the retrieved signal pulse

stayed roughly unchanged for 25 < α0L < 60, the energy of the output Stokes pulse

showed steady growth with increasing α0L. Moreover, the combined energy (black

empty circles) of the two pulses retrieved in the signal and Stokes channels added up

to match well the theoretically predicted highest achievable efficiency (solid black

line). We will study elsewhere whether this match is incidental and whether it can be

harnessed for memory applications. For the purposes of the present work, we simply

conclude that the effects of four-wave mixing become significant around the same

value of α0L (∼ 25) where experiment starts deviating from theory. Therefore,

four-wave mixing may be one of the factors responsible for the low experimental

efficiencies at high optical depths.

For α0L > 60, iterative signal optimization still converges, but efficiency does

not grow monotonically at each iteration step, which clearly indicates the break-

down of time-reversal-based optimization [99]. In addition, the final efficiency is

significantly lower than the theoretical value (Fig. 4.5). Many factors, other than

four-wave mixing, may be contributing to the breakdown of time-reversal-based op-

timization and to the rapid decrease of memory efficiency at α0L > 60. First of all,

the absorption of the control field at such high optical depths is significant (measured

to be > 50%). In that case, the reabsorption of spontaneous radiation contributes

appreciably to spin-wave decoherence [150, 151] and can make the spin-wave decay

rate γs grow with α0L, reducing the light storage efficiency [152]. The spin-exchange

collision rate [134], which destroys the spin-wave coherence, also becomes significant

at high Rb density, reducing spin-wave lifetime even further, as we discuss in Ch. 7.
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FIG. 4.7: (a) Level diagram illustrating Stokes field (E ′) generation due to resonant
four-wave mixing. (b) Memory efficiency for retrieval in the signal channel [same as
the red filled diamonds in Fig. 4.5(a)], Stokes channel, and the total for both channels.
The efficiencies are obtained by carrying out iterative optimization till convergence for
constant writing and retrieval control fields of 16 mW power. Dashed lines are to guide
the eye. The solid line (same as the thick black line in Fig. 4.5) shows the theoretically
predicted maximum efficiency assuming an efficiency reduction by a factor of 0.82 during
the 100 µs storage period.



CHAPTER 5

Full control over storage and retrieval

Quantum memory for light is essential for the implementation of long-distance

quantum communication [13] and of linear optical quantum computation [153]. Both

applications put forth two important requirements for the quantum memory: (i)

the memory efficiency is high (i.e., the probability of losing a photon during storage

and retrieval is low) and (ii) the retrieved photonic wavepacket has a well-controlled

shape to enable interference with other photons. In this chapter, we report on the

first experimental demonstration of this full optimal control over light storage and

retrieval: by shaping an auxiliary control field, we store an incoming coherent signal

pulse of arbitrary shape and then retrieve it into any desired output pulse shape

with the maximum efficiency possible for the given memory. While our results are

obtained in warm Rb vapor using electromagnetically induced transparency (EIT)

[23, 26], the presented procedure is universal [43] and applicable to a wide range of

systems, including ensembles of cold atoms [27, 81, 154] and solid-state impurities

[155, 156], as well as to other light storage protocols (e.g., the far-off-resonant Raman

scheme [29]). Although our experiment uses weak classical pulses, the linearity of

the corresponding equations of motion [43] allows us to expect that our results will

106
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FIG. 5.1: (a) Schematic of the three-level Λ interaction scheme. Control (b) and signal (c)
fields in pulse-shape-preserving storage of a “positive-ramp" pulse using a calculated
optimal control field envelope Ω(t). During the writing stage (t < 0), the input pulse
Ein(t) is mapped onto the optimal spin-wave S(z) [inset in (b)], while a fraction of the
pulse escapes the cell (leakage). After a storage time τ , the spin-wave S(z) is mapped
into an output signal pulse Eout(t) during the retrieval stage. The dashed blue line in
(c) shows the target output pulse shape.

be applicable to quantum states confined to the mode defined by the classical pulse.

In this chapter, we experimentally demonstrate the capability to satisfy both

quantum memory requirements in an ensemble with a limited optical depth. Specif-

ically, by adjusting the control field envelopes for several arbitrarily selected input

pulse shapes, we demonstrate precise retrieval into any desired output pulse shape

with experimental memory efficiency very close to the fundamental limit [43, 99].

This ability to achieve maximum efficiency for any input pulse shape is crucial when

optimization with respect to the input pulse [142] is not applicable (e.g., if the pho-

tons are generated by parametric down-conversion [143]). At the same time, control

over the outgoing mode, with precision far beyond the early attempts [24, 69, 70, 157]

is essential for experiments based on the interference of photons stored under differ-

ent experimental conditions (e.g., in atomic ensembles with different optical depths),
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FIG. 5.2: An input Gaussian pulse was optimally stored and retrieved either into its
original pulse shape (a) or into a ramp pulse shape (b). Similarly, the incoming ramp
pulse was optimally stored and retrieved into a Gaussian (c) or into an identical ramp (d).
Input and output signal pulses are shown as dotted and solid black lines, respectively,
while the optimal control fields are shown in solid red lines.

or stored a different number of times. In addition, control over the output pulse

duration may also allow one to reduce sensitivity to mechanical noise. It is impor-

tant to note that shaping the output mode via the control pulse avoids additional

losses that would be present if one were to post-process the retrieved photon with

an electro-optical modulator [121].

An example of optimized light storage with controlled retrieval is shown in

Fig. 5.1(b,c). In this measurement, we chose the input pulse Ein(t) to be a “positive

ramp”. According to theory [43, 99], the maximum memory efficiency is achieved

only if the input pulse is mapped onto a particular optimal spin wave S(z), unique

for each α0L. The calculated optimal spin-wave for α0L = 24 is shown in the

inset in Fig. 5.1(b). Then, we used the method described in Ref. [99] to calculate

the writing control field Ω(t) (−T < t < 0) that maps the incoming pulse onto

the optimal spin-wave S(z). To calculate the retrieval control field Ω(t) (τ < t <

τ + T) that maps S(z) onto the target output pulse Etgt(t), we employ the same
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writing control calculation together with the following time-reversal symmetry of

the optimized light storage [43, 99, 142]. A given input pulse, stored using its

optimal writing control field, is retrieved in the time-reversed and attenuated copy

of itself [Eout(t) ∝ Ein(τ − t)] when the time-reversed control is used for retrieval

[Ω(t) = Ω(τ − t)]. Thus the control field that retrieves the optimal spin-wave S(z)

into Etgt(t) is the time-reversed copy of the control that stores Etgt(τ − t) into S(z).

As shown in Fig. 5.1(b,c), we used this method to achieve pulse-shape-preserving

storage and retrieval, i.e., the target output pulse was identical to the input pulse

(“positive ramp”). The measured output pulse [solid black line in Fig. 5.1(c)] matches

very well the target shape [dashed blue line in the same figure]. This qualitatively

demonstrates the effectiveness of the proposed control method.

To describe the memory quantitatively, we define memory efficiency η as the

probability of retrieving an incoming photon after some storage time, or, equiva-

lently, as the energy ratio between retrieved and initial signal pulses:

η =

∫ τ+T

τ
|Eout(t)|2dt∫ 0

−T
|Ein(t)|2dt

. (5.1)

To characterize the quality of pulse shape generation, we define an overlap integral

J2 as [39]

J2 =
|
∫ τ+T

τ
Eout(t)Etgt(t)dt|2∫ τ+T

τ
|Eout(t)|2dt

∫ τ+T

τ
|Etgt(t)|2dt

. (5.2)

The measured memory efficiency for the experiment in Fig. 5.1 is 0.42± 0.02. This

value closely approaches the predicted highest achievable efficiency 0.45 for α0L =

24 [43, 99], corrected to take into account the spin wave decay during the storage

time. The measured value of the overlap integral between the output and the target

is J2 = 0.987, which indicates little distortion in the retrieved pulse shape.

The definitions of efficiency η and overlap integral J2 are motivated by quantum
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information applications. Storage and retrieval of a single photon in a non-ideal

passive quantum memory produces a mixed state that is described by a density

matrix ρ = (1 − η)|0〉〈0| + η|φ〉〈φ| [40], where |φ〉 is a single photon state with

envelope Eout(t), and |0〉 is the vacuum state. Then the fidelity between the target

single-photon state |ψ〉 with envelope Etgt(t) and the single-photon state |φ〉 is given

by the overlap integral J2 [Eq. (5.2)], while F = 〈ψ|ρ|ψ〉 = ηJ2 is the fidelity of

the output state ρ with respect to the target state |ψ〉. The overlap integral J2 is

also an essential parameter for optical quantum computation and communication

protocols [13, 153], since (1− J2)/2 is the coincidence probability in the Hong-Ou-

Mandel [158] interference between photons |ψ〉 and |φ〉 [39]. One should be cautious

in directly using our classical measurements of η and J2 to predict fidelity for single

photon states because single photons may be sensitive to imperfections that do not

significantly affect classical pulses. For example, four-wave mixing processes may

reduce the fidelity of single-photon storage, although our experiments [120] found

these effects to be relatively small at α0L < 25.

Fig. 5.2 shows more examples of optimal light storage with full output-pulse-

shape control. For this experiment, we stored either of two randomly selected input

signal pulse shapes — a Gaussian and a “negative ramp” — and then retrieved

them either into their original waveforms (a,d) or into each other (b,c). Memory

efficiency η and overlap integral J2 are shown for each graph. Notice that the

efficiencies for all four input-output combinations are very similar (0.42± 0.02) and

agree well with the highest achievable efficiency (0.45) for the given optical depth

α0L = 24. The overlap integrals are also very close to 1, revealing an excellent match

between the target and the retrieved signal pulse shapes. Note that different input

pulses stored using corresponding (different) optimized writing control fields but

retrieved using identical control fields [pairs (a,c) and (b,d)] had identical output

envelopes, very close to the target one. This observation, together with the fact



111

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2
=0.983

J
2

int=0.933

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2

int=0.960

J
2
=0.986

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2
=0.985

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2
=0.971

J
2

int=0.920

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2
=0.994

0.20

0.15

0.10

0.05

0.00

S
ig

n
a
l 
fi
e
ld

2001000-100

Time (µs)

J
2
=0.985

J
2

int=0.954

FIG. 5.3: Examples of storage of signal input pulses with Gaussian and triangular en-
velopes, followed by retrieval in a linear combination of two time-resolved Gaussian pulse
shapes g1(t) and g2(t). Input and output signal fields are shown in dotted and solid black
lines, respectively. Dashed blue lines show the target envelopes.

that the measured memory efficiency is close to the fundamental limit, suggests

that indeed different initial pulses were mapped onto the same optimal spin-wave.

This indirectly confirms our control not only over the output signal light field but

also over the spin-wave.

Our full control over the outgoing pulse shape opens up an interesting possibil-

ity to convert a single photon into a so-called “time-bin” qubit — a single photon

excitation delocalized between two time-resolved wavepackets (bins). The state

of the qubit is encoded in the relative amplitude and phase between the two time

bins [159]. Such time-bin qubits are advantageous for quantum communication since

they are insensitive to polarization fluctuations and depolarization during propaga-

tion through optical fibers [159]. We propose to efficiently convert a single photon

with an arbitrary envelope into a time-bin qubit by optimally storing the photon

in an atomic ensemble, and then retrieving it into a time-bin output envelope with

well-controlled relative amplitude and phase using a customized retrieval control

field.

To illustrate the proposed output pulse shaping, in Fig. 5.3, we demonstrate
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storage of two different classical input pulses (a Gaussian and a positive ramp),

followed by retrieval into a time-bin-like classical output pulse, consisting of two

distinct Gaussian pulses g1,2(t) with controllable relative amplitude and delay. We

obtained the target output independently of what the input pulse shape was. We

also attained the same memory efficiency as before (0.41± 0.02) for all linear com-

binations. Also, regardless of the input, the output pulse shapes matched the target

envelopes very well, as characterized by the value of the overlap integral close to

unity J2 = 0.98 ± 0.01. We also verified that the envelopes of the two retrieved

components of the output pulse were nearly identical by calculating the overlap in-

tegral J2(g1, g2) between the retrieved bins g1 and g2. This parameter is important

for applications requiring interference of the two qubit components [159]. The av-

erage value of J2(g1, g2) = 0.94± 0.02 was consistently high across the full range of

target outputs. The relative phase of the two qubit components can be adjusted by

controlling the phase of the control field during retrieval. The demonstrated control

over the amplitude ratio and shape of the two output pulses is essential for achieving

high-fidelity time-bin qubit generation. Our scheme is also immediately applicable

to high-fidelity partial retrieval of the spin wave [24], which forms the basis for a

recent promising quantum communication protocol [11].

To conclude, we have reported the experimental demonstration of optimal stor-

age and retrieval of arbitrarily shaped signal pulses in an atomic vapor at an optical

depth α0L = 24 by using customized writing control fields. Our measured memory

efficiency is close to the highest efficiency possible at that optical depth. We also

demonstrate full precision control over the retrieved signal pulse shapes, achieved by

shaping the retrieval control field. A high degree of overlap between the retrieved

and target pulse shapes was obtained (overlap integral J2 = 0.98 − 0.99) for all

input and target pulse shapes tested in the experiments. We also demonstrated the

potential application of the presented technique to the creation of optical time-bin
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qubits and to controlled partial retrieval. Finally, we observed excellent agreement

between our experimental results and theoretical modeling. The optimal storage and

pulse-shape control presented here are applicable to a wide range of experiments,

since the underlying theory applies to other experimentally relevant situations such

as ensembles enclosed in a cavity [40, 154], the off-resonant regime [40, 43, 99], non-

adiabatic storage (i.e., storage of pulses of high bandwidth) [97], and ensembles with

inhomogeneous broadening [98], including Doppler broadening [26] and line broad-

ening in solids [33]. Thus, we expect this pulse-shape control to be indispensable for

applications in both classical [160] and quantum optical information processing.



CHAPTER 6

The effects of four-wave mixing on

pulse propagation through an EIT

medium

In this chapter, we investigate the propagation and storage of weak optical

signal pulses in an optically thick hot atomic vapor under conditions of electromag-

netically induced transparency (EIT) and four-wave mixing (FWM). As we have

reported on in Ch. 4, optimal performance of an EIT-based memory requires op-

eration at a high optical depth in order to yield improved memory efficiency. For

example, 90% memory efficiency requires an optical depth α0L > 100 [99]. On

the other hand, an optically dense coherent atomic medium is also known to en-

hance competing undesired effects, such as resonant four-wave mixing (FWM) in

a double-Λ configuration. In this FWM process, the far-detuned interaction of the

control field, which resonantly drives the |s〉 → |e〉 transition (see Fig. 2.4), with

the atomic ground-state coherence enhances the generation of an off-resonant Stokes

optical field (α′ in Fig. 2.4). In turn, the presence of the Stokes field strongly affects

114
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pulse propagation.

This chapter is organized as follows. We first start from the four equations of

motion derived in Eqs. 2.103–2.106 and develop a novel theoretical model of the

EIT-FWM interference phenomenon. We first investigate the modification of the

two-photon resonant transmission peak and the dynamics of pulse propagation in

the case of a seeded Stokes field, which was produced simultaneously with the signal

field by phase modulating the original monochromatic laser field. Specifically, we

show that the resulting signal and Stokes spectra are well-described by a double-Λ

system. Additionally, we show that this model accurately portrays the dynamics of

signal and Stokes field propagation. We then analyze the regime of stored light under

conditions of EIT and FWM, both experimentally and theoretically. We will find

that the spin wave is only weakly affected by the Stokes field, and we will develop

an intuitive analytical picture of the effects of FWM on the signal and Stokes pulses

and on the atomic spin coherence. We note that, in order to avoid carrying extra

factors of 2, we employ the optical depth notation of 2d in Sec. 6.1, but notate the

optical depth as α0L in Sec. 6.4.

6.1 Theoretical description of FWM in the steady-

state

As a starting point, we pick up from Eqs. 2.103–2.106. We remind the reader

that we are working in the undepleted pump approximation and assume that the

Rabi frequencies of the strong control fields Ω and Ω′ are not affected by the atoms,

so that Ω(z, t) = Ω(z) and Ω′(z, t) = Ω′(z) are constants. We show presently that

when the control field is static in time, as in cw and slow light experiments, that

there is an analytic solution. For simplicity, we move to a frame that is moving with
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the pulse phase velocity, c, so that ∂t + c∂z → c∂z . We perform a Fourier transform

in time (t→ ω, ∂t → −iω) to find,

(
−iω + c

∂

∂z

)
E(z, ω) =

iν1
2ǫ0

N

V
℘egρ̃eg (6.1)

(
−iω + c

∂

∂z

)
E ′∗(z, ω) = − iν2

2ǫ0

N

V
℘es

Ω′∗

∆hf
ρ̃sg (6.2)

−iωρ̃sg = −[γ0 − i(δ − δs)]ρ̃sg + iΩ∗ρ̃eg + i
Ω′

∆hf

α′∗ (6.3)

−iωρ̃eg = −[γ − i(δ − 2δs)]ρ̃eg + iΩρ̃sg + iα. (6.4)

As before, E , E ′ are the slowly-varying electric field envelopes of the signal and

Stokes fields, respectively, α = E℘eg/~ and α′ = E ′℘es/~ are the corresponding Rabi

frequencies, and ℘eg and ℘es are the (real) dipole matrix elements of the transitions.

In the continuous-wave (cw) regime, the atomic coherences have essentially reached

a steady state, and the left hand side of the coherence equations can be set to zero.

We then solve for the Fourier-transform of the coherences to find:




ρ̃sg(z, ω)

ρ̃eg(z, ω)


 =

i

F




Γ iΩ∗

iΩ Γ0







Ω′

∆hf
α′∗(z, ω)

α(z, ω),


 (6.5)

where, similar to before, Γ0 = [γ0 − i(δ − δs + ω)], Γ = [γ − i(δ − 2δs + ω)], and

F = |Ω|2−ΓΓ0. We restrict ourselves to the experimental configuration described in

this dissertation, where the Clebsch-Gordan coefficients are such that Ω′ = −
√
3Ω,

and ℘es = −℘eg/
√
3; thus, Ω′℘es = Ω℘eg.

Inserting Eqs. 6.5 into Eqs. 6.1–6.2, we find that the Fourier components of

the signal field E(ω) and the Stokes field E ′(ω) propagate according to the coupled
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differential equations, to linear order in α and α′ [109, 110, 144]:

∂

∂z




E(z, ω)

E ′∗(z, ω)


 =

iν

2c




χ11(ω) χ12(ω)

χ21(ω) 0







E(z, ω)

E ′∗(z, ω)




=
dγ

FL




δ + δs + iγ0 −Ω2/∆hf

Ω∗2/∆hf 0







E(z, ω)

E ′∗(z, ω)




, (6.6)

where we have used ν1 ≈ ν2, and as before, γ =
ν3
1
℘2
eg

3πǫ0~c3
and defined the optical depth

d = 3
8π

N
V
λ2L, since the Clebsch-Gordan coefficient corresponding to the |g〉 → |e〉

transition is −1√
2
. Further assuming that Ω is real, which is usually the case for

electronic transitions in atoms, Eq. 6.6 can be solved analytically for E(z, ω) and

E ′∗(z, ω) by integrating with respect to dummy variable z′ along the interaction

length (i.e., from 0 to point z). Defining ∆R = −Ω2/∆hf , we obtain




E(z, ω)

E ′∗(z, ω)


 = exp


i
dγ

F




δ + δs + iγ0 ∆R

−∆R 0










E(0, ω)

E ′∗(0, ω)


 (6.7)

The matrix, which we define as M , is diagonalizable, so we can write exp[M ] =

exp[PDP−1] = Pdiag[eλ− , eλ+ ]P−1, where diag[λ−, λ+] represents a diagonal matrix

comprised of the exponential of the eigenvalues, λ±. We first define

σ(ω) = i
dγ

2FL
Γ0 (6.8)

β(ω) =
√

Γ2
0 + 4∆2

R (6.9)

ξ(ω) =
dγ

2FL
β(ω), (6.10)

and find λ± = iσ ± |ξ|. Thus,
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exp[M ] =
1

ξ
eiσz




ξ cosh[ξz] + iσ sinh[ξz] idγ∆R

F
sinh[ξz]

−idγ∆R

F
sinh[ξz] ξ cosh[ξz]− iσ sinh[ξz]


 , (6.11)

For the conditions corresponding to our experiment: E ′∗(0, ω) = −fE(0, ω), in

which, as a byproduct of phase-modulation, the Stokes seed has the same initial

temporal lineshape as the signal pulse, but with an opposite phase and with some

amplitude scaling factor 0 < f ≤ 1. We find the following analytic expressions for

the Fourier components of the signal and Stokes fields [109, 161]:

E(z, ω) = eiσz
{
E(0, ω)

[
cosh(ξz) + i

σ

ξ
sinh(ξz)

]

+
2∆R

β
sinh(ξz)E ′∗(0, ω)

}
, (6.12)

E ′∗(z, ω) = eiσz
{
E ′∗(0, ω)

[
cosh(ξz)− i

σ

ξ
sinh(ξz)

]

−i2∆R

β
sinh(ξz)E(0, ω)

}
. (6.13)

Eqs. 6.12 and 6.13 fully describe the propagation of the light fields through the

atomic medium. Theoretically, the measured transmission spectra of the signal and

Stokes fields are computed as |E(L)| and |E ′(L)|, respectively using Eqs. 6.12 and

6.13. We interpret equations 6.12 and 6.13 by first applying a few simplifications,

similar to Ref. [161], by first shifting the two-photon detuning by the light shift,

defining δ̃ = δ − δs (setting ω = 0 for continuous wave measurements), and consid-

ering large |δ̃| ≫ 2|∆R|, but also |δ̃| ≪ Ω, and |δ̃| ≫ γ0. Under these assumptions,

β ≈ iδ̃, and for our parameters, 2ξL = 2iσL ≈ i δ̃
Ω2/(dγ)

− δ̃2

[Ω2/(
√
dγ)]2

, where the

denominators of the two terms represent, respectively, the inverse of the EIT group

delay and the square of the width of the EIT transparency window. Under these ap-

proximations, which hold well in our experiments, the signal and Stokes amplitudes
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after the cell are:

|E(L)| = E(0)
∣∣∣∣e

2iσL − f
Ω2

∆hf δ̃
(1− e2iσL)

∣∣∣∣, (6.14)

|E ′(L)| = E(0)
∣∣∣∣
Ω2

∆hf δ̃
(1− e2iσL)− f

∣∣∣∣. (6.15)

These expressions allow us to interpret the transmission spectra for both fields

in terms of an interference between EIT and FWM effects, where the FWM effect

is represented by the terms proportional to 1/∆hf [161]. At small optical depth, the

effect of FWM on the signal field transmission is negligible, and we observe a typical

symmetric EIT transmission peak (not shown). As optical depth increases, the

FWM term (∝ 1/∆hf) in Eq. 6.14 becomes more noticeable relative to the EIT term,

which reduces with d due to the shrinking of the EIT window. Since the phase of

e2iσL in Eq. 6.14 is ≈ δ̃/(vg/L), for δ̃ > 0, δ̃ = nπvg/L gives destructive interference

(and hence dips in the spectrum) for even n, and constructive interference for odd

n. For δ̃ < 0, the opposite case is true: even n yields constructive interference; odd

n yields destructive interference. Thus, for example, one expects to see one more

destructive interference fringe at negative detunings than at positive detunings—as

evidenced in the spectra below.

6.2 Spectral Measurements

We record the transmission spectra for continuous signal and Stokes fields by

sweeping the EOM frequency, which changes the two-photon detuning δ, and mea-

suring their amplitude variations after the cell. Fig. 6.1(a,b) depicts the experi-

mental results for an optical depth of 2d = 52. Solid lines represent the spectra

corresponding to the signal field transmission; dashed lines correspond to the Stokes

field transmission spectra. Black lines are with no Stokes filtering (i.e., f = 1); red
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lines are with a Stokes intensity attenuation so that f =
√
0.05. These two values

of f (1 and
√
0.05) are shown by horizontal dashed blue lines in Figs. 6.1(b,b′) and

represent the input Stokes amplitude.
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FIG. 6.1: (a, b) Signal and Stokes amplitude spectra at an optical depth of 2d = 52 with
a beam diameter of 4 mm and Ω/2π = 9 MHz. Black traces are with a full Stokes seed
present. Red traces are with the Stokes seed amplitude attenuated to ≈

√
0.05 of the

signal field’s amplitude. (a′, b′) Corresponding theoretical predictions.

With the reduced Stokes seed (red curves), the effects of FWM are suppressed,

and we observe a slightly amplified and nearly symmetric EIT transmission peak.

However, when the full Stokes seed field is present (black curves), on one hand

we observe more gain in the signal field, but on the other hand the FWM/EIT

destructive interference becomes more evident by the presence of a “knee” in the

signal spectra for small negative detunings. These results are in very good agreement

with the predictions of the theory [see Fig. 6.1(a′, b′)], which are calculated from

the full expressions in Eqs. 6.12 and 6.13 with no free parameters, where Ω, γ0, d,

and γ were computed as we describe in Ch. 3.

Spectra taken at higher optical depth reveal more clear evidence of the con-

structive and destructive interference between EIT and FWM. Fig. 6.2(a,b) presents
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FIG. 6.2: Same as Fig. 6.1, but at with an optical depth of 2d = 98.

similar spectra recorded for the same signal and Stokes fields, but at an optical depth

of 2d = 98. In the case of no Stokes attenuation (black curves), the theoretical curve

in Fig. 6.2(b′) exhibits, as expected, destructive interference at δ̃ = δ− δs = nπvg/L

for n = −3,−1, and 2 [here πvg/L = (2π)31 kHz and δs = (2π)36 kHz]. While

slightly shifted, these three points of destructive interference are also clearly visible

in the experimental measurement of Fig. 6.2(a). Even when the Stokes seed field

is suppressed, its presence leads to significant distortions in the signal transmission

resonance.

We repeated similar spectral measurements after reducing the diameter of the

beam by a factor of 1.5, which increased the control field Rabi frequency to Ω/2π =

14 MHz, and corresponded to a larger light shift of δs/2π ≈ 85 kHz. Larger control

intensity and smaller beam size allowed us to reduce the control field absorption

at high optical depths and stay within the theoretical model’s approximations, but

the smaller interaction volume likely exacerbated the detrimental effects of atomic

diffusion. Figs. 6.3 and 6.4 show the experimental and corresponding theoretical



122

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S
ig

na
l T

ra
ns

m
is

si
on

0.40.20.0-0.2-0.4
d (MHz)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S
to

ke
s 

T
ra

ns
m

is
si

on

-0.4 -0.2 0.0 0.2 0.4
d (MHz)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S
ig

na
l T

ra
ns

m
is

si
on

-0.4 -0.2 0.0 0.2 0.4
d (MHz)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

S
to

ke
s 

T
ra

ns
m

is
si

on

-0.4 -0.2 0.0 0.2 0.4
d (MHz)

Experiment

Theory

 Filtered: e ' Å Ã0.05 e  Unfiltered: e ' Å e 

a) b)

a') b')

½=14 MHz
2d = 52

FIG. 6.3: (a, b) Signal and Stokes amplitude spectra at an optical depth of 2d = 52 with
a beam diameter of 2.6 mm and Ω/2π = 14 MHz. Black traces are with a full Stokes
seed present. Red traces are with the Stokes seed amplitude attenuated to ≈

√
0.05 of

the signal field’s amplitude. (a′, b′) Corresponding theoretical predictions.

spectra for optical depths of 52 and 110. The larger Rabi frequency results in a

larger vg than above, and thus more closely spaced spectral dips and peaks. There

is an excellent agreement between the experiment and the theory for the Stokes

spectra, and for the signal spectra at negative detuning. However, the theoretical

model for signal transmission diverges from experimental observations at positive

detuning, indicating the presence of some unaccounted mechanisms such as nonunity

control field refractive index, atomic diffusion [162], or the effects of the multi-level

structure of the atoms.

6.3 Slow Light Measurements

In this section we discuss the slow light regime for the signal field pulses in the

presence of the co-propagating seeded Stokes field. In particular, we are interested

in the prospect of manipulating the signal pulse group delay and amplitude via the
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FIG. 6.4: Same as Fig. 6.3, but at with an optical depth of 2d = 98.

controllable amplitude of the input Stokes field. It is convenient to use Eqs. 6.12,

6.13 to analyze the dynamics of each pulse propagation through the medium by

calculating the variation in the complex amplitudes of both fields for each spec-

tral component of the input pulse and then by Fourier transforming the resulting

expressions back into the temporal domain. The group delay of the signal field is

determined from the acquired phase, which consists of two contributions. The first

from the first exponential in Eq. 6.12, and it is the same for all spectral components

of the pulse: τ0 = d
dω
Re [σ(ω)z] ≈ dγz

2LΩ2 . Notably, this value is exactly half of the

pulse delay expected from the pure EIT system. The second contribution is from

the expression in brackets in Eq. 6.12. The value of this additional delay depends

explicitly on the detuning of the signal pulse from resonance and may vary signif-

icantly for different spectral components of the pulse. Below we discussed three

distinct scenarios for the pulse two-photon detuning: δ = 2|∆R|, δ = 2δs, and δ = 0.

Figures 6.5(a,b) and 6.6(a,b) correspondingly present the experimental data for

6 µs-long (FWHM) signal and Stokes pulses (which corresponds to a bandwidth of
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±(2π)31 kHz around the carrier frequency) when the full Stokes field is present,

and when the Stokes field is suppressed. Respective graphs (a′) and (b′) give the

prediction of the calculations based on the complete solutions of Eqs. 6.12,6.13. In

these calculations, we use a control field with Rabi frequency Ω/2π = 14 MHz,

corresponding to δs/2π = 84 kHz and ∆R/2π = −28 kHz.

For more insight into the spectral dynamics of the pulse, we also plot the calcu-

lated time delay experienced by the signal field spectral components ω [Figs. 6.5(c)

and 6.6(c)], and the spectral gain |E(ω, L)|/|E(ω, 0)| [Figs. 6.5(d) and 6.6(d)].

These last graphs also show the spectral bandwidth of the input pulse (the blue,

dashed curve) for reference.
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FIG. 6.5: (a) Slow light on the signal channel at an optical depth of 2d = 110 with no
Stokes seed attenuation (i.e., f = 1) for signal detunings δ = 2|∆R| (red curves), δ = 2δs
(green curves), and δ = 0 (black curves). The thin blue curve is the initial reference
pulse. (b) Corresponding Stokes channel. (a′, b′) Corresponding theoretical predictions
from Eqs 6.12,6.13. (c) Theoretical total delay dispersion experienced by the signal
pulse frequency components after traversing length L. The blue dashed curve depicts
the frequency spread of the input signal pulse. (d) Predicted signal gain dispersion.



125

3.0

2.5

2.0

1.5

1.0

0.5

0.0

S
ig

n
a

l 
A

m
p

lit
u

d
e

3020100-10

time (µs)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

S
to

k
e

s
 A

m
p

lit
u

d
e

3020100-10

time (µs)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

S
ig

n
a

l 
A

m
p

lit
u

d
e

3020100-10

time (µs)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

S
to

k
e
s
 A

m
p
lit

u
d
e

3020100-10

time (µs)

Two-Photon Detuning
 d Å 2 |Æ

R
|

 d Å 2 d
s
 

 d Å 0

 Reference pulse

Experiment

Theory

a) b)

a') b')

8

6

4

2

0

S
ig

n
a
l 
S

p
e
c
tr

a
l 
D

e
la

y
 (

µ
s
)

-60 -40 -20 0 20 40 60
w (kHz)

2.0

1.5

1.0

0.5

0.0

S
ig

n
a
l 
G

a
in

-60 -40 -20 0 20 40 60
w (kHz)

d)

c)

 Stokes seed Filtered 

FIG. 6.6: Same as Fig. 6.5, but with Stokes seed attenuation (f =
√
0.05).

6.3.1 Case I: δ = 2|∆R|.

The data corresponding to the case δ = 2|∆R| = (2π)56 kHz are shown in

Figs. 6.5 and 6.6 in red. Although the theoretical calculations predict only a weak

dependence of the signal pulse on the amplitude of the Stokes seed, the experimental

data show much stronger dependence: for the full seeded Stokes field the experi-

mental pulse shows small delay and noticeable attenuation, while when the Stokes

field is small, the signal pulse experiences some small gain and much larger delay.

The latter is much closer to the theoretical expectations of gain of ≈ 1.5 and the

delay of ≈ 6µs. The experimental results for the Stokes field, however, match the

theory much more accurately, which may indicate that the absorption of the signal

field is underrepresented by the model.

The analysis of the spectral gain and delay for both cases (f = 1 and f =
√
0.05)

provides some qualitative understanding of the observed pulse behavior. For the case

of the full Stokes field, Fig. 6.5(c) shows that all the signal spectral components

with ω > 0 experience a roughly uniform delay of ≈ 5 µs, whereas the components
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ω < 0 experience a longer delay, resulting in the pulse spreading as it traverses the

cell. However, this effect is somewhat suppressed by lower spectral gain for ω < 0

(Fig. 6.5d). With the Stokes field attenuated [Fig. 6.6(c,d)], we expect that all

signal spectral components ω experience a uniform delay of ≈ 6µs, and a slight gain,

resulting in delayed propagation with little pulseshape distortion, as corroborated

well in Fig. 6.6(a).

6.3.2 Case II: δ = 2δs.

The green curves in Figs. 6.5 and 6.6 depict the results of slow light experiments

with a two-photon detuning of δ = 2δs = (2π)168 kHz. Figs. 6.5(c,d) illustrate that

for the unfiltered Stokes field (f = 1), all frequency components of the initial signal

pulse experience a nearly identical delay of ≈ 5 µs—indicating very little pulse

spread. Simultaneously, the central component should be amplified by a factor of

≈ 1.8. This prediction matches well with both the experimental [Figs. 6.5(a,b)] and

theoretical [Figs. 6.5(a′,b′)] pulses. When the Stokes seed is attenuated (f =
√
0.05),

the signal pulse experiences a slightly longer delay of approximately 5.8 µs, but will

also be less amplified, according to Fig. 6.6(d). The experimental result [green curve

in Fig. 6.6(a)] reproduces this predicted delay, but shows a small attenuation rather

than gain, possibly indicating the presence of an additional decay mechanism.

6.3.3 Case III: δ = 0.

The black curves in Figs. 6.5 and 6.6 depict the results of slow light experi-

ments with a two-photon detuning of δ = 0. This case most clearly demonstrates

the merits of Stokes seed attenuation. For the unfiltered Stokes seed f = 1, different

spectral components will acquire very different phase and gain while propagating

through the interaction region. In particular, Fig 6.5(c) shows large variation in the
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spectral delay — from 14 µs for central frequencies to 5µs for the farther detuned

components. When combined with the gain curve, shown in Fig. 6.5(d), such vari-

ations should greatly distort the shape of the output pulses. In fact, the expected

output closely resembles a double-peaked pulse, and is quite similar to that observed

in the experiment. When the Stokes seed is filtered (f =
√
0.05), as in Fig. 6.6, the

differential delay is suppressed, and all spectral components experience a common

delay of nearly 7 µs, but at the sacrifice of gain, which is < 1. Figs. 6.6(a,b) show

excellent agreement with the corresponding theoretical curves.

6.4 FWM under Stored Light conditions

As we have seen in Sec. 6.3, under certain experimental conditions, both the

signal and Stokes pulses appear to be delayed during propagation in the slow light

regime. Thus, it is reasonable to expect that the control field could be turned off

while portions of both pulses are within the medium, thus mapping the pulses to a

single memory. In this section, we investigate the prospect of the light storage of

both fields; that is, a process in which both signal and Stokes pulses are reversibly

mapped onto a long-lived spin coherence and thus can be faithfully recreated after

some storage period. Recent experiments [124] have shown that a spontaneously

generated Stokes field can be detected upon retrieval of a signal field from a spin

coherence. Based on these results, one might anticipate that the spin wave might

function, at lease to some extent, as a memory for both pulses.
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6.4.1 Coupled propagation of signal and Stokes fields in a

double-Λ system

In order to match the equations of motion for quantum fields (c.f., Eqs. 2.41–

2.43), we define g
√
N =

√
γα0c/2 as the coupling constant between the signal field

and the atomic ensemble. We rescale the light field envelopes by defining dimension-

less light field envelopes µ
~g
E → E and µ

~g
E ′ → E ′. We define the optical polarization

P (z, t) = ρeg(z, t)
√
N and the spin coherence S(z, t) = ρsg(z, t)

√
N , where ρij(z, t) is

the appropriate slowly-varying position-dependent collective density matrix element

and N is the number of atoms in the interaction volume.

In the dipole approximation, assuming that at all times most of the atoms are

in |g〉, and to linear order in the weak light fields E and E ′, the atomic evolution

and light propagation equations read [109, 110, 124, 161, 163]:

(∂t + c∂z) E = ig
√
NP, (6.16)

(∂t + c∂z) E ′∗ = −ig
√
N

Ω

∆hf
S, (6.17)

∂tS = −Γ0S + iΩP + i
Ω

∆hf
g
√
NE ′∗, (6.18)

∂tP = −ΓP + iΩS + ig
√
NE , (6.19)

where we have defined Γ0 = γ0 − i(δ − δs) and Γ = γ − i(δ − 2δs). The polarization

decay rate γ and the spin decay rate γ0 have been introduced.

Equations 6.16–6.19 fully describe the propagation of the light fields and the

dynamics of the spin wave and of the optical polarization during all stages of light

storage. As we have demonstrated, in the slow light regime, when the control field is

constant in time [Ω(t) = Ω], Eqs. 6.16–6.19 can be solved analytically using Fourier

transformation in time [109, 110, 124, 161, 163]. In the stored light regime, when the

control field intensity is time-dependent, these equations can be solved numerically.
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6.4.2 Correspondence between experiment and theory
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FIG. 6.7: Storage and retrieval of 16 µs-long (FWHM) truncated Gaussian pulses at
T = 70◦C (α0L = 52), for a two-photon detuning of (a) δ = −20 kHz, (b) δ = 0
kHz, and (c) δ = +20 kHz. In all plots, the top graphs are experimental data and
the bottom graphs are the theoretical predictions from Eqs. 6.16–6.19. The black curve
is a far-detuned reference pulse; the blue (red) traces are the signal (Stokes) pulses.
Dashed (solid) lines correspond to slow (stored) light experiments. In the theory plots,
the green curve corresponds to a model consisting only of EIT, to provide contrast with
the EIT-FWM model.

Figure 6.7 displays the results of storage experiments with 16 µs-long truncated

Gaussian pulses at T = 70◦C (optical depth α0L = 52) along with the corresponding

theoretical predictions, which are obtained by numerically solving Eqs. 6.16–6.19

with the appropriate parameters. We measured the control field power to be 4.7

mW, and the beam diameter was 2.67 mm, which corresponded to Ω/(2π) = 9.6

MHz, and induced a light shift of δs = 17 kHz. The spin-wave decay rate was

measured to be approximately 300 µs, thus γ0/(2π) ≈ 270 Hz. The results from the

slow light experiment (dashed lines) and the stored light experiment (solid lines)

are overlaid to facilitate shape comparison.

For a small negative two-photon detuning δ = −20 kHz [Fig. 6.7(a)], the signal

field (in blue) experiences some distortion during propagation [as evidenced by the

bumps in the leakage portion of the pulse (when t < 0), which exits the cell before

the control field is extinguished], but the shape of the slow pulse is preserved during

the storage process. Likewise, the fraction of the Stokes field that exits the medium
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at t > 0 in the slow light experiment (dashed red) matches the retrieved Stokes

field in the stored light experiment (solid red). There is an excellent agreement

between the experimental observations and the numerical model predictions. The

green trace in the theory plot corresponds to standard EIT-based light storage of

the signal field, where the FWM process has been artificially turned off. To compute

this trace, the Stokes contribution in Eq. 6.18 is set to zero, and Eqs. 6.16, 6.18, and

6.19 are solved numerically. We include this trace in order to showcase the effects

of four-wave mixing on signal pulse shape and delay.

Figure 6.7(b) demonstrates the excellent correspondence between experiment

and theory for a two-photon detuning of δ = 0 kHz. For this value of δ, the signal

pulse is less distorted during propagation, but the pulse shape is still distinct from

the bare-EIT model. Likewise, Fig. 6.7(c) depicts the results for δ = +20 kHz ≈ δs,

where the two-photon detuning effectively cancels the light shift during the writing

and retrieval stages. Under this condition, the signal pulse will experience the least

amount of distortion due to FWM, since the EIT transmission peak is, at least for

a sufficiently narrow pulse bandwidth, symmetric about δ = δs. As a result, the

dispersion experienced by the pulse is mostly linear. In all cases, the theoretical

model matches the experimental data very well.

The correspondence between slow light pulseshapes (dashed lines) and the

shapes of the retrieved pulses (solid lines) illustrates an important result—when

the writing and retrieval control field amplitudes are constant in time, the process

of switching the control field off and on has little effect on the signal and Stokes

fields, apart from a delay and the spin-wave decay during storage time. In this

case, we can further understand the effects of FWM by using the closed form solu-

tions to the Fourier transformed versions of Eqs. 6.16–6.19 [109, 124, 161, 163]. In

Appendix B, we detail the derivation of the following two approximate equations,

which intuitively describe the effects of FWM and EIT on pulse propagation for the
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case δ = δs. Although these equations make a set of strong assumptions, including

the assumption of an infinitely wide EIT transmission window ΓE → ∞, they pre-

serve the essential physics in the limit of weak FWM. Defining ∆R = −Ω2/∆hf , the

equations are

E(L, t) ≈ E(0, t− L/vg) + ∆2
R

∫ L/vg

0

dt′E(0, t− t′)t′

+i∆R

∫ L/vg

0

dt′E ′∗(0, t− t′), (6.20)

E ′∗(L, t) ≈ E ′∗(0, t) + ∆2
R

∫ L/vg

0

dt′E ′∗(0, t− t′)(L/vg − t′)

−i∆R

∫ L/vg

0

dt′E(0, t− t′). (6.21)

These equations clearly show how the effects of FWM grow with optical depth

α0L. The first term on the RHS of Eq. 6.20 describes the delay that the signal field

experiences during propagation in an EIT medium, where vg = 2Ω2/(α0γ) is the EIT

group velocity [90]. Due to the effects of FWM, the signal field acquires a small in-

phase gain of order ∆2
R(L/vg)

2 ∼ (α0L)
2γ2/∆2

hf from times up to L/vg earlier. The

times farthest away are weighted more heavily. Additionally, the signal field acquires

an i-out-of-phase contribution of order |∆R|L/vg ∼ α0Lγ/∆hf from the Stokes field

up to L/vg earlier with all times contributing equally. The Stokes field propagates

undistorted and largely undelayed, but gets a small [order (α0L)
2γ2/∆2

hf ] in-phase

gain from times up to L/vg earlier, with closest times weighted more heavily, and

also an i-out-of-phase contribution of order α0Lγ/∆hf from the signal field, with all

times weighted equally. Notice that in both equations, in the regime where the first

term on the RHS is large, small in-phase (α0L)
2γ2/∆2

hf terms and small i-out-of-

phase α0Lγ/∆hf terms contribute at the same (α0L)
2γ2/∆2

hf order to the absolute

value of the field (which is what our experiment measures).

However, the first terms on the RHS are not always dominant. In particular,
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for t > 0, the first term on the RHS of Eq. 6.21 vanishes, in which case |E ′∗(L, t)|

is dominated by the third term with a small correction from the second term. This

means, as we will confirm experimentally, that the retrieved Stokes field is largely

determined by the input signal, and not by the input Stokes field. Similarly, if

EIT group delay is comparable to the signal pulse duration, then, for t < 0, the

RHS of Eq. 6.20 is small and |E(L, t)| is significantly affected by the third term.

This means, as we will confirm experimentally, that the signal pulse leakage can be

strongly affected by the Stokes input, in contrast to the retrieved signal pulse, which

is only weakly affected by the Stokes input. Equations 6.20 and 6.21 also show that

the perturbative treatment of the effects of FWM, employed to derive them, breaks

down when |∆RL/vg| & 1, i.e., when the optical depth is α0L & 2∆hf/γ ≈ 100.

To test the validity of Eqs. 6.20 and 6.21, in Fig. 6.8(a), we compare the solu-

tions obtained by numerically solving Eqs. 6.16–6.19 (solid lines) to the predictions

of Eqs. 6.20 and 6.21 (dotted lines). In the dashed traces, we include the results of

a useful intermediate approximation, which does not assume infinite ΓE and is de-

scribed by Eqs. B.4–B.5 and B.11–B.15 in Appendix B. For these plots, Ω/(2π) = 10

MHz and α0L = 80; the pulse bandwidth was ∆ω = 0.1ΓE. From the excellent cor-

respondence between theoretical models, it is evident that the approximations made

in deriving Eqs. 6.20 and 6.21 are valid.

6.4.3 The effect of four-wave mixing on the spin wave

While the solutions of Eqs. 6.16–6.19 accurately describe the evolution of light

pulses and atomic variables under slow light and storage conditions, we have not

yet used them to elucidate the role that the Stokes field plays in the creation of

the spin coherence. Specifically, it is not yet clear whether the quantum memory

description based on the dark state polariton principle [22, 42] is valid under EIT-
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FIG. 6.8: (a) Results of a numerical investigation of slow light with a 6.6 µs-long pulse
(reference in black), with Ω/(2π) = 10 MHz and α0L = 80, so that the bandwidth of the
pulse ∆ω = 0.1ΓE. Blue traces are the signal field; red traces are the Stokes field. Solid
lines are the result of numerically solving Eqs. 6.16–6.19. Dotted lines are the result
of the infinite-ΓE approximation in Eqs. 6.20–6.21. Dashed lines correspond to results
obtained using numerical integration of expressions in Eqs. B.4–B.5, andB.11–B.15 in
Appendix B. (b) The spin waves created at time T = 5 µs in Fig. 6.8(a). The solid black
line is the result of numerically solving Eqs. 6.16–6.19. Dotted lines are the results from
Eq. 6.29. Dashed lines are the results from Eqs. B.17 and B.23.



134

FWM conditions. In what follows, we develop a more transparent description of

light storage in a double-Λ system and show that in this case, the spin wave is

determined by a particular combination of signal and Stokes fields.

We obtain this result by adiabatically eliminating the optical polarization P (z, t).

We set the time derivative to zero in Eq. 6.19 and find

P (z, t) ≈ i
Ω

Γ
S(z, t) + i

g
√
N

Γ
E(z, t). (6.22)

Inserting Eq. 6.22 into Eq. 6.18, we obtain the following equation for time evolution

of the spin wave S(z, t):

∂tS(z, t) = −
(
Γ0 +

Ω2

Γ

)
S(z, t)− g

√
N
Ω

Γ
F(z, t). (6.23)

It is easy to see that the spin wave depends only on a combination F(z, t) of signal

and Stokes optical fields, defined as

F(z, t) = E(z, t)− i
Γ

∆hf
E ′∗(z, t). (6.24)

Eq. 6.23 is analogous to the spin-wave expression obtained through a similar treat-

ment of a standard three-level light storage model [22, 42],

∂tS(z, t) = −
(
Γ0 +

Ω2

Γ

)
S(z, t)− g

√
N
Ω

Γ
E(z, t), (6.25)

but with one modification—the single light field (signal) is now replaced by a com-

bined signal-Stokes field F . Thus, one might expect that it should be possible to

store information about this joint mode in the spin coherence. However, only a

small (α0L)
2γ2/∆2

hf fraction of the Stokes field [the second term on the RHS of Eq.

6.21] exits the medium at t > 0 after the input Stokes has been turned off, while
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the signal pulse is delayed in its entirety (the first term on the RHS of Eq. 6.20). As

a result, in contrast to the information encoded in the signal field, most of the in-

formation encoded in the Stokes field is lost to leakage, which leaves the interaction

region before the control field is shut off.

The similarity between Eq. 6.23 and Eq. 6.25 motivates a more detailed com-

parison of our EIT-FWM system with the traditional EIT configuration. The prop-

agation equation for F is easily obtained from the appropriate combination of Eqs.

6.16 and 6.17:

(∂t + c∂z)F = −g
2N

Γ
F − Ω

g
√
N

Γ
S − i

g2N

∆hf
E ′∗. (6.26)

This equation is also similar to the signal propagation expression in the classic stored

light model [22, 42],

(∂t + c∂z) E = −g
2N

Γ
E − Ω

g
√
N

Γ
S, (6.27)

except for the optical-depth-dependent Stokes term, which describes the genera-

tion of signal from Stokes during propagation through a sufficiently optically-thick

medium.

When the two-photon detuning is chosen such that the light shift is canceled

(i.e., δ = δs), the propagation equation becomes, to O(1/∆hf),

[
∂t + c cos2 θ(t)∂z

]
F(z, t) ≈ i∆RE ′∗(z, t) (6.28)

with the angle θ(t) given by tan2 θ(t) = g2N
Ω2(t)

.

Analysis of above equations demonstrates two regimes for light storage under

EIT-FWM conditions. At low optical depths, the contribution of the Stokes field

on the RHS of Eqs. 6.26 and 6.28 is negligible. In this case, the equations for the



136

3020100-10

time (g/½
2
)

F
 A

m
p

lit
u

d
e

 (
a

rb
. 

u
n

it
s
)

a0L=10

a0L=20

a0L=40

a0L=60

a0L=80

a0L=30

FIG. 6.9: Results from numerical evaluation of Eqs. 6.17, 6.23 and 6.28 (solid blue
lines) and of the homogeneous version of Eq. 6.28 (dashed blue lines) for a range of
optical depths α0L, as indicated in the legends. The bandwidth of each input pulse was
∆ω = 0.05ΓE = Ω2/(20

√
α0L/2γ).

joint field F and spin wave S become identical to those for E and S in the regular

EIT configuration. For example, if we replace the RHS of Eq. 6.28 with zero, it

would describe the propagation of F without distortion at a reduced group velocity

vg = c cos2 θ ≈ 2Ω2

α0γ
. However, at low optical depths and t > 0 (after the input

Stokes pulse has been turned off), the contribution of the Stokes field into F is

also negligible: it is small not only because of the small factor Γ/∆hf in Eq. (6.24)

but also because E ′(z, t) itself is small [since the first term on the RHS of Eq. 6.21,

generalized to arbitrary z, vanishes for t > 0]. Thus, signal field propagation can be

analyzed using a three-level single Λ, even though the Stokes field can be significantly

affected by control and signal fields, as is evident from the dominance of the last

term on the RHS of Eq. 6.21 for t > 0.

However, at higher optical depths, the term on the RHS of Eq. 6.28 becomes

significant. Specifically, this term results in gain or loss of the signal field due to
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the Stokes field. The dashed blue lines in Fig. 6.9 depict the results of numerical

calculations of the homogeneous form of Eq. 6.28. Solid blue lines show the results

of the numerical evaluation of the full form of Eq. 6.28 with Eqs. 6.17 and 6.23. For

these calculations, Ω/(2π) = 8 MHz, γ/(2π) = 150 MHz, and the signal pulse was

chosen so that its bandwidth, ∆ω = 0.05ΓE. It is evident from this graph that the

Stokes contribution is not negligible for optical depths α0L & 25, when the simple

slow propagation of F breaks down due to the Stokes term on the RHS of Eq. 6.28.
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FIG. 6.10: An illustration of the modified storage description. (a) During the writing
stage, the input signal field E (top) and Stokes field E ′ (middle) propagate at different
group velocities through the atomic medium, creating a spin wave (bottom). (b) During
the storage stage, the control field is turned off and no light fields are present. Some
portion of the signal field has propagated through the cell and leaks out before the control
field is extinguished. At the same time, most of the information in the Stokes field is lost
in the leakage, since, in the regime (α0L)γ/∆ ≪ 1, the propagation of the Stokes field
is affected by the atoms only weakly (see Eq. 6.21). The spin wave is preserved during
storage. (c) During retrieval, the control field is turned on, releasing the spin wave into
both the signal and Stokes fields, which exit the vapor cell.

As shown in Appendix B, the same approximations that lead to Eqs. 6.20 and

6.21 give the following expression for the spin wave S(z, t) in the limit when ΓE → ∞:

S(z, t) ≈ −g
√
N

Ω

[
E(0, t− z

vg
) + ∆2

R

∫ z
vg

0

dt′E(0, t− t′)t′

+i∆R

∫ z
vg

0

dt′E ′∗(0, t− t′)

]
.

(6.29)
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In Fig. 6.8(b), we compare the shape of the spin wave that is obtained by nu-

merically solving Eqs. 6.16–6.19 (solid lines) to the predictions of Eq. 6.29 (dotted

lines). As in Fig. 6.8(a), we also include the predictions of an intermediate approx-

imation, which does not assume an infinite ΓE and is described in Eqs. B.17 and

B.23 in Appendix B. The reasonable agreement between the three curves in Fig.

6.8(b) implies that Eq. 6.29 does indeed contain the essential physics. In particular,

under this approximation, the spin wave is proportional to the signal field only, as

in a traditional three-level single-Λ EIT system (see Eq. B.23 in Appendix B),

S(z, t) ≈ −g
√
N

Ω
E(z, t). (6.30)

Moreover, under this approximation, E(z, t) [and hence S(z, t)] is mostly determined

by the usual slowed-down version of the input signal (first term in square brackets

in Eq. 6.29) with small corrections of order |∆R|L/vg ∼ α0Lγ/∆hf (third term in

square brackets in Eq. 6.29) and (α0L)
2γ2/∆2

hf (second term in the square brackets

in Eq. 6.29).

Fig. 6.10 illustrates an intuitive way to understand storage under EIT-FWM

conditions. At the beginning of the writing stage, shown in Fig. 6.10(a), the control

field (in black) prepares the atoms and causes the input signal field E (in blue,

top) to propagate at a reduced group velocity. The Stokes pulse (in red, middle)

enters the cell and is not completely extinguished inside the medium even after the

reference pulse would have left the medium. A collective spin coherence is created

in the atomic vapor cell (in green, bottom). As the pulses propagate through the

atomic medium, as shown in column (b), they experience mutual interference effects

and may become distorted. The spin wave propagates along with the signal field.

The contributions to the spin wave are determined by the joint mode F , and we can

distinguish between the contributions to the spin wave from the signal field (shown
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in light green) and those of the Stokes field (shown in dark green) (see Eq. 6.29). In

the regime of weak FWM, the propagation of the Stokes field is only weakly affected

by the atoms (see Eq. 6.21), so that much of the Stokes field leaves the end of the

vapor cell as leakage. Any information contained in this leaked field is lost for the

storage process, which commences when the control field is shut down. After some

time [column (c)], the control field is turned on, and the spin wave is released into

both the signal and Stokes fields. It is important to note that, since the joint mode

F is not a normal mode, the proportion of Stokes to signal is not fixed.

In the regime of weak FWM (α0L ≤ 25), the joint mode F(z, t) is determined

mostly by the input signal field E . Thus, the propagation dynamics experienced by

the signal pulse will be only slightly sensitive to the amplitude of the seeded Stokes

pulse (of order α0Lγ/∆hf , see the last term in Eq. 6.20), and consequently the spin

wave created will have the same weak dependence on the seeded Stokes field (see the

last term in Eq. 6.29). Since the spin wave is only weakly dependent on the input

Stokes field, it is possible to create approximately the same spin wave for different

input combinations of signal and Stokes fields. The retrieval from the spin wave

into the light fields will consequently have this same weak dependence on the input

Stokes field.

Equations 6.20 and 6.21 support this conclusion. Specifically, the amplitude of

the retrieved signal field (Eq. 6.20) is determined primarily by the input signal field

(the first term on the RHS) with a small (α0Lγ/∆hf)
2 correction from the input

Stokes field (the third term on the RHS). Similarly, since the first term on the RHS

of Eq. 6.21 vanishes for t > 0, the retrieved Stokes field is also determined primarily

by the input signal (the third term on the RHS) with a small (α0Lγ/∆hf)
2 correction

from the input Stokes (the second term on the RHS). At the same time, signal and

Stokes outputs are more strongly affected by the Stokes input for t < 0 (leaked

pulses) than for t > 0 (retrieved pulses). This statement is obvious for the Stokes
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field, since the first term on the RHS of Eq. 6.21 does not vanish for t < 0. The

reason this statement holds for the output signal is that the first term on the RHS

of Eq. 6.20 is smaller for t < 0 than for t > 0 for a sufficiently large group delay,

while the third term on the RHS of Eq. 6.20 is larger for t < 0 than for t > 0 since

E ′(0, t− t′) vanishes for t− t′ > 0.
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FIG. 6.11: Storage of a 15 µs (FWHM) truncated Gaussian pulse at T = 70◦C (α0L = 52)
under different Stokes seeding conditions. Solid lines depict storage when the Stokes seed
amplitude is the same as the signal amplitude. The dashed lines correspond to the case
of a reduced input Stokes field. The black traces show reference (input) pulses, and the
dashed black trace in the bottom plot illustrates the reduced Stokes seed amplitude.

In Fig. 6.11, we display the results of an experiment designed to test these con-

clusions. The top graph [Fig. 6.11(a)] depicts the storage of a 15 µs-long (FWHM)

truncated Gaussian signal field at T = 70◦C (α0L = 52). The solid trace cor-

responds to approximately equal amplitudes of input signal and Stokes optical

pulses, while the dashed traces correspond to a reduced initial Stokes amplitude

E ′∗(0, t) = −0.55E(0, t).

Notice the difference in the leakage portion (t < 0) of both the signal pulse and

the Stokes pulse as we go from solid curves to dashed curves, which exemplifies that
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both signal and Stokes outputs for t < 0 do depend strongly on the amplitude of

the seeded Stokes pulse, as we have explained theoretically above and as we have

reported previously [163]. At the same time, the retrieved (t > 0) Stokes and signal

pulses are both almost independent of the amplitude of the seeded Stokes field,

which is consistent with the theoretical explanation above. We repeated similar

measurements many times under a wide range of experimental conditions and found

the retrieved pulses to be weakly affected by the seeded Stokes amplitude as long

as the input signal field is comparable to or stronger than the input Stokes field.

6.5 Optical depth dependence of the Stokes field
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FIG. 6.12: Stokes behavior for increasing optical depths. For all cases, the two-photon
detuning δ = 0. The black trace is a reference pulse; the blue (red) trace is the signal
(Stokes) pulse. (a, a′) Storage and retrieval of a 6 µs-long (FWHM) truncated Gaussian
pulse at T = 50◦, which corresponds to an optical depth of α0L = 10. Here, Ω/(2π) = 8.3
MHz. (b, b′) T = 67◦(α0L = 41), pulse duration is 6 µs, Ω/(2π) = 7.1 MHz. (c, c′)
T = 76◦(α0L = 82), pulse duration is 20 µs, Ω/(2π) = 12.7 MHz. (d, d′) T = 80◦(α0L =
110), pulse duration is 20 µs, Ω/(2π) = 7.8 MHz.

In this section, we present the results of storage experiments at increasing op-

tical depths.

Figure 6.12 depicts the evolution of the Stokes and signal fields under storage

conditions as optical depth increases. The general features of these results are
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well-explained by the simple signal and Stokes expressions in Eqs. 6.20–6.21, as

described below. In Figs. 6.12(a, a′), we show the results of slow light and stored light

experiments using a 6 µs-long (FWHM) truncated Gaussian pulse at a temperature

of T = 50◦C, which corresponds to an optical depth of α0L = 10. The signal

pulse [blue trace in Fig. 6.12(a)] experiences a reduction in group velocity during

propagation, as seen by comparing the dashed trace (slow light) to the black trace,

which is a far-detuned reference pulse. The Stokes pulse [red trace in Fig. 6.12(a′)]

closely mimics the far-detuned reference pulse, indicating that four-wave mixing

is not a dominant process at this optical depth. In a separate run, we investigate

storage of these pulses by turning off the control field for 100 µs. Upon retrieval, the

signal field [solid blue trace in Fig. 6.12(a)] is recovered with a modest reduction in

amplitude due to spin-wave decay during the storage time, but its shape is preserved.

Additionally, we retrieve a small pulse on the Stokes channel [solid red trace in Fig.

6.12(a′)]. Equation 6.20 predicts that at low optical depths [(α0Lγ/∆hf) ≪ 1] the

retrieved signal pulse will be a delayed version of the input pulse (if one accounts

for the storage time), but with a slight modification due to the Stokes field (the last

term in Eq. 6.20). Likewise, the Stokes field will be mostly unaffected by the atoms

(the first term on the RHS of Eq. 6.21), so most of it will leak out (see t < 0).

However, a small Stokes pulse ∝ (α0L/∆hf) generated from the input signal (the

last term in Eq. 6.21) will be retrieved.

Figures 6.12(b, b′) show the results of similar experiments at T = 67◦C, corre-

sponding to an optical depth of α0L = 41. Here, the signal shape is again preserved

by the storage process. The four-wave mixing effects are exhibited by the Stokes

gain in the leakage portion of the pulse [see Fig. 6.12(b′)], which leaves the interac-

tion region before the storage stage occurs. This gain is described by the last two

terms in Eq. 6.21. At this increased optical depth, the last term in Eq. 6.21 also

predicts an increased Stokes output for t > 0. The effects of FWM are also apparent
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in the distortion that the signal field experiences during propagation.

Figures 6.12(c, c′) depict the storage experiments at T = 76 (α0L = 82). We

used a longer pulse (FWHM of 20 µs). At this optical depth, the Stokes pulse

experiences more gain during propagation. Storage and retrieval, however, still

preserve the shapes of both the signal and the Stokes pulse. Again, it is clear

that the Stokes field gain predicted by Eq. 6.21 becomes more apparent at higher

optical depths. We also see that, at α0L = 110 [column (d)], the Stokes field

amplitude is smaller than at α0L = 82 [column (c)]. This effect is most likely due to

the absorption of the control field by unprepared atoms that enter the interaction

region during the waiting time. We also note that, at α0L ≈ 100, the perturbative

expansion used to derive Eqs. 6.20 and 6.21 breaks down.



CHAPTER 7

Experimental investigations of spin

decay mechanisms

In this chapter, we present the details of several experiments that were designed

to investigate causes for spin decay. As described in Sec. 3.3.9, we extracted the

decay rate of the spin wave by performing consecutive storage experiments with

the same signal pulse and control field, but varying the storage time. We fit the

retrieved pulse energy as a function of storage time to an exponential decay e−t/τs .

The spin decay rate is γs = 1/(2τs).

This chapter is organized as follows. We first review mechanisms that are known

to affect the rate of ground-state decoherence and discuss relevant experimental

observations. We have observed that the memory decay rate is dependent on many

experimental parameters that are not considered in the literature. We present data

from spin decay experiments conducted with different control field Rabi frequencies,

Ω; input signal pulses, Ein(t); two-photon detunings, δ; optical depths, 2d; and

Stokes relative input amplitudes, f . While analysis of these experiments has not

determined a single cause of memory decay, we discuss some physical mechanisms

144
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that may contribute.

7.1 Mechanisms that affect the rate of spin decay

7.1.1 Diffusion and 2d-dependence

In theory, since the memory decay value that we measure characterizes spin

decay that occurs in the dark—when all light fields are off, it should only depend on

fundamental atomic decoherence rates. Ultimately, atomic diffusion puts an upper-

bound on the 1/e decay time of several milliseconds (see Sec. 3.1.4). In most vapor

cell experiments, an inert buffer gas is employed to mitigate diffusivity of Rb atoms

through the laser beam. Nevertheless, the ground-state decoherence rate due to

diffusion is [134, 164]

γdiff.0 = 2.4052
D

a2
1

1 + 6.8lmf/a
, (7.1)

where, as in Sec. 3.1.4, D = D0p0/p is the diffusion constant for the motion of the

atom through the buffer gas, lmf = 1/(nNeσRbNe) is the mean free path, p is the

buffer gas pressure, a is the laser beam radius, and p0 and D0 are the corresponding

values at one atmosphere. The prefactor, 2.405 is the lowest zero of the zeroth-order

Bessel function [164], and the factor of 6.8 is employed for a hard-sphere collisions

model [134]. Thus, for the experiments described in this dissertation, with a ≈ 2.5

mm, and using the appropriate values from Sec. 3.1.4, we find that γdiff.0 ≈ 500

Hz, which corresponds to a diffusion time of approximately 2 ms, as we saw in Sec.

3.1.4. Our observed value of τs was on the order of 500 µs, so diffusion is not the

main culprit of spin decay.
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7.1.2 Collisions

The buffer gas that was used to limit the diffusion time out of the laser beam

also introduces additional collisions. Since the inert buffer atoms do not possess

an unbound electron, Rb-Ne collisions generally preserve coherence at low buffer

gas pressures of 30 Torr, although at higher pressures, more frequently-occurring

ballistic collisions can thermalize the hyperfine level populations of the Rb atoms.

However, spin-exchange collisions between Rb atoms can destroy the fragile coher-

ence [134, 152, 165–167]. The rate of spin-exchange collisions (and also the efficiency

at which the exchange of spin states occurs) is not a well-characterized phenomenon.

One might suspect that this rate depends on the concentration of Rb, which is tem-

perature dependent (see Sec. 3.15), but that also the Rb-Rb collisional-cross section

might have temperature dependence [134].

Shuker, et al. [166] investigated this phenomenon by measuring the decay

rates between the hyperfine and Zeeman sublevels in the ground state of 87Rb in

vapor cells similar to the ones employed presently. They prepared a spin coherence

and measured its relaxation in the dark with a series of weak, short laser probe

pulses, and then extracted the relevant decay rates. They found that the hyperfine

decoherence rate scales inversely with optical depth, as τs ∼ 80 ms/(2d).

Motivated by these findings, we conducted experiments to investigate the de-

pendence of the measured spin decay rate on optical depth. Figure 7.1 shows the

results of these experiments. At each temperature, we measured the memory decay

after storage of several different signal pulses. We present data from experiments

with two different control fields, Ω = 7 MHz (red) and Ω = 10 MHz (black). The

graph represents the average spin decay time at each optical depth. It is clear that

an increased optical depth has a detrimental effect on the decay time.

We fit our data to an inverse function, and we find that if we ignore the two
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FIG. 7.1: The dependence of spin decay time, τs. Black points correspond to a control
field Rabi frequency of Ω = 10 MHz. Red points correspond to Ω = 7 MHz. We fit the
data to an inverse function with respect to 2d.

seemingly anomalous points for Ω = 7 MHz, then

τs ∼
20 ms

2d
, (7.2)

with a slight power dependence [21.23± 0.22 ms/(2d) for Ω = 7 MHz, 22.58± 0.33

ms/(2d) for Ω = 10 MHz]. This is a factor of 4 faster than Shuker, et al. measured.

Thus, we conclude that the spin decay rate that we measure is not the decoherence

rate between ground-state levels, which is dominated by spin-exchange collisions

between Rb atoms. We investigate the control field power dependence in more

detail Sec. 7.2.1.
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7.1.3 Magnetic fields

Stray magnetic fields are commonly cited as culprits for spin decay. Uniform

magnetic fields will induce Zeeman shifts of the m-sublevels of the hyperfine man-

ifold, causing coherences to precess at different Larmor frequencies. The result is

that the dependence of the retrieved pulse energy on the storage time will have

a beat-note structure, as these different coherences interfere constructively and de-

structively [168, 169]. This non-exponential decay has been observed experimentally

[170]. Magnetic shielding mitigated this effect in our experiment, and we do not ob-

serve the beating phenomenon in our spin decay graphs. Thus, we rule out this

mechanism of decay.

Nevertheless, magnetic field gradients can cause a similar phenomenon, which

can result in a dephasing of the spin coherence. This can cause a population shuffling

amongst Zeeman levels in the same hyperfine state, but not between the F = 1 and

F = 2 states. In order to avoid these effects in the experiment, care was taken to

degauss the magnetic shielding regularly. Thus, while this is a known mechanism,

we do not expect that stray magnetic fields are the main cause of the spin decay

that we observe.

7.2 Experimental evidence for spin decay mecha-

nisms

7.2.1 Ω and Ein dependences

In Sec. 7.1.1 we discussed the dependence of spin decay rate on the optical depth

(and hence Rb concentration). The data were collected with a variety of input signal

pulses, and the measured decay rates at each optical depth were averaged together
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to create Fig. 7.1. In the next two sections, we discuss results from experiments in

which different input signal pulses and different control field powers yield dissimilar

memory decay times.
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FIG. 7.2: The dependence of spin decay during storage time as a function of the Rabi
frequency of the writing control field, Ω. These experiments were performed with T =
65◦C (2d = 34) and with an input signal pulse of approximately 20 µs duration.

Figure 7.2 depicts the dependence of the spin decay time extracted using 20 µs-

long signal pulses with various control field powers at T = 65◦C (2d = 34). It is

evident that a longer decay time is obtained by using stronger writing and retrieval

control fields. This result is surprising. Certainly, as we discussed in Ch. 4, careful

matching of the control power and the input signal pulseshape is necessary to achieve

maximum storage efficiency. Failure to match Ω(t) and Ein(t) will still create a

spin coherence, but the memory efficiency will be low (see, for instance, the first

iteration step in Sec. 4.1). Regardless of the memory efficiency, we are interested

in the memory decay time—and the dominant decay process occurs when all light

fields are off. Theoretically, the decay rate should be independent of one’s ability

to achieve optimal efficiency. However, it appears from Fig. 7.2 that different spin
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waves decay at different rates.
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FIG. 7.3: The dependence of spin decay on the bandwidth of the input signal pulse.
Stored pulses were typically truncated Gaussians, and we computed the bandwidth as
the FWHM of the Fourier transform of the pulse in time. Here, T = 65◦C (2d = 34).

Figure 7.3 provides further data that support the hypothesis that different spin

waves decay at different rates. Here, we are operating at T = 65◦C (2d = 34) and

with a control field Ω = 10 MHz. We measure the spin decay rate after storage

of several different pulses. Input signal pulses were truncated Gaussians, and we

computed the bandwidth by determining the FWHM of the pulse Fourier transform.

At this optical depth, the measured FWHM of the EIT spectrum was approximately

300 kHz, so all pulses fit inside the window of transparency. However, even if this

were not the case—and a temporally narrow signal pulse (broad bandwidth) was

used, any portion of the pulse’s bandwidth that was outside of the EIT window

would be absorbed by the atoms, and not stored. The resultant spin wave would

simply decay during the storage waiting time. It is suggestive from this graph that

a pulse with a narrower bandwidth (longer temporally) will produce a spin wave

that decays slowly.
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7.3 Possible physical mechanisms

These results are quite curious. The input signal pulses were typically short

enough so that any spin decay during the writing and retrieval stages was negligible.

i.e., the dominant decoherence mechanism occurs in the dark, when all lights are

off. Thus, it is surprising that the spin decay rate depends on parameters of the

pulses. We now investigate several possible explanations for these observations.

7.3.1 Power broadening

The off-resonant interaction of the control field on the |e〉 → |g〉 transition acts

as a background AC electric field, and induces AC Stark shifts of the |e〉 and |g〉

levels, as we have discussed in Sec. 2.9. Additionally, the strong control field will

broaden the EIT linewidth [171] and resultantly increase the spin decay rate [96],

γs = γ0 + γ
|Ω′|2
∆2

hf

(7.3)

However, this additional broadening only occurs during the writing and retrieval

stages. We have checked numerically that the inclusion of this additional decay

correction1 is insufficient to explain the observations.

7.3.2 Radiation trapping and diffusion effects

In Sec. 7.1.1, we computed the time for an atom to leave the interaction region

to be 2 ms, which is approximately 20 times longer than the storage time. Thus, we

suspect that loss of coherence out of the beam is not the largest contributing factor

to spin-wave decay [131]. However, during the storage time, unprepared atoms can

enter the interaction region and affect the storage process.

1We note that the correction to γs is O(1/∆2
hf), whereas our theoretical model is accurate to

O(1/∆hf), so more careful analysis could be justified.
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In optically thick atomic vapor, the reabsorption of spontaneously emitted pho-

tons (i.e., radiation trapping) [150, 151] can destroy an atomic coherence by incoher-

ently pumping the atoms out of the dark state. Although this effect is absent during

the storage time, it might lead to a breakdown of an important approximation. We

assume that the control field only varies temporally, and is spatially uniform. How-

ever, the control field used to retrieve the spin wave can be absorbed by unprepared

atoms that enter the interaction region during the waiting time. These atoms then

re-emit incoherent light, which can detrimentally effect the retrieval of the atomic

coherence.

For example, as the retrieval process begins, the optical pumping of fresh atoms

results in an attenuation of the retrieval control field intensity, which develops an

exponentially-decaying spacial profile from z = 0 to z = L. Since the control field’s

intensity is lower, then vg is also lower upon retrieval than during writing, and it

takes longer to complete the retrieval stage, which in turn, can lead to an apparent

reduction of spin-wave coherence time. Further, since the control field is spatially-

varying longitudinally, the atomic coherence can experience spatially-dependent AC

Stark shifts. Thus, the retrieved signal pulse can have a spatially and temporally-

varying phase, leading to an apparent reduction in spin decay time.

We can test these hypotheses by numerically reconstructing the shape and

phase of the spin wave. Specifically, we use Eqs. 2.41-2.43 to compute S(z) after the

writing stage. A spin wave with a larger amplitude near z = 0 will be affected more

than a spin wave with a smaller amplitude near z = 0, since the control field spatial

gradient is sharpest near z = 0. Thus, a larger spatial gradient is accumulated due

to the larger Stark shift gradient.

In Fig. 7.4(a), we plot the numerical solutions to Eqs. 2.41-2.43 for experimental

parameters relevant to Fig. 7.2 {in particular, T = 65◦C (2d = 34), and Ein(t) ∝

e−4 ln 2(t−0.9)2/0.22 , t ∈ [0, 1]}. We see that the spin wave created with the weaker
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FIG. 7.4: The spin-wave (a) shape and (b) phase computed by solving Eqs. 2.41-2.43 for
a 20 µs-long input signal pulse and a control field Rabi frequency of Ω = 4 MHz (black),
Ω = 6 MHz (red), Ω = 8 MHz (green), Ω = 10 MHz (blue). Here, T = 65◦C (2d = 35).
These control fields were selected to correspond with Fig. 7.2.

control field has a greater amplitude near z = 0 than the spin waves created with

more powerful control fields. Indeed, the “flattest” spin wave is created with Ω = 10

MHz, which we observe from Fig. 7.2 has the longest decay time. Figure 7.4(b)

depicts the phase of the computed spin wave. We see that the phases of each spin

wave do not depict disparate behavior.

These results appear to support the theory that diffusion of fresh atoms into the

interaction region during the storage time, which results in longitudinally-varying

AC Stark shifts, can possibly explain the dependence of τs on Ω.

In Fig. 7.5, we use the same theoretical techniques to observe the spin-wave

shape and phase for different input pulses, but using the same control field Ω = 10

MHz, as in Fig. 7.3. The conclusion drawn from the Fig. 7.3 was that pulses with

a narrower bandwidth produce a spin wave that has a longer decay time, however,

these observations are tenuous, given the size of the error bars. Nevertheless, we

observe in Fig. 7.5 that there is no clear trend in the spin-wave shape. The “flattest”

spin wave is created by using the narrowest pulse (5 kHz, in black), which yielded

a decay time of approximately 700 µs. Likewise, the red lineshape (8 kHz) and
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FIG. 7.5: The spin-wave (a) shape and (b) phase computed by solving Eqs. 2.41-2.43 for
several signal pulses and a control field of Ω = 10 MHz. The signal pulse bandwidths
were 5 kHz (black), 8 kHz (red), 17 kHz (green), 36 kHz (blue), and 51 kHz (magenta).
Here, T = 65◦C (2d = 35). These experimental parameters were selected to correspond
with Fig. 7.3.

blue lineshape (36 kHz) are also quite flat, and yielded respective decay times of

approximately 650 µs and 550 µs. The spin-shape with the largest amplitude near

z = 0 and the most spatial variation was produced with an input pulse of 51 kHz

(magenta), and resulted in the shortest decay time of approximately 400 µs. We see

in Fig. 7.5(b) that the phase of the spin waves are all approximately the same. These

results provide support to the hypothesis that the spatially-varying AC Stark shift

can result in shorter decay times. However, there is not a clear, direct correlation

between pulse bandwidth and spin decay time.

7.3.3 Transverse AC Stark shifts

In order to simplify the theoretical model, we assumed that the light fields

had a uniform and circular cross-sectional profile. However, light fields exiting from

an optical fiber are typically Gaussian in profile. As a result, atoms at the same

longitudinal position, z, but at different radial positions r in the interaction region

will experience slightly different control field intensities (and hence Ω). Correspond-
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ingly, there are transversely-varying AC Stark shifts associated with the transverse

variation in the control field.

Simon et al. [154] has investigated this phenomenon. They consider atoms along

the transverse profile of the signal field and compute the relative phase accumulated

(during the retrieval) between the atoms, due to the transversely-varying Stark

shifts,

φr ∼ T
|Ω′|2
∆hf

, (7.4)

where T is the time required to read out the spin wave. They then compute the

fidelity between the initial spin wave and the final spin wave and determine that this

can severely reduce the read-out efficiency at high optical depth. This mechanism

could contribute to the optical depth-dependence of the spin decay rate, but likely

does not explain the dependence on control power, since T is determined by 1/vg ∝

1/|Ω|2 ∝ 1/|Ω′|2, so this relative phase should be independent of the maximum

control power.

We attempted to mitigate this effect by using a pinhole aperture to detect the

central-most portion of the light beams. One could verify this interpretation by

using a control field with a larger diameter than the signal field, but this is not

possible with the experimental setup described in this dissertation, since all light

beams were derived from the same laser output and co-propagated at all times.

7.3.4 Two-photon detuning (δ) dependence

In this section, we discuss the results of experiments designed to determine if

the two-photon detuning of the input pulse affected the rate of spin-wave decay.

These experiments were motivated by the fact that during writing and retrieval,

when the control field is on, the atoms experience an AC Stark shift, but when

the control field is off, they relax to the natural energy splitting. We can select a
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FIG. 7.6: Results from an investigation of the dependence of spin decay time on the
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T = 75◦C (2d = 76) and a 15 µs-long signal pulse was used. Red points correspond to a
control field Ω = 7 MHz, while black points correspond to Ω = 10 MHz. Solid squares
are data from experiments with the full Stokes seed (f = 1), while empty squares are
data with f =

√
0.05.

two-photon detuning δ = δs to account for this effect. As a result of the relaxation,

the spin wave should have a spatially-dependent phase,

φ = i
(δ − δs)z

vg
. (7.5)

The coherence can be carried longitudinally by atomic diffusion along z. In

Sec. 7.1.1, we calculated that an atom would leave the interaction region in approx-

imately 2 ms, which was much longer than the spin decay time that we measured.

However, even moderate dephasing due to longitudinal diffusion can result in mem-

ory deficiency, since the relative phase and amplitude of the spin wave is essentially

washed out. As a result, one might expect that spin waves with a spatially-uniform

phase and amplitude [e.g., S(z) = 1] will have a longer decay time than one with a

rapidly-varying amplitude or phase. The spin wave with the most spatially-uniform
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FIG. 7.7: The memory efficiency obtained by storing a 17 µs-long signal pulse with Ω = 7
MHz (red) and Ω = 10 MHz (black) as a function of two-photon detuning (δ) and the
amplitude of the seeded Stokes field [(“) corresponds to f = 1, while (—) corresponds
to f =

√
0.05]. The temperature was T = 75, (2d = 76).

phase would be created with a signal pulse at δ = δs.

We see from Fig. 7.6 that this interpretation is not supported by the data. The

best spin decay time is achieved at negative two-photon detunings (δ ≈ −40 kHz).

We note that δs = 21 kHz for Ω = 7 MHz (red points), and δs = 44 kHz for Ω = 10

MHz (black points). Clearly, the Stark shift is in the opposite δ-direction as the

two-photon detuning that yields the longest memory decay rate. We conclude that

longitudinal phase shuffling due to diffusion is not a main contributor to the spin

decay that we measure.

We include a graph of the storage efficiency vs δ (see Fig. 7.7) to show that the

best memory efficiency is obtained when δ = δs. i.e., the two-photon detuning is

chosen to match the location of the center of the shifted EIT peak. This agrees with

intuition. Even though FWM effects distort the EIT transmission peak at high

optical depths (and thus create a refractive index with non-linear δ dependence

near δ = 0, which in turn results in pulse distortion during propagation), we can

account for this effect, to some degree, by choosing δ = δs, near which the EIT
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FIG. 7.8: Dependence of retrieved signal (blue) and Stokes (red) pulse energies as a
function of storage time at T = 70◦C (α0L = 52). Here, τs = 300 µs. We normalized the
memory efficiencies so that the zero-storage-time memory efficiency is unity. Experimen-
tally, we were not operating under optimal storage conditions, and the zero-storage-time
memory efficiency was ≈ 40% for the signal pulse and ≈ 5% for the Stokes pulse.

peak is most symmetric. Nevertheless, while there is an intuitive understanding of

the dependence of memory efficiency on two-photon detuning, an explanation of the

spin-decay rate δ-dependence remains elusive.

7.3.5 FWM dependence

In this section, we discuss the possible dependence of the spin-wave decay rate

on the FWM. Based on the findings presented in Sec. 6.4.3, where we discovered

that the input Stokes field’s contribution to the spin wave is O(γ/∆hf) ≪ 1, one

might conclude that there is little dependence. Because of this weak dependence,

FWM could be used in a Ramsey-type experiment to probe the coherence [165].

We begin by presenting a measurement of the spin decay rate via the reduction

of retrieved pulse energies of both the Stokes and the signal fields as a function of

storage time. We show typical data in Fig. 7.8. Here, the cell temperature was
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T = 70◦C (2d = 52), and we measure τs ≈ 300 µs with both fields. While the

storage efficiency of the pulses is not commensurate (approximately 40% for the

signal field and 5% for the Stokes field, in this case), the spin decay rate that we

measure is the same, within experimental uncertainty. This observation that both

the signal field and Stokes fields yield the same spin decay rate has been observed

with a wide range of experimental parameters. This observation is supported by the

interpretation from Sec. 6.4.3 that the retrieved Stokes pulse is seeded by the spin

wave.
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FIG. 7.9: Numerical solutions to Eqs. 6.16-6.19 provide the calculated spin-wave (top)
shapes and (bottom) phases for two-photon detunings of (a, a′) δ = −20 kHz, (b, b′)
δ = 0 kHz, (c, c′) δ = +20 kHz. Here, Ω = 7 MHz, so that δs ≈ 20 kHz. T = 75◦

(2d = 76). Black curves are with the full Stokes seed, f = 1. Gray curves are for the
filtered case f =

√
0.05, and the red curve corresponds to the bare EIT model (Eqs.

2.41-2.43).

We now present data from an experiment where we attenuated the input Stokes

seed and measured the corresponding spin-wave decay time, as seen in Fig. 7.6. The

red points correspond to Ω = 7 MHz; the black points correspond to Ω = 10 MHz.

We observe the dependence of τs on Ω, as discussed in Sec. 7.2.1. We also note the

dependence on δ as discussed in Sec. 7.3.4. Here, the full squares (“) correspond
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to data taken with the full Stokes seed (f = 1), while empty squares (—) were

with f =
√
0.05. For the majority of data points, the decay times for the filtered

(f =
√
0.05) and unfiltered (f = 1) cases agree to within the error bars. It is evident

that the relative amplitude of the input Stokes pulse (with respect to the amplitude

of the signal pulse) is not a large factor in determining the spin decay rate.

In Fig. 7.9, we show the results from numerically solving Eqs. 6.16-6.19 for the

experimental conditions that were used to produce Fig. 7.6. Namely, Ω = 7 MHz,

and with δ = −20 kHz [Fig. 7.9(a, a′)], δ = 0 kHz [Fig. 7.9(b, b′)], and δ = +20

kHz [Fig. 7.9(c c′)]. The spin-wave amplitudes are shown in the top graphs; the

phases are shown in the bottom graphs. We also investigate the effects of the input

Stokes field amplitude on the spin wave. Black curves correspond to f = 1; gray

curves correspond to f =
√
0.05, and the red curves correspond to the limit of pure

EIT (c.f. Eqs. 2.41-2.43)]

Here, we clearly see from the bottom graphs that the phases of the spin wave

with the longer decay time (δ = −20 kHz) has the largest spatial-variation in phase.

This result rules out longitudinal shuffling of phase via diffusion as a major con-

tributor to spin decay. We clearly see that the phase of the spin wave varies ac-

cording to Eq. 7.5. More precisely, δ = δs produces a uniform phase variation,

φ(z) ≈ 0 [see Fig. 7.9(c′)]. For δ = 0, we expect that the phase should vary by

−δsL/vg = −3dγ/∆hf ≈ 2.5 rad, which agrees qualitatively with the graph. Like-

wise, for δ = −δs, we expect the phase to vary by twice this amount, ∆φ ≈ 5 rad,

as Fig. 7.9(a′) confirms.

Additionally, at this optical depth when Stokes gain during propagation is still

small, we see that the Stokes field contribution to the spin wave is minimal. There

is very little qualitative difference in the three filtering cases in the top graphs. It

is notable that on the light-shifted two-photon resonance δ = δs ≈ 20 kHz, the

spin-wave amplitude is largest, which results in a larger memory efficiency, as we
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reported in Fig. 7.7. The data presented in this section seem to indicate that the

effects of FWM are not a major contributor to spin decay.

7.4 Summary and conclusions

In this chapter, we have presented the results of experiments that investigated

the memory decay rate in 87Rb under EIT conditions. It is essential to understand

the parameters that affect this rate, since it ultimately governs the storage time.

We have observed that the memory decay time is typically shorter than predicted

by collisional models; thus, we conclude that other effects are present. We have

ruled out diffusion of the spin coherence as a major contributor. However, the most

likely explanation of our observations involves diffusion of unprepared atom into

the interaction region. Fresh atoms into the interaction region absorb the retrieval

control field and produce longitudinally-varying AC Stark shifts. Additionally, the

Gaussian intensity distribution of the control field results in radially-dependent AC

Stark shifts, which reduce the fidelity of the spin coherence. Although these hy-

potheses appear to resolve some discrepancies, they fail to explain the dependence

on the input signal field, and the two-photon detuning. The mechanisms that are

responsible these observations remain elusive.



CHAPTER 8

Conclusion and Outlook

This dissertation has presented the results of studies pertaining to the optimiza-

tion of quantum memory based on EIT in atomic vapors. We have studied in detail

two quantum memory optimization protocols in warm Rb vapor and demonstrated

their consistency for maximizing memory efficiency. We have also observed good

agreement between our experimental data and theoretical predictions for relatively

low optical depths (< 25), both in terms of the highest memory efficiency and in

terms of the optimized pulse shapes. At higher optical depths, however, the exper-

imental efficiency was lower than predicted. We observed that resonant four-wave

mixing processes became important at these higher optical depths.

We have reported on the experimental demonstration of optimal storage and

retrieval of arbitrarily shaped signal pulses in an atomic vapor at an optical depth

2d = 24 by using customized writing control fields. Our measured memory efficiency

is close to the highest efficiency possible at that optical depth. We also demonstrate

full precision control over the retrieved signal pulse shapes, achieved by shaping the

retrieval control field. A high degree of overlap between the retrieved and target

pulse shapes was obtained (overlap integral J2 = 0.98 − 0.99) for all input and
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target pulse shapes tested in the experiments. We also demonstrated the potential

application of the presented technique to the creation of optical time-bin qubits and

to controlled partial retrieval. Finally, we observed excellent agreement between our

experimental results and theoretical modeling.

The optimal storage and pulse-shape control presented here are applicable to

a wide range of experiments, since the underlying theory applies to other experi-

mentally relevant situations such as ensembles enclosed in a cavity [40, 154], the

off-resonant regime [40, 43, 99], non-adiabatic storage (i.e., storage of pulses of

high bandwidth) [97], and ensembles with inhomogeneous broadening [98], includ-

ing Doppler broadening [26] and line broadening in solids [33]. Thus, we expect this

pulse-shape control to be indispensable for applications in both classical [160] and

quantum optical information processing.

We also have presented the results of detailed experimental and theoretical

investigations of the effects of resonant four-wave mixing (FWM) in an EIT medium.

In particular, we have demonstrated that both steady-state and dynamic (slow light

and stored light) properties of the signal field propagating under the EIT conditions

are strongly effected by resonant four-wave mixing that arise under the conditions

of EIT at high optical depth. This process is well-modeled by a simple double-

Λ system, where the output signal and stokes field amplitudes are the results of

interference of “traditional” EIT and FWM. We have shown that by attenuating the

amplitude of the seeded Stokes field, we can partially control the optical properties

of the medium for the signal field. Moreover, by adjusting the central frequency of

the input signal field around two-photon resonance, in the presence of Stokes seed

field we can achieve longer pulse delay and/or amplification of the signal pulse.

We have studied the phenomenon of stored light under conditions of electromag-

netically induced transparency (EIT) and four-wave mixing (FWM) in an ensemble

of hot Rb atoms. In particular, we have investigated the prospect of simultaneously



164

storing both a signal and a Stokes pulse in a single atomic coherence, and have

shown that independent storage of two modes is not possible. The reason is that

most of the Stokes pulse leaks out of the medium during the writing stage, so that

during retrieval both output fields are determined primarily by the input signal field

and depend on the input Stokes field only very weakly. We presented a theoretical

model based on a simple double-Λ system, which agreed very well with experimental

observations. This model allowed us to derive a simple relationship between input

and output fields, which explained the above mentioned impossibility of two-mode

storage. Furthermore, we showed that a particularly convenient description of stor-

age in an EIT-FWM system involves a joint signal-Stokes mode, whose dynamics we

also studied. Lastly, we have presented the results of experiments designed to further

understand the mechanisms that govern the spin decay time. While these findings

were not conclusive, we have identified several mechanisms that may contribute.



APPENDIX A

Details of control field shaping

In this appendix, we provide the details of the control field shaping computation

employed for optimal storage in the experiments discussed in Sec. 4.2. The scope of

the program is this: at a given optical depth, it is desired to optimally store an input

signal field Ein(t), which is described by some reasonable function. For additional

details, we direct the curious reader to Ref. [99], on which this appendix is based.

As a starting point, we choose the three equations of motion that describe the

propagation of a signal pulse envelope through a Λ-type medium and the response

of the atomic coherences, P (z, t) and S(z, t), as detailed in Eqs. (2.41–2.43). For

simplicity, we employ dimensionless variables, in which time is in units of the excited

state decay rate, γ, and position is in units of cell length, L. We employ a frame

of reference that is co-moving at with the control field, and we assume two-photon

resonance (δ = 0), but allow the single-photon detuning, ∆ to be non-zero:
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t̃ = γ
(
t− z

c

)
(A.1)

z̃ = z/L (A.2)

Ω̃ = Ω/γ (A.3)

∆̃ = ∆/γ (A.4)

T̃ = Tγ. (A.5)

We remind the reader that the optical depth is defined as d = g2NL
γc

, where

g2N is the collective-enhanced coupling constant of the signal field. Thus, the three

equations of motion become,

∂z̃E = i
√
dP (A.6)

∂t̃P = −(1 + i∆̃)P + i
√
dE + iΩ̃(t̃)S (A.7)

∂t̃S = iΩ̃∗(t̃)P, (A.8)

Our equations are subject to some initial and boundary conditions:

E(z̃ = 0, t̃) = Ein(t̃) (A.9)

P (z̃, t̃ = 0) = 0 (A.10)

S(z̃, t̃ = 0) = 0, (A.11)

where we re-emphasize that Ein(t̃) is our normalized signal field, which is defined on

some interval t̃ ∈ [0, T γ], with T being the writing time (e.g., 100 µ s):

∫ T̃

0

dt̃|Ein(t̃)|2 = 1. (A.12)
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Thus, the retrieval efficiency is simply,

ηr =

∫ ∞

T̃r

dt̃|E(1, t̃)|2 = 1. (A.13)

We make a distinction between the efficiency of the writing and retrieval pro-

cesses: ηr, and the efficiency of the storage, ηs, such that the total memory efficiency

is the product of the two, η = ηrηs. In general, Eqs. (A.9–A.11) cannot be solved

analytically. By applying the adiabatic approximation,

∂t̃P =
∂t

∂t̃
∂tP =

1

γ
∂tP ≪ 1, (A.14)

we can solve for Eout as a function of Ω̃, d, S, and ∆̃. We define

h(t, t′) =

∫ t′

t

|Ω̃(t′′)|2dt′′, (A.15)

and change variables, t̃→ h(T̃r, t̃) in order to eliminate the dependence of Ω. Thus,

it is possible to find an Ω-independent solution to Eqs. (A.9–A.11), and rescale for

any given Ω. We find that the retrieved signal field shape is,

E(1, t̃) = −
√
dΩ̃

∫ 1

0

dz̃
1

1 + i∆̃
exp

[
−h(0, t̃) + z̃d

1 + i∆̃

]
I0

[
2

√
h(0, t̃)z̃d

1 + i∆̃

]
S(1− z̃),

(A.16)

which, in the limit of no spin-wave decay, becomes:

E(1, t̃) = i
√
dΩ̃

∫ 1

0

dz̃
1

∆̃
exp

[
i
h(0, t̃) + z̃d

∆̃

]
J0

[
2

√
h(0, t̃)z̃d

∆̃

]
S(1− z̃) (A.17)
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In a similar fashion, we can solve for the spin-wave, S, in terms of Ein:

S(z̃, T̃ ) = −
√
d

∫ T̃

0

dt̃Ω̃∗(t̃)
1

1 + i∆̃
exp

[
−h(t̃, T̃ ) + z̃d

1 + ∆̃

]
I0



2

√
h(t̃, T̃ )z̃d

1 + i∆̃



 Ein

(A.18)

It can be shown [99] that the optimal memory efficiency depends only on the

optical depth. At a given optical depth, there is a unique spin-wave Sd that, when

created yields this optimal efficiency. This optimal spin-wave can be found by finding

the eigenvector with the largest eigenvalue of the following integral equation:

ηrS(1− z̃) =

∫ 1

0

dz̃′kr(z̃, z̃
′)S(1− z̃′), (A.19)

where the kernel kr is defined as

kr(z̃, z̃
′) =

d

2
e−d[(z̃′+z̃)/2]I0(d

√
z̃z̃′), (A.20)

where I0 is the zeroth-order modified Bessel function of the first kind. This eigen-

value problem can be solved by starting with a trial S(z̃) and iterating the integral

several times until convergence [99].

Once this optimal spin-wave shape is found, it is possible to find the matching

pair of input signal field, Ein(t̃), and control field, Ω̃(t̃) which creates it. We outline

this calculation presently. We first define the following function, which appears in

both of the equations for E and S:

m[Ω̃(t̃), t̃, z̃] ≡ −
√
dΩ̃

1 + i∆̃
exp

[
−h(0, t̃) + z̃d

1 + i∆̃

]
I0

[
2

√
h(0, t̃)z̃d

1 + i∆̃

]
. (A.21)

Ignoring decay, we can make the following definitions and arrive at the “decayless”
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storage equation, which assumes that ∆ ≫ 1:

q(z̃, t̃) ≡ m(z̃, t̃)decayless (A.22)

=
i
√
dΩ̃∗(t̃)

∆̃
exp

[
ih(t̃, T̃ ) + z̃d

∆̃

]
J0


2

√
h(t̃, T̃ )z̃d

∆̃


 (A.23)

s(z̃) =

∫ T̃

0

dt̃q(z̃, t̃)Ein(t̃). (A.24)

Using orthogonality properties of Bessel functions, we can invert Eq. A.18 to

solve for Ein:

Ein(t̃) =
∫ ∞

0

dz̃q∗(z̃, t̃)s(z̃) (A.25)

Now, to solve for Ω̃, we integrate the norm squared of both sides of the equation:

∫ t̃

0

dt̃′|Ein(t̃′)|2 =
∫ t̃

0

dt̃′
∣∣∣∣
∫ ∞

0

dz̃q∗(z̃, t̃′)s(z̃)

∣∣∣∣
2

, (A.26)

and the RHS simplifies to,

∣∣∣∣
∫ ∞

0

dz̃q∗(z̃, t̃′)s(z̃)

∣∣∣∣
2

=

(∫ ∞

0

dz̃q∗(z̃, t̃′)s(z̃)

)(∫ ∞

0

dz̃′q(z̃′, t̃′)s(z̃′)

)
(A.27)

=

∫ ∞

0

∫ ∞

0

dz̃dz̃′q∗(z̃, t̃′)q(z̃′, t̃′)s∗(z̃′)s(z̃), (A.28)
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where

q(z̃′, t̃′) = i

√
dΩ̃∗(t̃′)

∆̃
exp



i
(
h(t̃′, T̃ ) + z̃′d

)

∆̃




×J0


2

√
h(t̃′, T̃ )z̃′d

∆̃


 (A.29)

q∗(z̃, t̃′) = −i
√
dΩ̃(t̃′)

∆̃
exp



−i
(
h(t̃′, T̃ ) + z̃d

)

∆̃




×J∗
0



2

√
h(t̃′, T̃ )z̃d

∆̃



 (A.30)

q∗(z̃, t̃′)q(z̃′, t̃′) = +
d|Ω̃(t̃′)|2

∆̃

∣∣∣∣∣∣
exp

[
−i z̃d

∆̃

]
J0


2

√
h(t̃′, T̃ )z̃d

∆̃




∣∣∣∣∣∣

2

. (A.31)

Therefore,

∫ t̃

0

dt̃′|Ein(t̃′)|2 =
∫ t̃

0

dt̃′
|Ω̃(t̃′)|2d

∆̃

∣∣∣∣∣∣

∫ ∞

0

dz̃s(z̃) exp

[
−i z̃d

∆̃

]
J0


2

√
h(t̃′, T̃ )z̃d

∆̃




∣∣∣∣∣∣

2

.

(A.32)

We make the change of variables t̃′ → h′ ≡ h(t̃′, T̃ ) and |Ω̃(t̃′)|2dt̃′ → dh′ to arrive

at,

∫ t̃

0

dt̃′|Ein(t̃′)|2 =
∫ h(t̃,T̃ )

h(0,T̃ )

dh′
d

∆̃

∣∣∣∣∣

∫ ∞

0

dz̃s(z̃) exp

[
−i z̃d

∆̃

]
J0

[
2

√
h′z̃d

∆̃

]∣∣∣∣∣

2

. (A.33)

We can solve this equation numerically for h(t̃, T̃ ). We then invert our defini-

tion, h(t̃, T̃ ) =
∫ T̃

t̃
|Ω̃(t′)|2dt′ to get:

Ω̃(t̃) =

√
−dh
dt̃
. (A.34)



APPENDIX B

Derivation of Eqs. 6.20, 6.21, 6.29,

and 6.30

In Ch. 6, we omitted the derivations of Eqs. 6.20, 6.21, 6.29, and 6.30. In this

Appendix, we present these derivations.

Since experiments and numerics show that turning the control field off and back

on has a negligible effect on the fields except for a delay and spin-wave decay during

the storage time, we solve Eqs. 6.16–6.19 in the main text assuming a constant

control field. In the co-moving frame (∂t+ c∂z → c∂z), Fourier transforming in time

(t→ ω and ∂t → −iω), Eqs. 6.16–6.19 can be written as

∂z




E(z, ω)

E ′∗(z, ω)


 = i

α0γ

2F




ω + iΓ0 − Ω2

∆hf

Ω2

∆hf
− Ω2

∆2
hf

(ω + iΓ)







E(z, ω)

E ′∗(z, ω)




=M




E(z, ω)

E ′∗(z, ω)


 ,

(B.1)

where F = Ω2 + (Γ− iω)(Γ0 − iω) (c.f., Eq. 6.6 with α0L = 2d).

To gain some intuition for how FWM may result in amplification, one can
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consider a simple case, in which the diagonal terms in the matrixM in Eq. B.1 vanish

(equivalently, one could consider the case where the Stokes field also propagates in

its own EIT medium). Approximating further F → Ω2, we find that

M ≈ i
α0γ

2∆hf




0 −1

1 0


 (B.2)

and has eigenvectors (1,±i) with eigenvalues ± α0γ
2∆hf

, corresponding to an exponen-

tially growing solution and an exponentially decaying solution. In our experiment,

however, the diagonal terms for the signal and the Stokes fields are very different.

Moreover, the effect of FWM is rather small and can, in fact, be treated perturba-

tively, as we will show below.

We checked numerically that the last entry in the matrix M in Eq. B.1 does

not significantly affect our results. For example, it gives a contribution to E ′(L, ω)

of order α0Lγ
2/∆2

hf , which will be negligible relative to other contributions of order

(α0L)
2γ2/∆2

hf since α0L≫ 1. We will therefore neglect the last entry in the matrix

M in Eq. B.1 for the rest of this Appendix.

Eq. B.1 can then be solved to give [109, 110, 124, 161, 163]




E(z, ω)

E ′∗(z, ω)


 = eiσz




cosh(ξz) + iσ
ξ
sinh(ξz) i2∆R

β
sinh(ξz)

−i2∆R

β
sinh(ξz) cosh(ξz)− iσ

ξ
sinh(ξz)




×




E(0, ω)

E ′∗(0, ω)


 ,

(B.3)

where ∆R = −Ω2/∆hf , β =
√

(Γ0 − iω)2 + 4∆2
R, σ = α0γ

4F
(iΓ0 + ω), and ξ = α0γ

4F
β.
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Using the convolution theorem [172], we then obtain

E(z, t) =

∫
dt′E(0, t− t′)f1(z, t

′) +

∫
dt′E(0, t− t′)f2(z, t

′)

+

∫
dt′E ′∗(0, t− t′)f3(z, t

′), (B.4)

E ′∗(z, t) = E ′∗(0, t) +

∫
dt′E ′∗(0, t− t′)g2(z, t

′)

+

∫
dt′E(0, t− t′)g3(z, t

′), (B.5)

where

f1(z, t
′) =

1

2π

∫
dωe2iσze−iωt′ , (B.6)

f1(z, t
′) + f2(z, t

′) =
1

2π

∫
dωeiσz

[
cosh(ξz) + i

σ

ξ
sinh(ξz)

]
e−iωt′ , (B.7)

f3(z, t
′) =

1

2π

∫
dωeiσzi

2∆R

β
sinh(ξz)e−iωt′ , (B.8)

δ(t′) + g2(z, t
′) =

1

2π

∫
dωeiσz

[
cosh(ξz)− i

σ

ξ
sinh(ξz)

]
e−iωt′ , (B.9)

g3(z, t
′) = −f3(z, t′). (B.10)

Here f1 and f2 are defined in such a way that f1 captures pure EIT, while f2

describes how FWM changes the relationship between the input signal and the

output signal. f3 describes the effect of the input Stokes field on the output signal.

Similarly, the first term in Eq. B.5 describes pure undistorted propagation of the

Stokes field in the absence of FWM. g2 describes how FWM changes the relationship

between the input Stokes field and the output Stokes field. Finally, g3 describes the

effect of the input signal on the output Stokes field.

To get some insight into the behavior of fi and gi, we consider the case δ = δs

(generalization to arbitrary δ is straightforward). We further take the limit γ0 = 0,

which is a reasonable approximation in our experiment, except during the waiting
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FIG. B.1: Graphs of (a) f1(L, t), (a′) −h1(L, t), (b) f2(L, t), (b′) −h2(L, t), (c)
Im[f3(L, t)] = −Im[g3(L, t)], (c′) −Im[h3(L, t)], and (d) g2(L, t). For the calculations,
Ω/(2π) = 10 MHz, α0L = 80. Red curves show the result of numerical integration of
the respective expression in Eqs. B.6–B.10 and B.18–B.20. Solid black curves show the
approximate forms of the integrals given in Eqs. B.11–B.15 and B.23, without taking the
limit ΓE → ∞. The dashed black curves incorporate the ΓE → ∞ approximations in
Eqs. B.11–B.15 and B.23.

time between writing and retrieval (however, again one can easily generalize the

derivation below to γ0 6= 0). Furthermore, we expand f2 and g2 to second order in

1/∆hf , and expand f3 and g3 to first order in 1/∆hf ; in other words, we treat FWM

perturbatively, which is a good approximation in our experiment, except in Figs.

6.12(c, d). Furthermore, we approximate 2iσ → i ω
vg

− ω2

LΓ2
E

, where vg = 2Ω2

α0γ
is the

EIT group velocity and ΓE = Ω2

γ
√

α0L/2
is the width of the EIT transparency window.



175

We then find

f1(z, t
′) ≈ ΓEe

−Γ2
E

L
4z

(t′−z/vg)2

2
√
πz/L

≈ δ(t′ − z/vg), (B.11)

f2(z, t
′) ≈ ∆2

R

[
−e

−Γ2
E

L
4z

(t′−z/vg)2

2ΓE

√
πL/z

+
1

2
|t′|+ 1

2
t′Erf

{
ΓE(z/vg − t′)

2
√
z/L

}]

≈ ∆2
Rt

′Π[0, z/vg](t
′), (B.12)

f3(z, t
′) ≈ i∆R

2

(
Sign[t′] + Erf

{
ΓE(z/vg − t′)

2
√
z/L

})

≈ i∆RΠ[0, z/vg](t
′), (B.13)

g2(z, t
′) ≈ ∆2

R

[
−zδ(t

′)

Γ2
EL

+
e−Γ2

E
L
4z

(t′−z/vg)2

ΓE

√
πL/z

+
z/vg − t′

2

(
Erf

{
ΓE(z/vg − t′)

2
√
z/L

}
+ Sign[t′]

)]

≈ ∆2
R(z/vg − t′)Π[0, z/vg](t

′), (B.14)

g3(z, t
′) = −f3(z, t′). (B.15)

Here Erf is the error function, the sign function Sign[t′] = 1 for t′ ≥ 0 and −1

otherwise, and the box function Π[x, y](t) = 1 for x < t < y and 0 otherwise. The

second approximation in Eqs. B.11–B.15 is done in the limit ΓE → ∞ (the case of

an infinitely wide EIT window). Using the ΓE → ∞ expressions, we arrive at Eqs.

6.20 and 6.21.

In Fig. B.1(a–d), we plot functions fj and gj for j = 1, 2, 3 and the two approx-

imate forms described above. Red curves depict the results of numerical integration

of Eqs. B.6–B.10, with experimental variables α0L = 80 and Ω/(2π) = 10 MHz,

so that ∆R/(2π) = −14.6 kHz, ΓE/(2π) = 105 kHz, and vg/(2πL) = 16.7 kHz.

Because the light pulses E and E ′∗ have a finite bandwidth, we chose an integra-

tion bandwidth of (2π)160 MHz, and we have checked that a larger range does not

significantly affect the results. Solid black curves in Fig. B.1(a-d) plot the first ap-

proximations in Eqs. B.11–B.15; dashed black lines show the corresponding ΓE → ∞
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expressions in Eqs. B.11–B.15.

Let us now compute S(z, t). From Eqs. 6.18 and 6.19, we have

S(z, ω) = −g
√
NΩ

F

[
E(z, ω)− i

Γ− iω

∆hf
E ′∗(z, ω)

]
, (B.16)

where E(z, ω) and E ′∗(z, ω) are given in Eq. B.3.

We can then write

S(z, t) =

∫
dt′E(0, t− t′)h1(z, t

′)

+

∫
dt′E(0, t− t′)h2(z, t

′)

+

∫
dt′E ′∗(0, t− t′)h3(z, t

′),

(B.17)

where h1 describes pure EIT, while h2 and h3 are the results of FWM. Functions hj

can be computed as

h1(z, t
′) =

1

2π

∫
dω

−g
√
NΩ

F
e2iσze−iωt′ , (B.18)

h1(z, t
′) + h2(z, t

′) =
1

2π

∫
dω

−g
√
NΩ

F
eiσze−iωt′

×
[
cosh(ξz) +

(
i
σ

ξ
− 2∆R(Γ− iω)

β∆hf

)
sinh(ξz)

]
,(B.19)

h3(z, t
′) =

1

2π

∫
dω
g
√
NΩ

F
eiσze−iωt′

[
i
Γ− iω

∆hf
cosh(ξz)

+

(
σ(Γ− iω)

ξ∆hf

− i
2∆R

β

)
sinh(ξz)

]
. (B.20)

Expanding h2 to O(1/∆2
hf) and h3 to O(1/∆hf), the above expressions simplify
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to

h2(z, t
′) ≈ 1

2π

∫
dω
g
√
NΩ3 (F + e2iσz(2iΩ2σz − F ))

F∆2
hf(ω + iΓ0)2

e−iωt′ , (B.21)

h3(z, t
′) ≈ 1

2π

∫
dω
g
√
NΩ (Ω2e2iσz − F )

∆hf(ω + iΓ0)F
e−iωt′ . (B.22)

Taking δ = δs, γ0 = 0, 2iσ ≈ i ω
vg

− ω2

LΓ2
E

, and F ≈ Ω2, we have

hj(z, t
′) ≈ −g

√
N

Ω
fj(z, t

′) (B.23)

for j = 1, 2, 3, where the expressions for fj(z, t
′) are given in Eqs. (B.11–B.13).

Plugging Eq. B.23 into Eq. B.17 yields an expression that is proportional to the

signal field E(z, t) in Eq. B.4. Thus, under these approximations, we obtain Eq.

(6.30), which is, remarkably, the usual EIT relation. Specifically, in the limit of an

infinitely wide EIT window, S(z, t) can be found by plugging Eq. B.23 (with the

corresponding ΓE → ∞ expressions for fj from Eqs. B.11–B.13) into Eq. B.17 to

yield Eq. 6.29. The expressions for |h1(L, t)|, |h2(L, t)|, and |Im[h3(L, t)]| are plotted

in Fig. B.1 (a′, b′, and c′), respectively. As before, red traces depict the results of

numerical integration of Eqs. B.18–B.20 with the same input parameters as in the

fj and gj analysis. Solid black curves plot Eq. B.23 using finite ΓE expressions

for fj from Eqs. B.11–B.13. Dashed black lines show the corresponding ΓE → ∞

expressions.
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SLOW AND STORED LIGHT UNDER CONDITIONS OF ELECTROMAGNETICALLY
INDUCED TRANSPARENCY AND FOUR WAVE MIXING IN AN ATOMIC VAPOR

ABSTRACT PAGE

The recent prospect of efficient, reliable, and secure quantum communication relies on the

ability to coherently and reversibly map nonclassical states of light onto long-lived atomic states.

A promising technique that accomplishes this employs Electromagnetically Induced Transparency

(EIT), in which a strong classical control field modifies the optical properties of a weak signal

field in such a way that a previously opaque medium becomes transparent to the signal field. The

accompanying steep dispersion in the index of refraction allows for pulses of light to be decelerated,

then stored as an atomic excitation, and later retrieved as a photonic mode. This dissertation

presents the results of investigations into methods for optimizing the memory efficiency of this

process in an ensemble of hot Rb atoms. We have experimentally demonstrated the effectiveness of

two protocols for yielding the best memory efficiency possible at a given atomic density. Improving

memory efficiency requires operation at higher optical depths, where undesired effects such as

four-wave mixing (FWM) become enhanced and can spontaneously produce a new optical mode

(Stokes field). We present the results of experimental and theoretical investigations of the FWM-

EIT interaction under continuous-wave (cw), slow light, and stored light conditions. In particular,

we provide evidence that indicates that while a Stokes field is generated upon retrieval of the signal

field, any information originally encoded in a seeded Stokes field is not independently preserved

during the storage process. We present a simple model that describes the propagation dynamics

and provides an intuitive description of the EIT-FWM process.
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