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ABSTRACT PAGE

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the
discrepancy between data for the proton electric to magnetic form factor ratio, GE/GM, obtained
separately from cross section and polarization transfer measurements. One possible explanation
for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects
beyond the one-photon-exchange or Born approximation, this thesis reports measurements, of
the GEp2γ experiment, of polarization transfer observables in the elastic H(~e, e′~p) reaction for
three different beam energies at a fixed squared momentum transfer Q2 = 2.5 GeV2, spanning a
wide range of the virtual photon polarization parameter, ε. The scattered electrons were detected
in coincidence with the protons by the new electromagnetic lead-glass calorimeter BigCal and
the High Momentum Spectrometer (HMS), respectively. We extract the polarization of the recoil
proton by measuring the azymuthal asymmetry in the angular distribution after a secondary
scattering in the CH2 analyzer blocks of the new, double focal plane polarimeter (FPP) installed
in the detector hut of the HMS.
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Prolegomenon

The measurement of the magnetic moment of the proton by Stern in 1933 [1] made the idea of

the proton being a point-like particle obsolete. Stern found an anomalous value 2.8 times larger

than expected for a spin-1/2, point-like particle. This was the first evidence of a proton internal

structure.

Later in the 1950’s, Hofstadter [2] introduced a technique to access the proton substructure:

electron scattering. For the first time, two form factors GE and GM were used to describe the dis-

tribution of charge and magnetization, respectively, and thus to account for the proton structure.

Until the 1990’s the only method to measure the proton form factors and extract their ratio was

the unpolarized cross section measurement based on the Rosenbluth separation technique [3]. The

square of both form factors is extracted from the angular dependence of the reduced cross section

at constant value of the momentum transfer Q2. It was found [4, 5, 6] that the form factor ratio

GE/GM remained approximately constant with increasing Q2.

In the late 1990’s, when polarized beams and targets became available, a new method to

measure the form factors became practical: double polarization measurements. The form factor

ratio is accessible from experiment using a polarized electron beam with a polarized proton target

or measuring the polarization transfer to the recoil proton in ~ep elastic scattering. The results

of the polarization experiments [7, 8, 9, 10] were surprisingly and strikingly different from the

cross section measurements [11] as shown in Figure 1. They depict a form factor ratio falling

monotonically with Q2.

1
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Figure 1: Discrepancy between the polarization transfer results (filled circles from [7, 8], squares
from [9] and triangles from [10]) and Rosenbluth (opened diamonds from [4], triangles from [5]
and circles [6]) results of the proton form factor ratio.

This discrepancy led to intensive theoretical and experimental efforts aiming at reconciling the

results of the two techniques. A set of “standard" radiative corrections [12, 13] must be applied

to the Rosenbluth data changing the slope of the reduced cross section by as much as 30% for

large Q2. In contrast, the effect of these first-order corrections on the polarization measurement

is almost negligible [14]. As a consequence, attention turned to the validity of the theoretical

assumptions used in the analysis of both sets of measurement. In both cases, the extraction is

based on the exchange of a single photon, commonly called the Born Approximation. It turned out

that a possible explanation of the discrepancy is a higher order radiative process which includes

the exchange of two photons. Nevertheless, the available data do not have sufficient precision

to exhibit any sensitivity to the two photon exchange mechanism. Experiment E04-019 (GEp2γ)

which is the subject of this thesis, aiming at looking for a possible kinematical dependence of the

polarization transfer observables, is an effort to provide such data. A detailed study of the results
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is the core of this thesis.

The thesis is organized around six chapters. In the first chapter, we will establish the theoreti-

cal framework necessary for the calculation of the polarization transfer observables. In the second

chapter, an overview of the theoretical models of the two-photon exchange mechanism will be

given. The experimental apparatus used during the experiment will be described in the third

chapter. The fourth and fifth chapters describe in details the data analysis involving the tracking,

the event selection and the extraction of the polarization observables. In the sixth and last chapter,

we will present the final results of the GEp2γ experiment.



Chapter 1

Beyond the Born Approximation:

Generalized Form Factors and Two

Photon Exchange

In this chapter, we will give the formalism of electron-proton elastic scattering to the second order.

We will derive also the complete calculation of the reduced unpolarized cross section and of the

recoil polarization components, for processes including the exchange of at least two photons.

1.1 Second-order electron-proton scattering

The lowest order in power of the electromagnetic coupling constant [15] α = e2

4π ≈ 1
137 of electron-

proton scattering is the one photon exchange mechanism (OPEX). It is also called the Born Approx-

imation. In what follows, we will consider electron-proton scattering to the second order, in which

the two photon exchange (TPEX) process takes place. We will see that two types of diagrams need

to be considered.

4
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The second order contribution to the perturbation expansion of the S-matrix is given by:

S(2)
f i = −ie2

∫
d4xd4yψ̄ f (x)A/(x)SF(x− y)A/(y)ψi(y) , (1.1)

where f and i stand for final and initial state respectively. A(x) is the electromagnetic potential

produced by the proton and SF the electron propagator. From (1.1) we can write the second order

electron current as:

j(2)
µν (x, y) = ie2ψ̄ f (x)γµSF(x− y)γνψi(y) . (1.2)

We consider the second order contribution of the proton in (1.1) i.e. the product of the electro-

magnetic potentials Aµ(x)Aν(y):

Aµ(x)Aν(y) =
∫

d4Xd4YDF(x− X)DF(y−Y)J(2)
µν (X, Y)

= ie2
∫

d4Xd4YDF(x− X)DF(y−Y)ψ̄
p
f (X)ΓµSp

F(X −Y)Γνψ
p
i (Y) (1.3)

where the upper-script p stands for the proton, J(2)
µν is the second order proton current, DF is the

photon propagator and Γµ is the hadronic or proton vertex function. More details about the vertex

function will be given in the next section. Gathering (1.2) and (1.3) we obtain for the amplitude of

second-order electron-proton scattering:

S(2)
f i = e4

∫
d4xd4d4Xd4Y

(
ψ̄ f (x)γµSF(x− y)γνψi(y)

)
×
(

DF(x− X)DF(y−Y)ψ̄
p
f (X)ΓµSp

F(X −Y)Γνψ
p
i (Y)

)
(1.4)

Note that X,Y are the space-time point (vertices) where the photons are emitted by the proton and

x,y the space-time point where the photons are absorbed by the electron. This process is described

by the Direct box diagram in Figure 1.1 left. Nevertheless, this amplitude does not totally represent

the second order amplitude. Due to the indistinguishability of the photons, we need to consider

another contribution. Indeed, for an electron at the space-point x, a photon emitted at the space-

point X or Y is equivalent. This is done by adding a contribution in (1.4) with the exchange X → Y
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and Y → X in the photon propagators and µ → ν in the proton vertex functions. This process is

described by the Crossed box diagram in figure 1.1 right. The total second-order electron-proton

scattering amplitude is then:

S(2)
f i ≡ S(2),Box

f i + S(2),Cross
f i

= e4
∫

d4xd4d4Xd4Y
(

ψ̄ f (x)γµSF(x− y)γνψi(y)
)

×
[

DF(x− X)DF(y−Y)
(

ψ̄
p
f (X)ΓµSp

F(X −Y)Γνψ
p
i (Y)

)
+DF(x−Y)DF(y− X)

(
ψ̄

p
f (X)ΓνSp

F(X −Y)Γµψ
p
i (Y)

)]
(1.5)

Figure 1.1: Direct box diagram (left) and Crossed box diagram (right).

We expand the ψi (ψ̄ f ) of the electron of mass m in plane waves of momentum k (k′) and spin

s (s′) respectively. We perform a similar expansion for the proton of mass M and we obtain:

ψi =
√

m
EeV

u(k, s)e−ik·x ψ̄ f =
√

m
E′eV

ū(k′, s′)eik′ ·x (1.6)

ψ
p
i =

√
M

EpV
u(p, S)e−ip·x ψ̄

p
f =

√
M

E′pV
ū(p′, S′)eip′ ·x (1.7)
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with V the box normalization volume.

The electron propagator is given by:

SF(x− y) =
∫ d4 p

(2π)4

e−ip·(x−y)

p/−m + iε
(1.8)

The proton propagator has a similar expression by changing m into M. The photon propagator is

defined by:

Dµν
F (x− y) = −4π

∫ d4q
(2π)4 gµν

e−iq·(x−y)

q2 + iε
(1.9)

Having all those definitions we can re-write the box diagram term of (1.5) as:

S(2),Box
f i = C

∫
d4xd4yd4Xd4Y

m√
E′eEe

M√
E′pEp

∫ d4q1

(2π)4
d4q2

(2π)4
d4K

(2π)4
d4P

(2π)4

e−iq1·(x−X)

q2
1 + iε

e−iq2·(y−Y)

q2
2 + iε

×eik′ ·xū(k′, s′)γµ
e−iK·(x−y)

K/−m + iε
γνu(k, s)e−ik·y

×eip′ ·X ū(p′, S′)Γµ(q1)
e−iP·(X−Y)

P/− M + iε
Γν(q− q1)u(p, S)e−ip·Y (1.10)

with C = (4π)2e4

V2 . The integration over the space coordinates will give four 4-dimensional delta

functions which ensure the energy-momentum conservation at each vertex:

∫
d4xd4yd4Xd4Ye−iq1·(x−X)e−iq2·(y−Y)eik′ ·xe−iK·(x−y)e−ik·yeip′ ·Xe−iP·(X−Y)e−ip·Y

= (2π)4δ4(q1 + p− k′)(2π)4δ4(q2 − p + k)(2π)4δ4(−q2 − P + p)(2π)4δ4(−q1 + P− p′)

(1.11)
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Finally, integrating over the momentum q2, K and P, with q ≡ k′ − k = p− p′ we obtain for the

box diagram contribution:

S(2),Box
f i = C(2π)4δ4(p′ + k′ − p− k)4 m√

E′eEe

M√
E′pEp

∫ d4q1

(2π)4

1

q2
1 + iε

1

(q− q1)2 + iε

×ū(k′, s′)γµ
1

k/′ − q/1 −m + iε
γνu(k, si)ū(p′, S′)Γµ(q1)

1

p/′ + q/1 − M + iε
Γν(q− q1)u(p, s)

(1.12)

A similar calculation can be carried out for the cross diagram contribution. More “practical"

Feynman diagrams of the scattering are given in Figure 1.2. The total second-order electron-

proton scattering amplitude is given by:

S(2)
f i =

(4π)2e4

V2 (2π)4δ4(p′ + k′ − p− k)4 m√
E′eEe

M√
E′pEp

∫ d4q1

(2π)4

1

q2
1 + iε

1

(q− q1)2 + iε

×ū(k′, s′)γµ
1

k/′ − q/1 −m + iε
γνu(k, si)

ū(p′, S′)Γµ(q1)
1

p/′ + q/1 − M + iε
Γν(q− q1)u(p, s)

+ū(p′, S′)Γν(q− q1)
1

k/− q/1 − M + iε
Γµ(q1)u(p, s)


(1.13)

The remaining loop integral comes from the fact that there is no definite ratio between the mo-

menta of the two photons. As a consequence, we need to integrate over all the possible momenta

q1. The evaluation of the loop integral is delicate and won’t be performed here. Instead, in the

next chapter, we will present some theoretical model used to solve this loop integral within some

approximations and more generally aiming at giving the two-photon exchange contribution to the

electron-proton scattering. In the next section we will concentrate on the proton vertex function

Γµ and we will derive it for processes including the exchange of at least two photons.
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Figure 1.2: Box diagram (left) and Cross diagram (right).

1.2 Generalized Form Factors

We consider the elastic electron-proton scattering:

e(k, h) + p(p, λp) → e(k′, h′) + p(p′, λ′p) (1.14)

where h, h′, λp and λ′p are the helicities and k, p are the momenta of the initial electron and

proton. The primed momenta refer to the final particles. We set:

q = k− k′ = p′ − p, q2 = −Q2, P =
p + p′

2
, K =

k + k′

2
(1.15)

The Mandelstam variables are given by:

s = (p + k)2, t = q2 = −Q2 = (k− k′)2, u = (p− k′)2 = (k− p′)2 (1.16)

We choose as the independent kinematical variables of the scattering:

q2 = −Q2, ν = K · P =
s− u

4
(1.17)
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A general expansion of the amplitude matrix, M with respect to a set of Dirac bilinears in the

spinor space of the proton is:

M = A1(p) + Bγ
(p)
5 + Cµγ

(p)
µ + Dµγ

(p)
5 γ

(p)
µ + Eµνσ

(p)
µν (1.18)

where the coefficients A, B, C... are matrices in the spinor space of the electron and are functions

of P, K and q.

We can show, by decomposing the coefficients Cµ, Dµ and Eµν with respect to a vector basis

defined by Pµ, Kµ, qµ and Lµ = εµναβKνPαQβ, that M takes the form [16]:

M = a1(p) + bγ
(p)
5 + cγ(p) · K + dγ

(p)
5 γ(p) · K (1.19)

A similar expansion of the coefficients a, b, c and d with respect to matrices in the electron spinor

space can be evaluated. This operation will give a total of 16 amplitudes, but terms containing

only one γ5 will violate parity conservation. Requiring parity conservation, this reduces to the 8

following terms:

iγ(e) · Piγ(p) · K 1(e)iγ(p) · K γ
(e)
5 iγ(e) · Pγ

(p)
5 iγ(p) · K

1(e)1(p) γ
(e)
5 γ

(p)
5 iγ(e) · P1(p)

γ
(e)
5 iγ(p)

5 γ(p) · K γ
(e)
5 γ(e) · Pγ

(p)
5 (1.20)

The last two terms change sign under inversion of motion, therefore they are not invariant under

Wigner time reversal. This reduces further to 6 amplitudes and the term γ
(e)
5 iγ(e) · Pγ

(p)
5 iγ(p) · K

can be replaced by γ
(e)
µ γµ(p) and a combination of the other five structures. Using the spinor

notation and keeping tacit the helicities for clarity, the remaining amplitudes are:

ū(k′)u(k) · ū(p′)u(p) ū(k′)u(k) · ū(p′)γ · Ku(p) ū(k′)γ5u(k) · ū(p′)γ5u(p)

ū(k′)γ · Pu(k) · ū(p′)γ · Ku(p) ū(k′)γ · Pu(k) · ū(p′)u(p) ū(k′)γµu(k) · ū(p′)γµu(p)

(1.21)
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Due to the vector nature of the coupling in QED, in the limit me → 0, all the above structures

conserve the helicity of the electron. In other words they are invariant under the chirality transfor-

mation. We see that the first three terms in (1.21) change sign under the operation u(k) → γ5u(k)

and ū(k′) → −ū(k′)γ5 and then must be proportional to me. Therefore they will vanish in the

limit me → 0.

The general elastic electron-proton scattering amplitude, considering at least the exchange of two

photons and introducing a factor e2

Q2 for convenience, is then given by [17]:

T =
e2

Q2 ū(k′, h)γµu(k, h)× ū(p′, λ′p)
(

G̃Mγµ − F̃2
Pµ

M
+ F̃3

γ · KPµ

M2

)
u(p, λp) (1.22)

where M is the mass of the proton, the three independent Lorentz structures G̃M, F̃2 and F̃2 are

complex and are functions of the kinematical parameter ε ≡ [ν2 − M4τ(1 + τ)]/[ν2 + M4τ(1 + τ)]

(understood as the longitudinal polarization of the virtual photon in the Born approximation)

and the momentum transfer Q2. They are called the generalized form factors. Defining G̃E =

G̃M − (1 + τ)F̃2, τ = Q2

4M2 , we exhibit the effect of the exchange of at least two photons by

writing the generalized form factors as :

G̃M(Q2, ε) = GM(Q2) + δG̃M(Q2, ε) (1.23)

G̃E(Q2, ε) = GE(Q2) + δG̃E(Q2, ε) (1.24)

F̃3(Q2, ε) ≡ δF̃3(Q2, ε) (1.25)

GM and GE are form factors in the Born approximation (exchange of one photon) called the Sachs

form factors. They are real and depend on Q2 only. The complex amplitudes δG̃M, δG̃E and F̃3

exist only at the 2γ level and beyond, and are of order e2 relative to the factor e2 in (1.22)
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1.3 Unpolarized cross section and polarization components

In this section, we will derive the unpolarized cross section of the ~ep → e~p scattering and the

transferred polarization components of the recoil proton by calculating the leptonic and hadronic

tensors in the Breit frame. The electron is longitudinally polarized.

1.3.1 Breit Frame kinematics

In the Breit frame, also called the brick-wall frame, the momenta of the initial and final proton are

equal in magnitude and opposite in direction. Let the transferred momentum be along the z-axis.

A boost along the transferred momentum allows us to pass from the lab frame to the Breit frame.

The momentum transfer ~qB, the momenta of the initial (final) electron ~kB (~k′B) and of the initial

(final) proton ~pB (~p′B) are:

~kB =


kx

0
Q
2

 , ~k′B =


kx

0

−Q
2

 , ~qB =


0

0

Q



~pB =


0

0

−Q
2

 , ~p′B =


0

0
Q
2



It follows that:

Q2 = −q2 = 4p2 ⇒ |p| = Q
2

(1.26)

EpB = E′pB =
√

p2 + M2 =

√
Q2

4
+ M2 = M

√
1 + τ, (1.27)
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Figure 1.3: Elastic scattering in the Breit frame

so that the energy transfer ω = EpB − E′pB equals zero. Thus, we write the four-momenta of the

initial and final proton in the Breit frame as:

pµ =



M
√

1 + τ

0

0

−Q
2


, p′µ =



M
√

1 + τ

0

0
Q
2


(1.28)

We next derive the coordinates of the 4-momenta of the initial and final electron in the Breit frame.

As ky and k′y are equal to zero (by definition) and ~q = Q~z, kx is conserved so that: kx = k′x. The

four-momenta z-components are calculated using the facts that the energy transfer is equal to zero

and the momentum transferred is along the z-axis:

qz = kz − k′z = Q ⇒ kz = k′z + Q

ω = EpB − E′pB = 0 ⇒ |k′| = |k| ⇒ k2
z = k′2z

 k′z = −Q
2

, kz =
Q
2

(1.29)
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The four-momenta x-components are expressed in terms of the scattering angle in the Breit frame

and of the momentum transfer:

k · k′ = |k||k′| cos θB ⇒ cos θB =
k2

x −
Q2

4

k2
x +

Q2

4

⇒ kx = k′x =
Q
2

cot
θB
2

(1.30)

The time components are simply given by:

k0 = k′0 =

√
k2

x +
Q2

4
=

Q

2 sin
θB
2

(1.31)

We then write the initial/final electron four-momenta as:

kµ =



Q

2 sin
θB
2

cot
θB
2

0
Q
2


, k′µ =



Q

2 sin
θB
2

cot
θB
2

0

−Q
2


(1.32)

The derivation of the four-momenta of the initial/final electron/proton is now complete.

Next we derive a relation between the scattering angle in the Breit frame and the scattering angle

in the Lab frame.

We start by writing the z and x-components of the four-momentum vector of the initial electron

in the lab frame. Because the transferred momentum is along the z-axis:

k2
z =

~k ·~q
~q2 , so k2

x =
~k2 ·~q2 −~k ·~q

~q2 (1.33)
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Using: Q2 = ~q2 − ν2 ⇒ ~q2 = Q2(1 +
Q2

4M2 ) = Q2(1 + τ) the x-component becomes:

k2
x =

E4
e − 2E3

e E′e cos θe + E2
e E′2e −

(
E4

e − 2E3
e E′e cos θe + E2

e E′2e cos2 θe
)

Q2(1 + τ)

=
E2

e E′2e sin θe

Q2(1 + τ)

=
4E2

e E′2e sin2 θe

2
cos2 θe

2
Q2(1 + τ)

=
Q2

4(1 + τ)
cot2 θe

2
(1.34)

By comparing (1.30) and (1.34), the relation between the Breit and lab frame scattering angles is:

cot2 θB
2

=
cot2 θe

2
(1 + τ)

(1.35)

Using trigonometric identities we can rewrite (1.35) as:

1

cos2 θB
2

= tan2 θe

2

 1

sin2 θe

2

+ τ

 (1.36)

From the kinematic relations (B.29) of the appendix, we find:

1

cos θB
2

= tan
θe

2
Ee + E′e

Q

= tan
θe

2
2ν

MQ
(1.37)

1.3.2 Leptonic and hadronic tensors

Considering the T-matrix expansion (1.22), we define the leptonic Lµν and hadronic Wµν by:

Lµν = jµ j∗ν

Wµν = Jµ Jν∗
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where jµν and Jµν are the leptonic and hadronic currents, respectively. Those currents are given

by:

jµ = v̄(k′, h′)γµv(k, h)

Jµ = ū(p′, λ′N)Γµu(k, λN) = ū(p′, λ′N)
(

G̃Mγµ − F̃2
Pµ

M
+ F̃3

γ · KPµ

M2

)
u(k, λN) (1.38)

where Γµ is the proton vertex function. This structure, of some complexity, contains the electro-

magnetic structure of the proton. The leptonic tensor is equal to:

Lµν = ∑
αβδε

∑
h,h′

v̄α(k′, h′)γµαβvβ(k, h)v̄δ(k, h)γνδεvε(k′, h′)

= ∑
αβδε

γµαβ ∑
h

vβ(k, h)v̄δ(k, h)︸ ︷︷ ︸[
( 6k+me)

(
1−hγ5

2

)]
βδ

=
[
6k
(

1−hγ5
2

)]
βδ

γνδε ∑
h′

v̄α(k′, h′)vε(k′, h′)

= ∑
αε

∑
h′

v̄α(k′, h′)vε(k′, h′)︸ ︷︷ ︸
( 6k+me)εα=( 6k)εα

[
γµ 6 k

(
1− hγ5

2

)
γν

]
αε

= Tr
[
6 k′γµ 6 k

(
1− hγ5

2

)
γν

]
=

1
2

Tr
[
6 k′γµ 6 kγν

]
− h

2
Tr
[
6 k′γµ 6 kγ5γν

]
= 2

(
kµk′ν + kνk′µ − (k · k′)gµν

)
+

h
2

Tr
[
γ5 6 k′γµ 6 kγν

]
= 2

(
kµk′ν + kνk′µ − (k · k′)gµν

)
− h

2
Tr
[
γ5γµγν 6 k′ 6 k

]
= 2

((
kµk′ν + kνk′µ − (k · k′)gµν

)
+ ihεµναβkαk′β

)
(1.39)

We used the standard trace technique of γ-matrices (A.22) to carry out this calculation. From line

2 to line 3, we summed over the initial spin and used the completeness relation for polarized Dirac

particles (A.20), neglecting the electron mass. From line 3 to line 4, we summed over the final spin

and used the completeness relation (A.19). The unpolarized trace has been evaluated in appendix

(B.9).

We develop the leptonic tensor using the Breit frame components of the initial/final electron
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four-momenta (1.32) to obtain:

Lµν = 2


2k0k′0 − (k · k′) k0k′1 + k1k′0 0 k0k′3 + k3k′0

k0k′1 + k1k′0 2k1k′1 + (k · k′) 0 k1k′3 + k3k′1

0 0 (k · k′) 0

k3k′0 + k0k′3 k3k′1 + k1k′3 0 2k3k′3 + (k · k′)



+ 2ih


0 0 −k3k′1 + k1k′3 0

0 0 k3k′0 − k0k′3 0

−k1k′3 + k3k′1 k0k′3 − k3k′0 0 −k0k′1 + k1k′0

0 0 k0k′1 − k1k′0 0



= Q2



cot2 θB
2

cot
θB
2

sin
θB
2

0 0

cot
θB
2

sin
θB
2

1

sin2 θB
2

0 0

0 0 1 0

0 0 0 0


︸ ︷︷ ︸

real and symmetric

+ ihQ2



0 0 cot
θB
2

0

0 0
−1

sin
θB
2

0

− cot
θB
2

1

sin
θB
2

0 0

0 0 0 0


︸ ︷︷ ︸

imaginary and antisymmetric

(1.40)

We see that the unpolarized part of the leptonic tensor is given by a real and symmetric tensor,

whereas the polarization information is in a complex and antisymmetric tensor.

In order to express the hadronic tensor in the Breit frame we will need to evaluate currents of

the form: ū(p)u(p), ū(p)γ0u(p) and ūγ0(p)γiu(p), i = 1...3.
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From (1.28) it follows that:

Pµ =
pµ + p′µ

2
=

M
2

√
1 + τgµ0 (1.41)

As a consequence, the F̃2 and F̃3 terms will only give a timelike contribution to the current. The G̃M

term, by the presence of a γµ will give both timelike and spacelike contribution. We decompose

the hadronic current into a sum of three terms:

Jµ ≡ Jµ
M + J0

2 + J0
3 (1.42)

By recalling the expressions for the Dirac spinors:

u(p) =
√

E + M

 ξ

~σ ·~p
E + M

ξ

 , ū(p) =
(

ξ ′†, ξ ′†
~σ ·~p′
E + M

)
γ0

Using ~p = −~p′ and E = E′ we have:

ū(p)u(p) =
√

E′ + M
(

ξ ′†, ξ ′† ~σ·~p′
E+M

)
γ0√E + M

 ξ

~σ·~p
E+M ξ


= (E′ + M)

(
ξ ′†, −ξ ′† ~σ·~p

E+M

) ξ

− ~σ·~p
E+M ξ


= ξ ′†ξ

(
1 +

p2

(E + M)2

)
= ξ ′†ξ(E + M + (E− M))

= 2Eξ ′†ξ

= 2M
√

1 + τξ ′†ξ (1.43)

So:

J0
2 = −4M2 F̃2

2M
(1 + τ) = 2M(G̃E − G̃M) (1.44)
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Jµ
M is obtained by calculating the ū(p)γ0u(p) and ūγ0(p)γiu(p) terms. For the timelike part

we have:

ū(p)γ0u(p) = (E + M)
(

ξ ′†, −ξ ′† ~σ·~p
E+M

)
γ0γ0

 ξ

~σ·~p
E+M ξ


= ξ ′†ξ

(
1 +

p2

(E + M)2

)
= ξ ′†ξ(E + M− (E− M))

= 2Mξ ′†ξ (1.45)

For the spacelike part we find:

ū(p)γiu(p) = (E + M)
(

ξ ′†, −ξ ′† ~σ·~p
E+M

)
γ0γi︸︷︷︸ 0 σi

σi 0



 ξ

~σ·~p
E+M ξ



= (E + M)
(

ξ ′†, −ξ ′† ~σ·~p
E+M

)σi ~σ·~p
E+M ξ

σiξ


= ξ ′†

(
σi~σ ·~p−~σ ·~pσi

)
ξ

= 2iξ ′†~p×~σξ (1.46)

As a result we obtain:

J0
M = 2MG̃M (1.47)

~JM = 2iG̃Mξ ′†~p×~σξ (1.48)
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The J0
3 current requires more attention since it contains a γ · K factor. This factor can be

expressed by:

γ · K = 6 K =

K0 0

0 K0

+

 0 −~σ · ~K

~σ · ~K 0

 (1.49)

where K0 =
k0 + k′0

2
=

Q

2 sin θB
2

We can then write:

J0
3 ≡ J0

3,0 + J0
3,i (1.50)

The first term is equal to:

J0
3,0 = (E + M)

(
ξ ′†, −ξ ′† ~σ·~p

E+M

)
F̃3 (γ0)2︸ ︷︷ ︸

Id

K0 2M
√

1 + τ

2M2

 ξ

− ~σ·~p
E+M ξ


=

E + M
M

Q

2 sin θB
2

√
1 + τF̃3ξ ′†

[
1−

(
~σ ·~p

E + M

)2
]

︸ ︷︷ ︸
1− σ2

z |~p|2
(E+M)2 =1− E2−M2

(E+M)2 = 2M
E+M

ξ

=
Q
√

1 + τ

sin θB
2

F̃3ξ ′†ξ (1.51)

We find for the second term:

~J0
3,i =

E + M
M

√
1 + τF̃3

(
ξ ′†, −ξ ′† ~σ·~p

E+M

) 0 −~σ · ~K

~σ · ~K 0


 ξ

− ~σ·~p
E+M ξ


=

E + M
M

√
1 + τF̃3

(
ξ ′†, −ξ ′† ~σ·~p

E+M

)~σ·~K~σ·~p
E+M ξ

~σ · ~Kξ


(1.52)
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~J0
3,i =

√
1 + τ

M
F̃3ξ ′†(~σ · ~K~σ ·~p−~σ ·~p~σ · ~K)ξ

=
√

1 + τ

M
F̃3ξ ′†(σxKxσz pz − σz pzσxKx)ξ

=
√

1 + τ

M
F̃3ξ ′†Kx pz(σxσz − σzσx)ξ

=
√

1 + τ

M
F̃3ξ ′†Kx pz(−2iσy)ξ

= i
Q2
√

1 + τ

2M
cot

θB
2

F̃3ξ ′†σyξ (1.53)

Finally, by regrouping the expressions (1.44), (1.48), (1.51) and (1.53) we find for the hadronic

current in the Breit frame:

Jµ =



(
2G̃E + Q

√
1+τ

sin θB
2

F̃3

)
ξ ′†ξ + i Q2√1+τ

2M cot θB
2 F̃3ξ ′†σyξ

iQG̃Mξ ′†σyξ

−iQG̃Mξ ′†σxξ

0


And its hermitian conjugate is given by:

Jν† =
((

2G̃∗
E + Q

√
1+τ

sin θB
2

F̃∗3

)
ξ†ξ ′ − i Q2√1+τ

2M cot θB
2 F̃∗3 ξ†σyξ ′, −iQG̃∗

Mξ†σyξ ′, iQG̃∗
Mξ†σxξ ′, 0

)

Having the current and its hermitian conjugate, we can build the hadronic tensor in the Breit
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frame to obtain:

Wµν =
1
2



4M2G̃EG̃∗
E + 4M[A<(G̃E F̃∗3 )

− B=(G̃E F̃∗3 )〈σy〉]

−iQ[(A〈σy〉+ iB)F̃3

+ 2MG̃E〈σy〉]G̃∗
M

−iQG̃∗
M[(A− iB〈σy〉)F̃3

+ 2MG̃E]〈σx〉

0

iQ[(A〈σy〉 − iB)F̃∗3

+ 2MG̃∗
E〈σy〉]G̃M

Q2G̃MG̃∗
M iQ2G̃MG̃∗

M〈σz〉 0

iQG̃M[(A + iB〈σy〉)F̃∗3

+ 2MG̃∗
E]〈σx〉

− iQ2G̃MG̃∗
M〈σz〉 Q2G̃MG̃∗

M 0

0 0 0 0


(1.54)

Where:

A =
Q
√

1 + τ

sin θB
2

B =
Q2
√

1 + τ

2M
cot

θB
2

< and = stand for the real and imaginary part, respectively. The overall 1
2 factor comes from the

average over the initial spin states. We adopted the notation ξ ′σXξ ′† ≡ 〈σX〉 for clarity. We also

used the normalization relations of the spinors ξξ† = 1, ξ ′ξ ′† = 1 and the completeness relation:

∑
s=1,2

ξsξs† = 1 (1.55)
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The contraction of the leptonic and hadronic tensor is then:

LµνWµν = 4Q2 cot2 θB
2

[
M2G̃EG̃∗

E + MA<(G̃E F̃∗3 )− MB=(G̃E F̃∗3 )〈σy〉
]

+
Q2 cot θB

2

sin θB
2

{
2QB<(G̃M F̃∗3 ) + 2Q=

[
(AF̃∗3 + 2MG̃∗

E)G̃M
]
〈σy〉

}
−2hQ3 cot

θB
2
{
<
[
G̃∗

M(AF̃3 + 2MG̃E)
]
〈σx〉+ 2<(BG̃∗

M F̃3)〈σz〉
}

+
2hQ4

sin θB
2

<(G̃MG̃∗
M)〈σz〉+ Q4G̃MG̃∗

M

(
1

sin2 θB
2

+ 1

)
(1.56)

We see that the contraction is a sum of unpolarized and polarized (proportional to 〈σx〉, 〈σy〉 and

〈σz〉 terms:

LµνWµν ≡ LµνWµν
unpol + LµνWµν

〈σx〉 + LµνWµν

〈σy〉 + LµνWµν

〈σz〉 (1.57)

1.3.3 Unpolarized cross section

We will first consider the unpolarized terms of the contraction only:

LµνWµν
unpol = 2Q2 cot2 θB

2

(
M2|G̃E|2 +

MQ

sin θB
2

√
1 + τ<(G̃E F̃∗3 )

)

+
Q5
√

1 + τ

2M
cot2 θB

2

sin θB
2

<(G̃∗
M F̃3) +

Q4

2
|G̃M|2

(
1

sin2 θB
2

+ 1

)
(1.58)

Using: <(G̃E F̃∗3 ) = GE<(F̃3) and <(G̃∗
M F̃3) = GM<(F̃3), the above expression becomes:

LµνWµν
unpol = 2M2Q2

[
cot2 θB

2

(
|G̃E|2 + τ

|G̃M|2

cos2 θB
2

)
+ τ|G̃M|2 +

cot2 θB
2

sin θB
2

√
1 + τ

×
(

Q
M

GE<(F̃3)) +
Q3

4M3 GM<(F̃3))
)]

= 2M2Q2

{
cot2 θe

2
1 + τ

[
|G̃E|2 + τ|G̃M|2

(
1 + (1 + τ) tan2 θe

2
)
)]

+
cot2 θB

2

sin θB
2

√
1 + τ

(
Q
M

GE<(F̃3)) +
Q3

4M3 GM<(F̃3))
)}

(1.59)
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Using (1.35) and (1.37) we find:

cot2 θB
2

sin θB
2

=
2ν

MQ
√

1 + τ

cot2 θe
2

1 + τ
(1.60)

Plugging this into (1.59), the unpolarized contraction becomes:

LµνWµν
unpol = 2M2Q2 cot2 θe

2

[
|G̃E|2 + τ|G̃M|2

1 + τ

(
1 + 2(1 + τ) tan2 θe

2
)
)

+
2ν

M
cot2 θe

2
1 + τ

(
1
M

GE<(F̃3)) +
Q2

4M3 GM<(F̃3))
)]

=
2τM2Q2 cot2 θe

2
ε(1 + τ)

[
|G̃E|2

ε

τ
+ |G̃M|2 + 4ε

(
GE<(F̃3)

M
+

ν

2M2 GM<(F̃3))
)]

︸ ︷︷ ︸
σr

(1.61)

The use of

|G̃E|2 = G2
E + 2GE<(δG̃E)

|G̃M|2 = G2
M + 2GM<(δG̃M)

τ =
ν

2M

gives

σr = G2
M +

ε

τ
G2

E +
2ε

τ
GE<

(
δG̃E +

ν

M2 F̃3

)
+ 2GM<

(
δG̃M +

εν

M2 F̃3

)
+O(e4) (1.62)

σr is called the reduced cross section. The same expression has been calculated in the appendix

(B.52) using the standard trace techniques.
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1.3.4 Transferred polarization components

In order to extract the polarization components form the polarized contraction, it is necessary to

evaluate the products ξ ′σxξ ′† = 〈σx〉, ξ ′σyξ ′† = 〈σy〉 and ξ ′σzξ ′† = 〈σz〉. Then we write the Pauli

matrices (σx, σy and σz) and their eigenvectors for a scattered proton with positive or negative

helicity state.

σx =

0 1

1 0

 , ξ ′(x,+|λ′p |)
=

 1√
2

1√
2

 , ξ ′(x,−|λ′p |) =

 1√
2

−1√
2

 (1.63)

σy =

0 −i

i 0

 , ξ ′(y,+|λ′p |)
=

 1√
2

i√
2

 , ξ ′(y,−|λ′p |) =

 1√
2

−i√
2

 (1.64)

σz =

1 0

0 −1

 , ξ ′(z,+|λ′p |)
=

1

0

 , ξ ′(z,−|λ′p |) =

0

1

 (1.65)

For example, ξ ′(x,+|λ′p |)
describes a scattered proton with positive helicity +|λ′p| along the x-axis.

Therefore, for a scattered proton in a positive (negative) helicity state along the x-axis, meaning a

final spin-up (down) state in the reaction plane but transverse to the momentum transfer, we find

the following products:

〈σx〉x = ξ ′†(x,±|λ′p |)σxξ ′(x,±|λ′p |) = ±1 (1.66)

〈σy〉x = ξ ′†(x,±|λ′p |)σyξ ′(x,±|λ′p |) = 0 (1.67)

〈σz〉x = ξ ′†(x,±|λ′p |)σzξ ′(x,±|λ′p |) = 0 (1.68)

This describes the transverse polarization of the recoil proton.

For a scattered proton in a positive (negative) helicity state along the y-axis, meaning a final
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spin-up (down) state in the out of plane direction (normal to the scattering plane), we have:

〈σx〉y = ξ ′†(y,±|λ′p |)σxξ ′(y,±|λ′p |) = 0 (1.69)

〈σy〉y = ξ ′†(y,±|λ′p |)σyξ ′(y,±|λ′p |) = ±1 (1.70)

〈σz〉y = ξ ′†(y,±|λ′p |)σzξ ′(y,±|λ′p |) = 0 (1.71)

This describes the normal polarization of the recoil proton.

Finally, for a scattered proton in a positive (negative) helicity state along the z-axis, meaning a

final spin-up (down) state along the momentum transfer, we obtain:

〈σx〉z = ξ ′†(z,±|λ′p |)σxξ ′(z,±|λ′p |) = 0 (1.72)

〈σy〉z = ξ ′†(z,±|λ′p |)σyξ ′(z,±|λ′p |) = 0 (1.73)

〈σz〉z = ξ ′†(z,±|λ′p |)σzξ ′(z,±|λ′p |) = ±1 (1.74)

This describes the longitudinal polarization of the recoil proton.

Therefore, we obtain:

LµνWµν

(x,±|λ′p |)
= −2hQ3 cot

θB
2
<(G̃∗

MG̃E)− hQ4 cot θB
2

sin θB
2

√
1 + τGM<(F̃3)

LµνWµν

(y,±|λ′p |)
= 2hMQ3 cot θB

2

sin θB
2

=(G̃MG̃∗
E) + hQ4 cot θB

2

sin2 θB
2

√
1 + τ=(G̃M F̃∗3 )

−hQ4 cot3 θB
2

√
1 + τ=(G̃E F̃∗3 )

LµνWµν

(z,±|λ′p |)
=

hQ4

sin θe
2

|G̃M|2 +
hQ5

2M

√
1 + τ cot2 θB

2
GM<(F̃3) (1.75)
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The polarization components are defined by the ratio of the different polarized terms of (1.75)

over the unpolarized term (1.61):

Pt ≡
LµνWµν

(x,±|λ′p |)

LµνWµν
unpol

(1.76)

Pn ≡
LµνWµν

(y,±|λ′p |)

LµνWµν
unpol

(1.77)

Pl ≡
LµνWµν

(z,±|λ′p |)

LµνWµν
unpol

(1.78)

where t, n, and l stand for transverse, normal and longitudinal respectively, as explained above.

Transverse polarization

From (1.76) the transverse polarization components is given by

Pt =
−2hQ3 cot θB

2 <(G̃∗
MG̃E)− hQ4 cot θB

2

sin θB
2

√
1 + τGM<(F̃3)

2 M2Q2

(1+τ)
τ
ε cot2 θe

2 σr

(1.79)

Using the relations between the scattering angle in the Breit frame and the scattering angle in the

lab frame (1.35) and (1.37), we have:

cot θB
2

sin θB
2

=
cot2 θB

2

cos θB
2

=
cot2 θe

2
1 + τ

tan
θe

2
2ν

MQ

=
2ν

MQ(1 + τ)
cot

θe

2
(1.80)

Therefore:

Pt = −h
Q
M

ε

τ

√
1− τ

σr

1

cot θe
2

(
<(G̃∗

MG̃E) +
ν

M2 GM<(F̃3) +O(e4)
)

(1.81)
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By noticing that:

<(G̃∗
MG̃E) = GEGM + GE<(δG̃M) + GM<(δG̃E) +O(e4) (1.82)

and by expressing the tangent of the incident electron angle as a function of ε:

ε =
1

1 + 2(1 + τ) tan2 θe
2

⇒ tan
θe

2
=

√
1− ε

2ε(1 + τ)
(1.83)

we obtain for the transverse polarization component the following expression:

Pt = −h

√
ε(1− ε)

τ

1
σr

[
GEGM + GM<

(
δG̃E +

ν

M2 F̃3

)
+ GE<(δG̃M) +O(e4)

]
(1.84)

Longitudinal polarization

From (1.78), the longitudinal polarization component is given by:

Pl =

hQ4

sin θe
2
|G̃M|2 + hQ5

2M
√

1 + τ cot2 θB
2 GM<(F̃3)

2 M2Q2

(1+τ)
τ
ε cot2 θe

2 σr

=
ε(1 + τ)

τσr


h

sin θB
2 cot2 θe

2

Q2

2M2︸ ︷︷ ︸
2τ

|G̃M|2 + h
Q
M︸︷︷︸

2
√

τ

Q2

4M2︸ ︷︷ ︸
τ

√
1 + τ

cot2 θB
2

cot2 θe
2︸ ︷︷ ︸

(1+τ)−1

GM<(F̃3)

 (1.85)

Looking at the first term in the above expression, we have:

1

sin θB
2 cot2 θe

2

=
1

(1 + τ) cos θB
2 cot θB

2

=
1

1 + τ
tan

θe

2
2ν

MQ

√
1 + τ

cot θe
2

=
1√

τ(1 + τ)
ν

M2 tan2 θe

2

=
1√

τ(1 + τ)
ν

M2
1− ε

2ε(1 + τ)
(1.86)
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A useful relation between ν, τ and the kinematical parameter ε is :

ν

M2 =

√
τ(1 + τ)(1 + ε)

1− ε
⇒

√
τ(1 + τ) =

ν

M2

√
1− ε

1 + ε
(1.87)

The longitudinal polarization then becomes:

Pl = h

√
1− ε2

σr
|G̃M|2 + 2hε

ν

M2

√
1− ε

1 + ε
GM<(F̃3) +O(e4)

= h

√
1− ε2

σr

[
G2

M + 2GM<
(

δG̃M +
ν

M2
ε

1 + ε
F̃3

)
+O(e4)

]
(1.88)

Normal polarization

From (1.77), the normal polarization components given by:

Pn = h

2MQ3 cot θB
2

sin θB
2

=(G̃MG̃∗
E)︸ ︷︷ ︸

(1)

+ Q4 cot θB
2

sin2 θB
2

√
1 + τ=(G̃M F̃∗3 )︸ ︷︷ ︸
(2)

−Q4 cot3 θB
2

√
1 + τ=(G̃E F̃∗3 )︸ ︷︷ ︸

(3)

 1

2 M2Q2

(1+τ)
τ
ε cot2 θe

2 σr
(1.89)

Note that the three terms (1), (2) and (3) contained the division by the unpolarized term.

Plugging (1.83) into (1.80) we find:

cot θB
2

sin θB
2

=
ν

MQ(1 + τ)

√
2ε(1 + τ)

1− ε
(1.90)
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The first term of (1.89) becomes:

(1) = h
4Q2ν

1 + τ

√
2ε(1 + τ)

1− ε

ε(1 + τ)
τ

tan2 θe
2

2M2Q2=(G̃MG̃∗
E)

= 2h

√
τ(1 + τ)(1 + ε)

1− ε

√
2ε(1 + τ)

1− ε

ε(1− ε)
2τε(1 + τ)

=(G̃MG̃∗
E)

= h

√
2ε(1 + ε)

τ
=(G̃MG̃∗

E) (1.91)

Noticing that: cot θB
2

sin2 θB
2

= cot3 θB
2

cos2 θB
2

, we find for the second term (2):

(2) = hQ4
√

1 + τ
cot3 θB

2

cos2 θB
2

ε

2M2Q2τ cot2 θB
2

=(G̃M F̃∗3 )

= hQ4
√

1 + τ
4ν2

M2Q2
√

1 + τ
tan

θe

2
ε

2M2Q2τ
=(G̃M F̃∗3 )

= h
2ν2ε

M4τ

√
1− ε

2ε(1 + τ)
=(G̃M F̃∗3 )

= h
2νε

M2τ

√
τ(1 + τ)(1 + ε)

1− ε

√
1− ε

2ε(1 + τ)
=(G̃M F̃∗3 )

= h
ν

M2

√
2ε(1 + ε)

τ
=(G̃M F̃∗3 ) (1.92)

In the second to last step, we used the relation (1.87) to express ν
M2 .

Finally, the evaluation of the third term of (1.89) is straighforward:

(3) = −hQ4 cot3 θe
2

1 + τ

ε(1 + τ)
2M2Q2τ cot2 θe

2

=(G̃E F̃∗3 )

= −h
Q2

2M2︸ ︷︷ ︸
2τ

ε

τ
cot

θe

2
=(G̃E F̃∗3 )

= −2hε

√
2ε(1 + τ)

1− ε
×
√

τ√
τ
=(G̃E F̃∗3 )

= −h

√
2ε(1 + ε)

τ

(
2ε

1 + ε

ν

M2

)
=(G̃E F̃∗3 ) (1.93)
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In the last step, we used again the relation (1.87), but to express this time the term
√

τ(1 + τ) as

a function of ν, M and ε.

The different imaginary parts contained in the expression (1.89) are given by:

=(G̃MG̃∗
E) = =

[
(GM + δG̃M)(GE+̃δG̃∗

E)
]

= −GM=(δG̃E) + GE=(δG̃M) +O(e4) (1.94)

=(G̃M F̃∗3 ) = −GM=(F̃3) +O(e4) (1.95)

=(G̃E F̃∗3 ) = −GE=(F̃3) +O(e4) (1.96)

Therefore, the normal polarization component becomes:

Pn = h

√
2ε(1 + ε)

τ

1
σr

[
−GM=

(
δG̃E +

ν

M2 F̃3

)
+ GE=

(
δG̃M

2ε

1 + ε

ν

M2 F̃3

)
+O(e4)

]
(1.97)

Summarizing the different results, we obtain:

Pt = −h

√
ε(1− ε)

τ

1
σr

[
GEGM + GM<

(
δG̃E +

ν

M2 F̃3

)
+ GE<(δG̃M) +O(e4)

]
Pn = h

√
2ε(1 + ε)

τ

1
σr

[
−GM=

(
δG̃E +

ν

M2 F̃3

)
+ GE=

(
δG̃M

2ε

1 + ε

ν

M2 F̃3

)
+O(e4)

]
Pl = h

√
1− ε2

σr

[
G2

M + 2GM<
(

δG̃M +
ν

M2
ε

1 + ε
F̃3

)
+O(e4)

]
(1.98)

where the reduced cross section σr is given by:

σr = G2
M +

ε

τ
G2

E +
2ε

τ
GE<

(
δG̃E +

ν

M2 F̃3

)
+ 2GM<

(
δG̃M +

εν

M2 F̃3

)
+O(e4)
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We define the polarization component ratio by: R ≡ −µp

√
τ(1+ε)

2ε

Pt

Pl
. Using the expressions just

above and defining RBorn ≡
GE
GM

we obtain:

Pt

Pl
= −

√
2ε(1− ε)

τ

1√
1− ε2

GM

[
GE +<

(
δG̃E + ν

M2 F̃3

)
+ RBorn<(δG̃M)

]
GM

[
GM + 2<

(
δG̃M + ν

M2
ε

1+ε F̃3

)] +O(e4)

= −
√

2ε

τ(1 + ε)
1

GM

[
GE +<

(
δG̃E +

ν

M2 F̃3

)
+ RBorn<(δG̃M)

]
×
[

1− 2
GM

<
(

δG̃M +
ν

M2
ε

1 + ε
F̃3

)]
+O(e4)

= −
√

2ε

τ(1 + ε)
<
(

RBorn +
RBorn
GM

δG̃M +
δG̃E
GM

+
νF̃3

GM M2 −
2R
GM

δG̃M − ν

M2
RBornε

1 + ε
F̃3

)
+O(e4)

= −
√

2ε

τ(1 + ε)
<
[

RBorn

(
1− δG̃M

GM
− ν

M2
2ε

1 + ε

F̃3

GM

)
+

δG̃E
GM

+
νF̃3

GM M2

]
+O(e4)

= −
√

2ε

τ(1 + ε)
RBorn<

[
1− δG̃M

GM
+

δG̃E
GE

+
νF̃3

M2

(
1

GE
− 2ε

1 + ε

1
GM

)]
+O(e4) (1.99)

So R is given by:

R = −
√

τ(1 + ε)
2ε

Pt

Pl

= RBorn

[
1 +

<(δG̃M)
GM

− <(δG̃E)
GE

− ν<(F̃3)
M2

(
1

GE
− 2ε

GM(1 + ε)

)]
+O(e4) (1.100)

From the above equations (1.98) and (1.100) we see that the ε-dependence appears as an interfer-

ence between the Sachs form factors GE and GM and the real part of the TPEX amplitudes δG̃M,

δG̃E and δF̃3.

In the Born approximation for electron-proton elastic scattering, the hermiticity of the Hamil-

tonian implies that the proton electromagnetic form factors are real and depend only on the

momentum transfer. Therefore the TPEX contributions δG̃M, δG̃E and δF̃3 vanish. The usual ex-

pressions for the polarization components, the reduced cross section and the form factor ratio in
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the Born approximation are recovered [18, 19]:

PBorn
t = −h

√
ε(1− ε)

τ

1
σr

GEGM

PBorn
n = 0

PBorn
` = h

√
1− ε2

σr
G2

M

σBorn
r = G2

M +
ε

τ
G2

E (1.101)

The latter equation is the foundation of the Rosenbluth separation technique which extracts the

square of the form factors by linear interpolation of the measured cross section. The slope and

the intercept of the graph σred vs
ε

τ
will give G2

E and G2
M respectively. Due to the

ε

τ
multiplying

G2
E, the cross section will be dominated by G2

M with increasing Q2, whereas the contribution of

G2
E becomes delicate to measure.

In the experiment, we extract the ratio R and the longitudinal polarization component P`. In what

follows, we will then only study these two quantities. In order to make additional quantitative

comments about the TPEX contribution to the polarization observables, it is convenient to express

the real parts of the TPEX amplitude relative to the magnetic form factor:

YM ≡ <
(

δG̃M
GM

)
, YE ≡ <

(
δG̃E
GM

)
, Y3 ≡

ν

M2<
(

δF̃3

GM

)
(1.102)

We rewrite the expression of R, P` and σr:

σr

G2
M

= 1 +
ε

τ
R2

Born + 2YM + 2
ε

τ
RBornYE + 2ε

(
1 +

RBorn
τ

)
Y3 +O(e4) (1.103)

R = RBorn + YE − RBornYM +
(

1− 2ε

1 + ε
RBorn

)
Y3 (1.104)

P` = h

√
1− ε2

σr
G2

M

(
1 + 2YM +

2ε

1 + ε
Y3

)
(1.105)

It is also more convenient to study P` relative to its Born value PBorn
` . The ratio P`/PBorn

` expressed
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as a function of the Y amplitudes is given by:

P`

PBorn
`

= h

√
1− ε2G4

M

(
1 + 2YM +

2ε

1 + ε
Y3

)
1 +

ε

τ
R2

Born + 2YM + 2
ε

τ
RBornYE + 2ε

(
1 +

RBorn
τ

)
Y3

×
1 +

ε

τ
R2

Born

h
√

1− ε2G4
M

=
(

1 + 2YM +
2ε

1 + ε
Y3

)1−
2YM + 2

ε

τ
RBornYE + 2ε

(
1 +

RBorn
τ

)
Y3

1 +
ε

τ
R2

Born


= 1 +

1

1 +
ε

τ
R2

Born

[
2
(

1 +
ε

τ
R2

Born

)
YM − 2YM − 2ε

τ
RBornYE

+2εY3

1 +
ε

τ
R2

Born

1 + ε
− 1− RBorn

τ


= 1 +

1

1 +
ε

τ
R2

Born

[
2
( ε

τ
R2

BornYM − ε

τ
RBornYE

)
+

2ε

1 + ε
Y3

(
ε

τ
R2

Born − ε− RBorn
τ

)]

= 1− 2ε

1 +
ε

τ
R2

Born

[[
RBorn

τ
+

ε

1 + ε

(
1−

R2
Born
τ

)]
Y3 +

RBorn
τ

[YE − RBornYM]

]
(1.106)

Neglecting the terms proportional to the RBorn = GE/GM term, we see that the TPEX contribu-

tions to σr and R are proportional to YM + εY3 and YM + YE respectively. In contrast, the TPEX

corrections to P` will be entirely dominated by Y3.

1.3.5 Single-spin observables

The single-spin observable Pn is directly and specifically proportional to the imaginary part (ab-

sorptive part) of the TPEX (or multi-photon exchange) and is of order e2 (relative to the factor e2

in (1.22)). It vanishes in the OPEX approximation due to time reversal invariance [20]. We can

measure this single spin observable by elastic electron-proton scattering with either the target or

the electron beam spin polarized normal to the scattering plane. Another single-spin asymmetry

could be accessed by considering the general expansion of the T-matrix including lepton-helicity

flip. We obtain a scattering amplitude involving six invariant amplitudes. We derived already the

structures that give rise to those six independent amplitudes in (1.21). Thus, using those results a
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general expansion of the lepton helicity flip T-matrix is given by [21]:

T f lip =
e2

Q2
m
M

[
ū(k′, h)u(k, h) · ū(p′, λ′p)

(
F̃4 + F̃5

γ · K
M

)
u(p, λp)

+ F̃6ū(k′, h)γ5u(k, h) · ū(p′, λ′p)γ5u(p, λp)
]

(1.107)

As well as G̃M, G̃E and F̃3, the amplitudes F̃4, F̃5 and F̃6 are complex and depend on ε and Q2.

The extracted factor m
M emphasizes the fact that the lepton helicity-flip amplitude vanishes in the

limit of a massless lepton (m → 0). This single-spin asymmetry could be measured in low energy

elastic muon-proton scattering.



Chapter 2

Theoretical Models

In this chapter, we will present the different theoretical calculations aimed at explaining the dis-

crepancy observed between the proton form factor ratio data obtained by the Rosenbluth sepa-

ration method, and recoil polarization technique. We will particularly dwell on the partonic and

hadronic calculations. Other models based on a pQCD approach will also be described.

2.1 Partonic Model

2.1.1 General Parton Distributions (GPD) Formalism

The partonic calculation of A. V. Afanasev et al. [22, 23] gives an estimation of the two-photon

contribution to elastic electron-proton scattering using a quark-parton representation of virtual

Compton scattering.

The partonic mechanism is described by the handbag diagram shown in Figure 2.1. It consists

of a hard scattering H of a lepton l off a massless quark. The quarks are “embedded" in the

nucleon through the nucleon’s GPDs represented by the blob in Figure 2.1. The T-matrix of the

electron-quark scattering e(k) + q(pq) → e(k′) + q(p′q) is given by:

Hhard
h,λ =

e2e2
q

Q2 ū(k′, h)γµu(k, h)× ū(p′q, λ)
(

f̃1γµ + f̃3γ · KPµ
q

)
u(pq, λ) (2.1)

36
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with Pq ≡
pq+p′q

2 ,K ≡ k+k′
2 and where eq is the fractional quark charge for a flavour q. The quark

helicity λ = ± 1
2 is conserved in the hard process.

q
p

q
p'

l l'

N N

H

Figure 2.1: Handbag diagram.

The first step in this model is to calculate the partonic subprocess (the upper part of the

handbag diagram). This hard scattering is described by the TPEX diagrams of Figure 2.2. The

amplitude f̃1 is separated into a soft and hard part: f̃1 = f̃ so f t
1 + f̃ hard

1 [24]. In the soft part

situation, one of the exchanged photons in Figure 2.2 carries zero four-momentum. This soft part

is obtained by replacing the four-momentum of the other photon by q in the numerator and in

the denominator in the loop integral [24]. One obtains that the real parts, <( f̃ hard
1 ) and <( f̃3), are

infrared (IR) finite whereas <( f̃ so f t
1 ), which contains a term proportional to ln λ2 (where λ is an

infinitesimal photon mass) is IR divergent. A similar result is obtained for the imaginary parts.

However, it can be shown [25] that the IR part of the imaginary part of the soft contribution of

f̃ so f t
1 does not contribute to the single spin asymmetry calculation.
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Figure 2.2: Two-photon exchange diagram to the electron-quark scattering.

After the calculation of the partonic scattering process, the second step is to describe how

the quark are embedded in the nucleon. In the handbag diagram, both photons are coupled to

the same quark. However, contributions exist from processes where the photons interact with

different quarks. It can be shown that the sum of the resulting IR contributions of these processes

and the soft contributions from the handbag diagrams give the same result as the IR contribution

calculated with just a nucleon intermediate state, satisfying the low energy theorem for Compton

scattering [26]. The IR divergence in the real part is cancelled when the Bremsstrahlung contri-

bution is taken into consideration. The Bremsstrahlung originates from the interference processes

where a soft photon is emitted from the electron and the proton. This implies a radiative correction

term in addition to the soft part term from the direct and crossed diagrams:

σR,so f t = σ1γ(1 + δ2γ,so f t + δBrems) (2.2)

with σ1γ the one-photon exchange cross section.

The finite hard parts of the handbag diagram are evaluated using the nucleon’s General Parton
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Distributions. The T-matrix of the reaction (1.14) is given by:

Thard
h,λ′p ,λp

=
1∫

−1

dx
x ∑

q

1
2
(Hhard

h,+ 1
2
+ Hhard

h,− 1
2
)

1
2

[
Hq(x, 0, q2)ū(p′, λ′p)γ · nu(p, λp)

+ Eq(x, 0, q2)ū(p′, λ′p)
iσµνnµqν

2M
u(p, λp)

]
+

1∫
−1

dx
x ∑

q

1
2
(Hhard

h,+ 1
2
− Hhard

h,− 1
2
)

1
2

sgn(x)H̃q(x, 0, q2)ū(p′, λ′p)γ · nγ5u(p, λp) (2.3)

Details about the GPDs’ kinematic are given in [23]. Hq, Eq and H̃q are the GPDs for a quark of

flavor q in the proton. Furthermore, defining ν = PqK̇ the hard two-photon exchange contributions

are given by:

δG̃hard
M = C, δG̃hard

E = −
(

1 + ε

2ε

)
(A− C) +

√
1 + ε

2ε
B and F̃3 =

M2

ν

(
1 + ε

2ε

)
(A− C) (2.4)

with A, B and C defined as:

A ≡
1∫

−1

dx
x

[
(ŝ− û) f̃ hard

1 − ŝû f̃3

]
s− u ∑

q
e2

q(Hq − Eq)

B ≡
1∫

−1

dx
x

[
(ŝ− û) f̃ hard

1 − ŝû f̃3

]
s− u ∑

q
e2

q(Hq − τEq)

C ≡
1∫

−1

f̃ hard
1 sgn(x) ∑

q
e2

q H̃q (2.5)

The cross section including the two-photon corrections obtained in this GPD-based calculation

can then be written as:

σR = σR,so f t + σR,hard with σR,hard = (1 + ε)GM<(A) +
√

2ε(1 + ε)
1
τ

GE<(B) + (1− ε)GM<(C)

(2.6)
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The polarization components are given by:

Pt = −
√

ε(1− ε)
τ

1
σr

[
GEGM + GE<(C) + GM

√
1 + ε

2ε
<(B) +O(e4)

]

Pn =

√
2ε(1 + ε)

τ

1
σr

[
GE=(A)− GM

√
1 + ε

2ε
=(B) +O(e4)

]

Pl =
√

1− ε2

σr

[
G2

M + GM<(A + C) +O(e4)
]

The models of GPDs used to estimate the hard amplitudes in (2.4) are a Gaussian model and a

modified Regge model. The parametrization of these models is given in [23].

2.1.2 Results

Cross Section

The effect of the two-photon correction on the cross section are displayed on the Figure 2.3 for

different values of Q2. The straight dotted line shows the results using the extracted values

of GEp/GMp from the polarization data [7, 9]. They are not compatible with the Rosenbluth

data [4] corrected only for the standard Mo and Tsai radiative corrections [13]. This is another

representation of the discrepancy of the form factor ratio results obtained from cross section

and polarization measurements. By including the TPEX correction based on a GPD calculation,

the Rosenbluth plots presents some non-linearity at the largest values of ε. In particular, the

observed change of slope agrees with the experimental data and allows a partial reconciliation of

the Rosenbluth and polarization transfer data.



41

Figure 2.3: Scaled cross section prediction based on a GPD calculation from A. Afanasev et al.
[23]. The dashed and solid curves display the results using the Gaussian GDP and the modified
Regge GPD models, respectively. In both models, the parametrization of GMp of [27] was used.
The data are from A. Andivahis [4]

Form Factor Ratio

Figure 2.4 shows the effect of the hard two-photon correction on the the Rosenbluth form factor

ratio data. The Regge model is not shown here for reason of clarity, but gives results similar to

the Gaussian GPD model. The form factor ratio results extracted using the Rosenbluth separation

method including the hard two-photon corrections agree with the polarization transfer data for a

Q2 range of 2− 3 GeV2. For higher Q2, the agreement of the two methods is partial. The slope of

the Rosenbluth data remains unchanged.



42

Figure 2.4: Rosenbluth and polarization data with two-photon exchange correction based on a
GPD calculation from A. Afanasev et al. [23]. The open triangles show the Rosenbluth data [28]
corrected with the standard Mo and Tsai radiative corrections. The polarization data [7, 9] are
displayed with open and solid circles and include Mo and Tsai radiative corrections. The solid
squares show the results obtained with the Rosenbluth data [4] and hard two-photon corrections
using the Gaussian GPD-based calculation.

Longitudinal Polarization Component

The effect of the TPEX corrections on the longitudinal polarization component are very small in

the GPD model as shown in Figure 2.5. Indeed, the effect on the ratio between the full calculation

(including the TPEX corrections) and the OPEX calculation is less than 0.5%. Results obtained

with both the Gaussian and the modified Regge GPD models are displayed in Figure 2.5.
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Figure 2.5: Ratio of the longitudinal polarization component P` relative to the Born Approximation
value versus ε obtained from the two GPD models: Gaussian (dashed line) and Regge (solid line).

2.2 Hadronic Model

2.2.1 Formalism

The hadronic model of P.G. Blunden al [29, 30] investigates the two-photon exchange correction

in elastic electron-nucleon scattering by keeping just the elastic nucleon intermediate state. Let
dσ0

dΩ
be the cross section for elastic scattering (1.14) in the Born Approximation. When radia-

tive corrections of order α are taken into consideration, the cross section can be expressed by:
dσ

dΩ
=

dσ0

dΩ
(1 + δ). δ is given by calculating the one-loop integral virtual corrections (electron

and proton vertex correction, vacuum polarization and two-photon exchange corrections) and

also the inelastic bremsstrahlung with real photon emission [13]. With the inclusion of the radia-

tive correction δ, one expects a better understanding of the ε-dependence of the Rosenbluth plot

for increasing Q2. The corresponding amplitude M1 is given by the sum of a factorizable term
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propotional to the Born amplitude M0 and a nonfactorizable term M̄1:

M1 = f (ε, Q2)M0 + M̄1 (2.7)

The Born amplitude is given by:

M0 = −i
e2

q2 ū(k′)γµu(k)ū(p′)Γµ(q)u(p) with q = p′ − p = k− k′ (2.8)

The proton vertex Γµ function is expressed in terms of Dirac (F1) and Pauli (F2) form factors as

follows: Γµ = F1(q2)γµ +
iσµνqν

2M
F2(q2). The ratio of the cross section (to order α) to the Born cross

section is then given by:

|M0 +M1|2
|M0|2

= 1 + δ with δ = 2 f (ε, Q2) +
2<(M†

0M̄1)
|M0|2

(2.9)

The dominant factorizable term is essentially independent of the hadronic structure. It contains

the electron vertex and the vacuum polarization corrections, the IR divergent parts of both the

two-photon exchange and the nucleon vertex corrections. However, the latter three contributions

depend on Q2 only and therefore are not important to the ε-dependence of the Rosenbluth plot.

Thus, the remaining contributions for the study of the ε-dependence of the virtual photon cor-

rections are the IR divergent parts of the two-photon exchange. The model dependent term M̄1

includes the two-photon exchange and the finite proton vertex corrections. It has been shown [31]

that the latter correction presents a weak ε-dependence and will be neglected here. The inelastic

bremsstrahlung contribution to the cross section are well understood, they present an important

ε-dependence already accounted in the experimental analysis and won’t be discussed here. Thus,

the corrections that can lead to an non-negligible epsilon dependence can be written as follows:

δ f ull ≡ δIR + δ2γ (2.10)

The δIR have been calculated in [13], therefore a quantity of particular interest is the difference

∆ between the full two-photon exchange obtained by the computation of the loop integral (1.1)
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under the assumption of an on-shell nucleon, and the IR divergent corrections of Mo and Tsai:

∆ ≡ δ f ull − δIR
Mo−Tsai (2.11)

Since the IR behaviour of δ f ull and δIR
Mo−Tsai is the same [30], the difference ∆ will then be IR finite.

It is possible to solve the integral analytically in terms of 4-point Passarino-Veltman functions [32]

calculated using Spence functions [33].

2.2.2 Unpolarized Cross Section and Form Factor Ratio Results

Figure 2.6 displays the effect of the two-photon exchange corrections on the unpolarized cross

section in this model. The cross section is scaled by a factor 1/G2
D with GD =

(
1 +

Q2

(0.84 GeV)2

)
the dipole form factor. On both panels, the dotted curves are the expected values of the reduced

cross section in the Born Approximation and do not fit the data well. The parametrization of E.

Brash et al. [27] is used to determine the electric form factor of the proton GE from a fit to the

polarization data [7, 9, 8]. By contrast, the corrected results (solid curves) are in better agreement

with the data, with a larger slope and a non-linear region at small ε. The influence of the two-

photon exchange correction on the proton form factor ratio is shown in Figure 2.7. Those results

are obtained by fitting the correction (1 + ∆) to a linear function of ε (a + bε) for each value of Q2

at which the ratio is measured. Implementing this procedure in the reduced cross section follows:

σr ≈ aG2
M

[
1 +

ε

µ2
pτ

[
R2(1 + εb/a) + µ2

pτb/a
]]

(2.12)

where µp is the proton magnetic moment and R is the proton form factor ratio given by:

R2 =
R̃2 − µ2

pτb/a
1 + ε̄b/a

(2.13)

ε̄ is the average value of epsilon over the fitted ε range and R̃ is the measured form factor ratio

which contains the two-photon exchange effect. The results for the form factor ratio are displayed

in Figure 2.7. The effect of the two-photon exchange corrections on R is evident; they have the

proper sign to bring down the cross section data (LT)[28] closer to the polarization data (PT) [7].
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Figure 2.6: Two-photon exchange corrections to the reduced cross section (scaled by the dipole
form factor) using the hadronic model of P.G. Blunden et al. [30]. The dotted lines shows the
Born cross sections. The solid lines include the TPEX contributions. The left panel shows the
data from SLAC [4] at Q2 = 3.25 GeV2 (open squares), Q2 = 4 GeV2 (filled circles), Q2 = 5 GeV2

(open circles) and Q2 = 6 GeV2 (filled squares). The right panel displays the data from the "Super
Rosenbluth" experiment at JLab [6] at Q2 = 2.64, 3.2 and 4.1 GeV2 (filled squares, open squares
and filled circles respectively).

Figure 2.7: Two-photon exchange corrections to the form factor ratio measured using the Rosen-
bluth separation technique based on the hadronic model of P.G. Blunden et al. [30]. The filled
circles and filled squares are the corrected Rosenbluth data (LT) [28] obtained by fitting over an ε
range of 0.5-0.8 and 0.2-0.9 respectively. The open diamonds represent the uncorrected data and
the open circles represent the polarization data (PT) [7].
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Up to Q2 ≈ 3 GeV2, the corrected Rosenbluth data are in good aggreement with the polarization

results. Above Q2 ≈ 3 GeV2, the reconcilliation between the two data sets is only partial and

the slope of the polarization results is not recovered. Depending on the fitted ε range, the 2γ

corrections can have a smaller or larger effect.

2.2.3 Polarized electron-proton scattering results

A similar loop integration can be evaluated including the case when the initial electron and the

final proton are polarized. It results in a correction to the longitudinal (∆L) and transverse (∆T)

cross section. As the Mo-Tsai radiative corrections are independent of the polarization, the 2γ

corrections for polarized electron-proton scattering are given by the IR finite quantity:

∆L,T ≡ δ
f ull
L,T − δIR

Mo−Tsai (2.14)

It is more convenient to look at the ratio of the longitudinal and transverse cross section that

contains the two-photon exchange effect, relative to the Born unpolarized cross section. This is

defined as:
P1γ+2γ

L,T

P1γ
L,T

=
1 + ∆L,T

1 + ∆
(2.15)

Figure 2.8 shows the two-photon exchange contribution to the longitudinal and transverse cross

section ratio. The correction to PL is small overall in this model (less than one percent) with an

enhancement at forward angles (large ε) whereas it is large for the transverse polarization ratio

and becomes significant at backward angles (small ε). The correction to PT increases systematically

with Q2. The effect of the 2γ corrections on the proton form factor ratio can be expressed as:

R̃ = R
1 + ∆T
1 + ∆L

(2.16)

where R is the corrected ratio and R̃ the measured form factor ratio which contained the two-

photon exchange effect as in (2.2.2). The results are shown in Figure 2.9. The corrected polarization

data (PT corrected) are displayed with solid circles (with a horizontal offset applied for clarity)

and the uncorrected ones (PT) with opens circles. The uncorrected Rosenbluth data (LT) of Figure
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Figure 2.8: Ratio of the longitudinal and transverse cross section relative to the Born unpolarized
cross section based on the hadronic model of P.G. Blunden et al. [30]. The dotted, dashed and
solid curves correspond to the Q2 values of 1, 3 and 6 GeV2 repectively.
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2.7 are shown with open diamonds for comparison. The correction to the proton form factor ratio

data measured by the polarization transfer technique is very small ,. 3%, as expected since the

polarization transfer experiments have ε ≈ 0.7− 0.8.

Figure 2.9: Proton form factor ratio from polarization data with (solid circles) and without (open
circles) the two-photon exchange corrections using the hadronic model of P.G. Blunden et al. [30]

Figure 2.10 displays the two-photon exchange contributions δG̃M/GM, δG̃E/GE to the real

part of the generalized form factors G̃M, G̃E respectively, and the amplitude Y2γ = ν F̃3
GM

. Both

corrections to G̃M and G̃E are large, have a positive slope in ε and increase with Q2 even if the

latter becomes shallower for intermediate values of ε with increasing Q2. The amplitude Y2γ is

significantly smaller than the other two contributions, depends weakly on Q2 and has a slight

negative slope in ε. Very similar results were obtained in a more general hadronic calculation

[34] (in the sense that it can use any proton form factor parametrization) based on the analytic

properties of the proton form factors.
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Figure 2.10: Two-photon exchange correction to the real part of G̃M, G̃M and Y2γ amplitudes at
Q2 = 1, 3 and 6 GeV2 using the hadronic model of P.G. Blunden et al.

2.2.4 Excited Intermediate States

Up to this point, two-photon exchange diagrams contained only nucleons in the intermediate state.

This section describes the contribution δ∆ of another hadron: the ∆ resonance. Reference [35] gives

details of the calculation which is similar to the one carried throughout the previous section. A

modified vertex function is introduced, expressed in terms of the ∆ form factor F∆ (necessary for

ultraviolet regularization of the loop integrals) and the magnetic, electric and Coulomb coupling

constants. The F∆ form factor is given by the simple dipole form F∆ =
Λ4

∆
(Λ2

∆ − q2)2
, where Λ∆ is

a cutoff and q2 is the square of the momentum transfer. The cross section is factorized as follows:
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σr = σBorn
r (1 + δN + δ∆) with σBorn

r = G2
M(Q2) +

ε

τ
G2

E(Q2) and δN and δ∆ are the contributions

obtained from two-photon exchange diagram containing nucleons and the ∆ resonance in the

intermediate state, respectively.

Figure 2.11: Nucleon and ∆ contributions to the two-photon exchange correction to the cross
section (left panel) in the model of [35]. Effect of the two-photon exchange correction including
the ∆ resonance to the Born cross section (scaled by the inverse of the square of the dipole form
factor) (right panel). The data points are from the references [6, 12]

The nucleon and ∆ contributions to the two-photon exchange correction to the cross section for

two values of the cut Λ∆ are shown in the left panel of Figure 2.11. The inclusion of the resonance

makes a small difference compared to the case with only the nucleon in the intermediate state. As

a consequence the results obtained for the cross section (right panel of Figure 2.11) are similar to

the ones of Figure 2.6.

2.3 Perturbative Quantum Chromodynamic Calculations

The model of D. Borisyuk and A. Kobushkin [36] studies the two-photon exchange effect in elas-

tic electron-proton scattering at high Q2 using a perturbative quantum chromodynamic (pQCD)

formalism. In the Born Approximation (i.e. the exchange of one photon), at least two hard gluons

need to be exchanged between the quarks. The remaining quark interacts with the virtual pho-

ton. The one-photon exchange amplitudes are therefore of the order:
αα2

s
Q6 , where αs is the strong
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coupling constant. When one considers the exchange of two photons, one gluon exchange be-

tween the quarks is sufficient. Thus the leading order pQCD contribution to the TPEX amplitude

is proportional to
α2αs

Q6 . It follows that the TPEX amplitude is of order
α

αs
relative to the Born

amplitude, and not α as described in the other models. Using the simple parametrization for αs:

αs =
4π

β0 ln Q2

Λ2

(2.17)

with Λ = 0.2 GeV and β0 = 11− 2
3 n f is the β-function with n f the number of quarks with mass

less than the energy scale Λ. One notices that the two-photon exchange contribution increases

logarithmically with Q2.

Figure 2.12: Diagram for the elastic ep scattering with two hard photon exchanges. The crosses
indicates the other possibilities to attach the gluon. Other diagrams are possible where one photon
is coupled to the d-quark but they are not shown here for simplicity.

It is important to point out that the partonic model [23] only considers diagrams where both

photons interact with the same quark (see Figure 2.12). The resulting amplitudes will be of the

order
α2α2

s
Q6 and thus will be subleading in αs. These diagrams are not taken into consideration in

the present calculation. For large Q2, the term proportional to the magnetic form factor dominates

in the cross section. The reduced cross section can then be rewritten as:

σr ≈
Q2

4M2 G2
M

[
1 + 2<

(
δG̃M
GM

)]
(2.18)
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By neglecting the term of order
M2

Q2 , the longitudinal polarization component becomes:

Pl ≈ h
√

1− ε2
[

1− 2ε2

1 + ε
<
(

δF̃3

GM

)]
(2.19)

Under the assumptions that a nucleon of momentum p consists of three collinearly moving quarks

with momenta xi p (with 0 < xi < 1, ∑3
i=1 xi = 1) and that the masses of the quarks and of the

nucleon can be neglected, the amplitude of the process can be written as the following matrix

element:

M = 〈φ(yi) | T(yi, xi) | φ(yi)〉 (2.20)

where T is the hard scattering amplitude at the quark level, φ(xi), and φ(yi) are the initial and final

nucleon spin-flavour-coordinate wave functions, also called the quark distribution amplitudes. It

is clear that the xi’s are the fractions of the nucleon momentum carried by the quarks. The details

of the calculation of the two-photon exchange amplitudes and the parametrization of the wave

functions are given in [36]. The calculations were carried out using different forms of distribution

amplitudes: Chernyack-Ogloblin-Zhitnitsk (COZ) [37], Gari-Stefanis (GS) [38] and heterotic (Het)

[39]. Figure 2.13 shows the ε-dependence of the two-photon exchange amplitude δG̃M at Q2 = 10

GeV2. Both COZ (solid curve) and Het model (dashed curve) give a quasi-linear ε-dependence

except at low and high ε. The amplitude obtained is up to 3.5% of the corresponding Born

amplitude at low ε. Besides slow logarithmic evolution, which is neglected here, this behaviour

was found to be the same for all Q2.
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Figure 2.13: Two-photon exchange amplitude δG̃M/GM versus ε at Q2 = 10 GeV2 in the pQCD
model of D. Borisyuk and A. Kobushkin.

On the contrary, the GS (dashed curve) model gives a larger and strongly non-linear ampli-

tude. It has been shown [40] that for the Rosenbluth plot to remain linear, a linear ε-dependence

of δG̃M is the necessary and sufficient condition. A non-linearity in the Rosenbluth plots [41] has

yet to be observed experimentally, therefore the GS model will no longer be considered here.

Figure 2.14: Two-photon exchange amplitude δG̃M/GM versus Q2 at ε = 0.5 (left) and ε = 0.1
(right) using the pQCD model [36]. The dashed curves display the hadronic calculations: dipole
parametrization in red and [29, 30] in black.

Figure 2.14 displays the two-photon exchange amplitude δG̃M/GM versus Q2 at ε = 0.5 (left
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panel) and ε=0.1 (right panel). The results of the hadronic calculations [34, 42] are also shown.

The red dashed curve corresponds to the dipole parametrization of the form factors and the black

curve to the calculation in [29, 30]. A smooth interpolation between the pQCD and the hadronic

curves is possible especially at low ε. Nevertheless, there is a strong disagreement between these

two calculations for Q2 above 3 GeV2 at ε = 0.5.

Another pQCD based model has been developed by M. Vanderhaeghen and N. Kivel [43] using

the proton distribution amplitude COZ, the BLW [44] parametrization and the Gock08 [45] model

based on recent lattice QCD calculations. Figure 2.15 shows the correction on the proton form fac-

tor ratio predicted by these two models at Q2 = 2.5 GeV2. The dashed line shows the one-photon

exchange expectation, the solid and dotted lines correspond to the COZ and BLW calculations

respectively. The dotted-dashed curve displays the results with the amplitude from the Gock08

model. The data point in the figure is from the JLAB/HALL A experiments [7, 8]. The three

calculations give the same trend for a negative correction which increases for decreasing ε. A

non-linearity arises for low ε. However, the applicability limit, above which the QCD approach is

valid, is represented by a vertical line in the Figure 2.15.

Figure 2.15: Proton form factor ratio as a function of ε at Q2 = 2.5 GeV2 based on proton distri-
bution amplitudes models COZ and BLW.
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2.4 Structure Function Calculation

The model of Bystritskiy et al. [46] aims at giving a high order calculation of the radiative-corrected

(including the two-photon exchange) cross section in both unpolarized and polarized situations.

The calculation is based on the structure function method [13] using a Drell-Yan picture of the

electron. Figure 2.16 displays the results of the unpolarized (left) and polarized (right) cross

section as a function of ε at Q2 = 1, 3 and 5 GeV2 (from top to bottom). In the kinematic range

considered here, the structure function method decreases the slope of the reduced cross section.

Figure 2.16: ε-dependence of the ratio of the unpolarized cross section at Q2 = 1, 3 and 5 GeV2

from top to bottom (left). ε-dependence of the ratio of the polarized cross section, corrected by
the structure function method of Bystritskiy et al. [46], to the corresponding component of the
Born cross section at Q2 = 1, 3 and 5 GeV2 from top to bottom (right). On the left panel, the solid
line represents the Born calculation, the dashed line corresponds to the calculation using only the
structure function, whereas for the dotted line the two-photon exchange contribution is included.
On the right panel, the dotted (dash dotted) lines correspond to the calculation that includes
only the structure functions for the transverse (longitudinal) component of the cross section. The
calculation that includes the two-photon exchange contribution is shown as solid (dashed) line for
the transverse (longitudinal) component.

This effect grows with Q2. Some small non-linearities in the reduced cross section arise at

low and high ε at high Q2. The inclusion of the two-photon exchange effect has little influence on
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Figure 2.17: Q2 dependence of the ratio of the transverse to longitudinal polarization components,
normalized to the Born values for θe = 85◦, 60◦, and 20◦ from top to bottom (left). Q2 dependence
of the proton form factor ratio (right), obtained by the Rosenbluth separation method [4] (squares),
[5] (circles) and, [47] (triangles), using the structure function model of Bystritskiy et al. [46].The
open and solid symbols correspond to the uncorrected and corrected results respectively. The
polarization data [7, 8, 9] are represented with stars.

the result. The same effect is seen in the polarized case (right panel). The ratio of the polarized

cross section to the corresponding component of the Born cross section is plotted. Again, the

TPEX effect is very small. The results for the proton form factor ratio are displayed in Figure

2.17. The left panel shows the ratio of the transverse to longitudinal polarization components,

calculated with the structure method (dashed lines), normalized to the Born values to compensate

the kinematical factor at different values of the electron scattering angle θe = 20◦, 60◦, and 85◦.

The 2γ-correction is very small: at most 1% for Q2 = 10 GeV2. The correction is too small to be

noticed on the graph. The effect of the structure function calculation on the cross section based

data is clearly visible and thus partially solves the discrepancy between the proton form factor

ratio extracted by the Rosenbluth method and the recoil polarization transfer technique.



Chapter 3

Experimental Apparatus

The E04-019 (GEp2γ) experiment was carried out from October 2007 until January 2008, jointly

with the E04-108 (GEpIII) experiment. It took place in the experimental Hall-C of the Thomas

Jefferson National Accelerator Facility (TJNAF, also called JLab), The accelerator consists of an

superconducting recirculation linear electron accelerator (CEBAF) which can accelerate electrons

to energies up to 6 GeV. In this chapter, we will present the experimental setup with descriptions

of the beam line instrumentation and of the detector package specific to the E04-019 and E04-108

experiments.

3.1 The continuous Electron Beam Accelerator

The CEBAF accelerator consists of an injector, two linacs, two recirculation arcs, extraction ele-

ments, which guide and transport the beam into the three different halls, and three beam dumps

(see Figure 3.1). The electrons, produced by photo-emission on a gallium arsenide (GaAS) pho-

tocathode (more details about the production of polarized electrons will be given in the next

section), are injected at 67 MeV and accelerated in the North and South linacs by superconducting

radio-frequency (RF) resonant cavities tuned to 1497 MHz. An RF chopping system "divides" the

beam into bunches so that each hall receives a 499 MHz pulsed beam. After each pass through

both linacs, the energy of the electron increases by 1.14 GeV (570 MeV per linac). As many as

58
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5 successive passes are possible for the total reachable energy of 5.767 GeV at the time of the

GEp(2γ) experiment. The procedure gives some flexibility in the beam delivery to the different

hall. Simultaneously, beams with different energy, polarization and current can be sent to each

hall. Nevertheless, the beam energy can only by a multiple of the energy available after one pass

through the linacs, the total current delivered to the three halls cannot exceed 180 µA and the

polarization is defined by the precession of the electron spin through the recirculating arcs and

transport lines.

Figure 3.1: Cartoon of the CEBAF accelerator.

3.1.1 Polarized electron source

The production of the polarized beam at JLab is based on electron extraction by photoemission

induced by laser light on a GaAs crystal [48]. The circularly polarized photons, emitted by the

laser, of energy just above the gap threshold, will excite electrons from the p-states of the valence

band to the s-states of the conduction band of the GaAs crystal. These electrons will then migrate

through the crystal to the "vacuum" where they can be transported and accelerated through the
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linacs. The whole process is based on the spin-orbit splitting of the valence p-energy levels into

a fourfold degenerate P3/2 and twofold P1/2 levels. The energy gap between these two levels is

∆ = 0.34 eV. For circularly polarized light , the selection rules are ∆mj = ±1 for right (σ+) or

left (σ−) polarization respectively. The different relative transition probabilities (calculated from

the Clebsh-Gordan coefficients), represented by numbers in circle on figure 3.2, between the P-

states and the conduction band S-states are at the origin of the spin polarization. Indeed, for a

σ+ light, the photons will excite preferentially (in a ratio of 3 to 1) electrons with ∆mj = +1. The

theoretically obtainable polarizations are in that case -50% and +50% for σ− light. Furthermore,

one can split the P3/2|j, mj > levels into: |3/2,±3/2 > and |3/2,±1/2 > levels separated by an

energy gap of δ = 0.065eV [49]. So that by choosing an laser energy between Egap and Egap + δ,

one can select the transitions |3/2,±3/2 >→ |1/2,±1/2 > only.

Figure 3.2: GaAs band structure and energy levels.

The degeneracy is lifted by breaking the crystalline symmetry, growing the GaAs crystal on a

GaAsP substrate, which has different lattice constants. The polarization given by:

P =
N+

e − N−
e

N+
e + N−

e
(3.1)
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where N+
e and N−

e are the number of electrons with spin parallel and anti-parallel to the light

direction respectively has a theoretical limit of 100% since one selects a specific transition only.

However, depolarization of the electrons in the conduction band affects this theoretical yield.

The GaAs photocathodes used at JLab, at the time of the experiment, provided a 85% polarized

electron beam.

In order to leave the crystal, electrons need a sufficient energy to overcome the electron affinity

which the potential barrier between the conduction band and the vacuum. Thus for a laser light

of energy between Egap and Egap + δ, the available kinetic energy of the electron after the gap is at

most δ, not enough to exceed the electron affinity which is about 4 eV for a GaAs semiconductor.

In practice, to overcome this problem, one oxydises the conduction band by adding, for example,

a layer of CsF which decreases the electron affinity and even makes it negative so that electrons at

the conduction band are free to leave the crystal to be accelerated.

An important property of a photocathode is its quantum efficiency (QE). This is defined as

ratio of the number of emitted electrons to the number of incident photons. It depends on the

thickness of the crystal; the thicker the crystal, the greater the QE. Nevertheless the larger the

thickness, the lower will be the polarization since electrons will be more likely to interact on their

way out of the crystal. At JLab, superlattice GaAs photocathodes, consisting in thin multi-layered

(few nm) GaAs and GaAsP semiconductors, are used to achieve a QE near 1%.

Three different lasers, one for each experimental hall, allow the delivery of beams with dif-

ferent intensities and polarizations. They are pulsed at the third subharmonic (499 MHz) of the

accelerator. The circularly polarized light is obtained by adding “Pockels" cells on the optical

bench. These cells consist of a birefringent crystal whose refraction indices depend linearly upon

the applied electric field. The phaseshift between the two light components is given by:

φ =
2πn3

0r63

λ
V (3.2)

where n0 is the nominal refraction index of the crystal, V is the applied voltage and r63 is the

electro-optic tensor coupling constant specific of the crystal structure. The Pockels cells at JLab

are used to obtain a polarization reversal; in this experiment the standard 30 Hz reversal rate
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between right and left circular polarization was used. A Wein filter is used to correct for the spin

precession in the magnetic elements of the injector and of the recirculation arcs.

3.1.2 Beam energy Measurement

The beam energy is measured with the Hall-C arc magnets operated in a spectrometer mode [50].

Passing through the magnets, the electrons undergo a Lorentz force which bends their trajectories.

The energy or momentum (by neglecting the electron mass) is written as:

p =
e
θ

∫
Bdl (3.3)

where
∫

Bdl is the magnetic field integral over the path of the beam, e is the electron charge and

θ is the arc bend angle. A precise knowledge of the field map as a function of the current is

required. The precision of this measurement is given by:

δp
p

=

√√√√( δ
∫

Bdl∫
Bdl

)2

+
(

δθ

θ

)2
(3.4)

and is of the order
δp
p
≈ 5 × 10−4. The beam position and angles are measured with the su-

perharps at the entrance and exit of the arc. The superharps are detectors made of 3 tungsten

wires, one oriented horizontally and the other two vertically, that can sweep through the area

where the beam is present. Photons emitted from the interaction between the beam and the wires

are detected by photomultipliers (PMT). Thus the current is recorded as a function of the harp

position. Note that it is not possible to perform a beam energy measurement and take data at the

same time, the calibration is intrusive. Table 3.1 present the different arc energy measurements

performed during the GEp-2γ experiment.
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Day Energy, MeV
11/28/2007 1873.02 ± 1.09
12/11/2007 2847.16 ± 1.19
01/06/2008 3680.23 ± 1.31
01/23/2008 1868.13 ± 1.09
estimated 3549 ± 1.29

Table 3.1: Beam energy measurements performed during the GEp-2γ.

No beam energy measurement was performed for the first part of the highest ε kinematic but

the beam energy was estimated from the beam injector energy and the number of passes.

3.1.3 Beam current Measurement

Two types of detectors are used to measure the beam current in Hall-C. The first one, the Unser, is

a parametric DC transformer which allows non-destructive measurements (i.e one can take data as

well as measuring the current at the same time) and gives absolute value of the current. The Unser

has a very stable and well-known gain but suffers from slow gain drift so it cannot be used as

continuous current monitor. It also has a poor signal to noise ratio. To measure the beam current

continuously two more stable resonant cavities are used: the Beam Current Monitors (BCM).

They are calibrated using the known gain and the measured offset of the Unser and perform a

non destructive measurement of both the beam current and accumulated charge. They consist

of cylindrical wave guides designed so that the 499 MHz structure of the beam resonates in the

1497 MHz (frequency of the RF cavities) TM010 mode. Antennas are placed inside the guide and

convert the RF power of the resonances to an analog voltage signal when the beam passes through

the guide. The resonant frequency is very sensitive to any temperature change, which is why the

BCM are kept in a thermally insulated environment at 43.3◦C.

3.1.4 Beam position Measurement

The position of the beam is known through a non destructive measurement by the Beam Position

Monitor (BPM). The principle of a BPM is very similar to the BCM. It consists of a cylindrical

resonant cavity designed so that its resonant frequency matches the fundamental frequency of
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the accelerator and the Hall-C beam. Inside the cavities, four antennas are placed at 45◦ with

respect to the horizontal and vertical axes to attenuate the synchrotron radiation damage. The

sum over difference signals from opposite (with respect to the beam) antenna, read out by a

sampling Analog to Digital Converter (ADC), are proportional to the distance to the beam. The

measurement is independent of the intensity of the beam since the position is measured from a

ratio of signals. The overall accuracy of beam position measurements is of the order ±1 mm. A

more precise but destructive measurement of the beam position can be performed by using the

superharps as described in the previous beam energy measurement section.

3.1.5 Polarization Measurement

The beam polarization in Hall C is measured with a Möller polarimeter [51]. It is based on the

scattering of polarized electrons off a polarized electron target like magnetized iron, of known

polarization; (~e~e → ee) whose cross section is analytically well-known from QED. In the centrer-

of-mass (c.m.) frame, for a longitudinally polarized beam of polarization P‖b , the cross section is

given by the expression:
dσ

dΩ
=

dσ0

dΩ

(
1 + P‖b P‖t Azz(θ)

)
(3.5)

dσ0

dΩ
is the unpolarized cross section of the same reaction, P‖t is the polarization of the target and

Azz is the analyzing power of the reaction which depends upon the (c.m.) scattering angle θ and

is maximum for θ = 90◦ (Azz = −7/9). The beam polarization is then extracted by measuring the

cross section asymmetry F for parallel (⇒) and anti-parallel (�) beam and target spins:

F =

dσ⇒

dΩ
−

dσ�

dΩ
dσ⇒

dΩ
+

dσ�

dΩ

= |P‖b |P
‖
t ||Azz (3.6)

The target is a foil of pure iron polarized to saturation using a superconducting split-coil solenoid

which applies a 4T field perpendicular to the foil. A 90◦ c.m. scattering angle corresponds to for-

ward scattering at small, opposite and equal angles in the lab frame. The scattered electrons pass

through a pair of quadrupoles, Q1 and Q2, and adjustable collimators (see figure 3.3) for a better

spread, separation and selection of the 90◦ c.m. events. In order to reduce the background coming
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mostly from scatterings on the iron nuclei, both electrons are detected in coincidence by two lead-

glass total absorption shower counters. Using (3.6), the asymmetry in the coincidence counting

rates gives the beam polarization. The Mott polarimeter allows one to measure the beam polar-

ization with a typical <1% statistical uncertainty and with ≈ 1% systematic uncertainty. Since

the beam is used to scatter off a different target than the one used for the experiment, it is clear

that a beam polarization measurement is destructive. Even if the beam polarization cancels out in

the polarization component ratio measured in the experiment described here, it is very important

to perform frequent measurements for the extraction of the longitudinal polarization component.

Table 3.2 presents the different Möller measurements done during the Gep2γ experiment. It also

shows the polarization values obtained from the QE measurements. This value is obtained from

the fit of the "total" polarization at the source (injector) (calulated by correcting the Möller mea-

surements for precession in the linacs and recirculating arcs for different number a paths) as a

function of the QE. We see a clear correlation between QE and the Möller measurement.

PQE = −
(

82.44 + 13.47(QE)− 14.84(QE)2 + 4.40(QE)3
)
∗ spincorr (3.7)
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Figure 3.3: Layout of the Hall C Möller polarimeter.
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Date Ebeam, GeV Wien Angle, ◦ Pol., % QE, % Pol. from QE
11/28/2007 1.873 12.4 -85.14 ± 0.33 1.09 -85.17
11/30/2007 1.873 12.4 -86.21 ± 0.26 0.82 -85.92
12/3/2007 1.873 12.4 -86.38 ± 0.30 0.54 -86.07
12/5/2007 1.873 12.4 -85.65 ± 0.32 0.45 -85.89

12/11/2007 2.847 86.0 -83.22 ± 0.27 0.17 -82.85
12/12/2007 2.847 86.0 -82.04 ± 0.30 0.11 -82.34
12/12/2007 2.847 86.0 -84.12 ± 0.26 0.84 -84.41
12/14/2007 2.847 86.0 -84.09 ± 0.33 0.31 -83.82
12/16/2007 2.847 86.0 -84.03 ± 0.31 0.31 -83.82
12/16/2007 2.847 86.0 -84.82 ± 0.26 0.61 -84.64
12/18/2007 3.548 6.2 85.83 ± 0.29 0.45 85.91

1/6/2008 3.680 14.8 -85.41 ± 0.29 0.85 -85.68
1/9/2008 3.680 14.8 -85.71 ± 0.31 0.37 -85.40

1/11/2008 3.680 14.8 -84.20 ± 0.26 0.25 -84.75
1/18/2008 1.868 64.0 -86.16 ± 0.28 0.83 -85.88
1/21/2008 1.868 64.0 -85.69 ± 0.26 0.61 -86.09
1/23/2008 1.868 64.0 -84.85 ± 0.27 0.34 -85.43
1/23/2008 1.868 64.0 -85.92 ± 0.32 0.40 -85.68

Table 3.2: Möller measurements of the beam polarization during the Gep2γ experiment.

3.2 The Hall-C cryogenic target

In experiment E04-109, the standard Hall-C target ladder, placed in a cylindrical vacuum scattering

chamber, was used. It consists of several different solid targets and a three loop cryogenic target

system which can be raised or lowered to place the desired target in the beam path. The scattering

chamber is directly connected to the beam line and has thin aluminium windows for the scattered

particles to exit the chamber. A 20 cm liquid hydrogen target connected to a recirculating hydrogen

loop was used during the production runs. A 60 Hz fan circulated the liquid hydrogen through

the loop. A heat exchanger, operating with 14K helium, cools the cryogen (hydrogen) to the

temperature of 19 K. A Joule-Thompson valve is used to control the helium flow. In order to

compensate for fluctuations of the beam power deposition in the target, a high-power heater is

used to regulate and maintain the temperature of the cryogen through the loop at 19K. Additional

low-power heaters are used for correcting small changes in temperature due to small fluctuations

in beam current. Due to the small spot size (<100 µm) and high intensity currents, typically
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≈ 85µA for this experiment, the target windows could undergo serious damages and the liquid

target might start boiling, resulting in significant fluctuation of the density. To avoid this situation

and spread out the heat over the target, the beam is steered to a transverse size of 2× 2 mm2 by

a fast raster system [52] (see Figure 3.4). The raster consists of two sets of dipole magnets, one for

the horizontal direction and the other for the vertical direction. They are located 25 m upstreams

from the target.

Figure 3.4: Beam raster pattern during the E04-109 experiment.

A number of multi-foil solid targets were used to perform optics calibration of the detector.

The z positions of the foils were: z = 0 ± 7.5 cm, z = ± 2 cm and z = ± 3.8 cm for the three-foil

Aluminium target, two-foil Carbon target and the two-foil Aluminium target, respectively. A 20

cm dummy target, made of two Aluminium foils at z = 3.84 ± 10 cm, was used to determine the

background contribution of the target walls and to perform optics calibrations [53].

3.3 The detector package

In this experiment, the scattered electrons were detected by the new, large acceptance electromag-

netic calorimeter (BigCal) located on the left of the beam. The scattered protons were detected in a

superconducting magnetic spectrometer: the High Momentum Spectrometer (HMS). A new focal

plane polarimeter (FPP) was built to measure the polarization of the proton. The FPP is housed
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inside the HMS shielded concrete detector hut. Another detector, which was not used here, is also

located in Hall C: the Short Orbit Spectrometer (SOS). spectrometer is made for detecting particles

with momentum < 2 GeV/c. The SOS can be used either Figure 3.5 shows a cartoon of the layout

of Jlab Hall C. In this section, we will describe and give the characteristics and performances of

the different detectors used during the GEp2γ experiment.

SOS

Target

FPP

HMS

Big 
Cal

Figure 3.5: Layout of the Jlab HallC during the E04-109 experiment.

3.3.1 High Momentum Spectrometer (HMS)

The High Momentum Spectrometer (HMS) [54] consists of a QQQD magnetic system and concrete

hut, where a set a detectors are located and used to track and identify the charged particles coming

from the target. The hut and the magnets are supported on different carriages. However, the

whole structure, mounted on a pair of concentric rails, can rotate around a rigid central bearing to

the desired angle. During the experiment, the HMS magnetic system operated in a point-to-point

tune.
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Figure 3.6: Side view of the HMS.

Magnets

The three quadrupoles and the dipole of the HMS are all superconducting magnets and are cooled

with a 4K liquid Helium cryogen supplied by the End Station Refrigirator (ESR). The acceptance

of the HMS is determined by the quadrupoles whereas the dipole sets its central momentum.

The quadrupoles are labeled Q1, Q2 and Q3. Q1 and Q3 focus in the dispersive direction and

Q2 focuses in the non-dispersive (transverse) direction. The properties of the HMS quadrupole

system are given in Table 3.3.

Length (cm) Pole Rad. (cm) Warm Rad. (cm) Pole Field (T) Gradient (G/cm)
Q1 189 25 22 1.5 605

Q2 /Q3 210 35 30 1.56 445

Table 3.3: Properties of the HMS quadrupole system.

The dipole, which deflects the charged particle vertically into the hut, has a central bending

angle of 25◦ and flat poles with an edge focusing effect due the 6◦ inclination of the pole face

with respect to the normal of the central ray. The dipole field is regulated by a Nuclear Magnetic

Resonance (NMR) probe, while the quadrupole magnetic fields are monitored by current. The

basic parameter of the HMS dipole are given in Table 3.4.
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Length (cm) Gap (cm) Pole face rotation Max. Pole Tip Field (T) Bend angle
526 42.1 +6◦, -6◦ 1.66 25◦

Table 3.4: Parameters of the HMS dipole.

During the experiment, for an HMS central momentum of 2.0676 GeV/c, the magnets were

set at: 269.31 A, 214.36 A, 104.34 A and 0.56830 T for Q1, Q2, Q3 and the dipole, respectively.

Collimators

A set of three collimators, mounted at the entrance of Q1, are available in the HMS for distinct

purposes. Two octagonal collimators (a large and a small one), made of machinable Tungsten

with 10% CuNi, are used to prevent particle loss in the magnets and thus to shape the HMS solid

angle acceptance. The larger one of the collimators was used during the experiment. The other

type, the Sieve slit collimator, is used for the HMS optics calibration of the different magnetic

elements. It consist of a grid of small holes of 0.508 cm in diameter (the central sieve hole is 0.254

cm in diameter) spaced by 2.54 cm in the vertical direction and 1.524 in the horizontal direction.

Two holes are missing on the plate to check its orientation. The performances of the HMS are

summarized in Table 3.5.

Max. Central Momentum (Gev/c) 7.4
Momentum Bite, (pmax − pmin)/p0 18%

Momentum Resolution, δp/p < 0.1%
Solid Angle Acceptance (msr) 6.74

In plane scattering angle resolution (mrad) 0.8
Out of plane scattering angle resolution (mrad) 1.0
Useful target length from the spectrometer (cm) 10

Table 3.5: Performance of the HMS.

The detector package

The different elements used for detecting, tracking, and identifying the scattered particles are

shown in figure 3.7. The standard HMS detector package is a compound of a pair of drift cham-

bers to track the charged particles, gas and aerogel (not shown in the figure) Cerenkov detectors
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for particle identification, four planes of scintillator hodoscopes (S1X, S1Y, S2X and S2Y) for trig-

gering and timing and a lead glass calorimeter for energy information as well as further particle

identification. In the GEp(2γ) experiment, the Cerenkov detector and the S2X and S2Y scintillator

plane needed to be removed in order to install the new FPP. An additional scintillator, named S0,

was placed in front of the drift chambers to form the HMS trigger with the remaining hodoscope

planes.

Figure 3.7: Side view of the standard HMS detector package.

The HMS drift chambers

The drift chambers are gas (or gas mixture) filled detectors. A basic drift chamber consists of

an anode plane made of regularly spaced thin wires (sense wires) between two cathode planes.

A high voltage is applied between the cathode and anode wires. In order to make the field

more uniform, other wires, called field wires, are placed between each sense wire to define an

elementary cell (a sense wire surrounded by cathode and field wires). The motion of a charged

particle passing through the gas will produce a primary ionization. The ejected electron-ion pairs

drift towards the sense wire due to the electric field. In the vicinity of the sense wire where the

electric field gradient becomes very high, electrons have enough energy to create a second and a

third etc. ionization which lead to a multiplicative avalanche and then a detectable and recordable

signal on the sense wire. Measuring the elapsed time (drift time) between the trigger and the

avalanche allows one to determine the distance between the particle track and the sense wire with
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a typical resolution of 100 µm. The spatial and angular coordinates of the particle track can be

obtained by adding several planes of detection in a row.

The HMS drift chambers consist of 6 parallel planes of wires arranged in order X,Y,U,V,Y’ and

X’ spaced apart by 1.8 cm. The dimensions of the elementary HMS drift chamber cell are 1.0 cm

(horizontal) × 0.8 cm (in the direction of motion of the particle). The sense wires are connected

to the ground while the field and cathode wires are kept to a negative high voltage. The X (X’)

planes give information in the dispersive direction (vertical), the Y (Y’) planes give information in

the non dispersive direction (horizontal), and the U and V plane are rotated by ± 15◦ with respect

to the X and X’ plane. A schematic view of the HMS drift chambers is shown in figure 3.8.

Figure 3.8: Schematic of the HMS drift chambers.

The gas used in the chambers is a mixture of Argon and Ethane 50%/50% bubbled through

isopropyl alcohol, resulting in a 1% doping. Argon is a good avalanche starter whereas Ethane

quenches the avalanche to prevent a continuous discharge on the sense wire. Ionized Ethane

fragments can form a polymer which agglomerates on the different wires and affects the cham-

ber performances over time. The addition of alcohol helps to delay the polymer formation and

improve the lifetime of the chambers.

LRS 2735 and Nanometrics N-227 amplifier/discriminator cards are used to read out the
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signal on the sense wires. The signal is transmitted to multi-hit Lecroy 1877 fastbus TDC modules

where a stop signal is generated.

The hodoscopes

In the HMS standard configuration, the triggering and timing informations based on the time of

flight calculation, are given by 4 planes, S1X, S1Y, S2X and S2Y, of scintillator hodoscopes. The

scintillators are made of BC-404 plastic which emits light when a charged particle passes through.

The X paddles are 75.5 cm long, the Y paddles are 120.5 cm long. All are 8 cm wide and 1

cm thick. The scintillation light propagates through the material by total internal reflection to

Photonis XP2262 photomultipliers (PMTs) located at both ends of the paddles. The paddle and

the PMTs are coupled by UVT lucite light guide. In order to avoid light "leaks", each paddle and

lightguide is wrapped in a layer of aluminized Mylar and then covered with a layer of Tedlar to

ensure a good light-tightness. Once the light reaches the photo-cathode of the PMT, electrons will

be emitted by the photoelectric effect and a series of dynodes will increase the number of electrons

and thus amplify the electric signal. The HMS hodoscope time resolution is about 0.3 ns.

In the GEp2γ experiment, the S2 planes had to be removed to make room for the proton

polarimeter. The S1 paddles then were used only to define the trigger and give the start time

for the HMS drift time determination. The S1X and S1Y planes being very close together, would

not create an efficient trigger by themselves, as they do not restrict the tracks that go through the

HMS chambers. Furthermore, the trigger rate, even in coincidence with the electron trigger, would

exceed the capabilities of the data acquisition system. Consequently, a new scintillator paddle ,

called "S0", was built to create a coincidence trigger with the S1 plane. It was located right before

the first HMS drift chamber. Its dimensions are 30.5 cm × 38cm × 1 cm. It is composed of two

paddles, named "S0X1" and "S0X2". Each paddle is coupled to two XP2020 PMTs with bars of

wavelength-shifter which degrades significantly the timing resolution. As a result, the S1 signal,

delayed relative to the S0 signal, was used to form the S0-S1 coincidence trigger. S0X2 was located

to detect the elastically scattered proton, and thus centered on the optical axis of the spectrometer.

S0X1 catches the events of the radiative tail and inelastic events.

A copy of each of the S1 and S0 signals was sent to charge integrating LeCroy 1881M fastBus
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Analog to Digital Converters (ADC) to measure the integral of the pulse. The other copy was

discriminated through leading-edge discriminators and sent to VME scalers and TDCs for timing

information.

If S0 improves the triggering rate, being located before the HMS chambers, it unfortunately

affects the angular resolution of the HMS due multiple scattering in its 1 cm thickness. At a Q2

of 2.5 GeV2 and a proton momentum p = 2.0676 GeV/c, the width of the angular distribution of

multiple scattering in the 1 cm thick scintillator plastic is θ ≈ 1 mrad. This induces a smearing in

the angular resolution of 2.9 mrad in the vertical direction and 2.6 mrad in the horizontal direction,

as obtained by a convolution of the first order coefficients of the HMS transport matrix (which will

be described in section 4.3.2) and the width of the angular distribution of multiple scattering.

3.3.2 Focal Plane Polarimeter (FPP)

The new Focal Plane Polarimeter (FPP), located in the HMS hut in place of the Cerenkov detector

and the S2 scintillator hodoscope planes, measures the polarization of the recoil proton. It consists

of two CH2 analyzer blocks mounted in series (to increase the efficiency) each followed by a pair of

drift chambers. Before going further into technical details about the polarimeter, it is appropriate

to explain the principle of a proton polarimetry measurement.

Proton Polarimetry principle

The polarization measurement takes advantage of the spin orbit coupling (~L · ~S) in the scattering

of polarized protons off an analyzer nuclei which induces an azimuthal asymmetry in the angular

distribution of the scattered protons. Figure 3.9 shows the special case where the polarized proton,

with its spin ~Sx along the x axis, has an angular momentum~L along the +x or −x axis depending

on whether it scattered on the left or right off the CH2 analyser nucleus at fixed impact parameter.

The spin orbit coupling~L ·~S then will be of opposite sign for these two cases inducing an attractive

potential on one side and a repulsive one on the other side. Setting that~L · ~S > 0 gives a repulsive

potential, there will be more protons scattered on the left than on the right. Having more protons

with spin along the x direction than in the opposite direction will lead to a left-right asymmetry in

the azimuthal angular distribution. In practice, of course only one state of polarization of the beam



76

is available at a time. As the beam polarization is never 100%, we measure the asymmetry between

the polarized proton and the remaining unpolarized protons. However, by flipping the helicity of

the beam and taking the difference between the two angular distributions the contribution of the

unpolarized protons is removed.

y

Sx p

x

Figure 3.9: Schematic of a polarized proton scattering off an CH2 analyzer nucleus.

An easy way to understand the asymmetry process is to look at the probability vector ~P on

Figure 3.9 with its origin at 0. Its magnitude represents the probability for the polarized proton to

scatter at an angle ϕ. In the unpolarized case, as there is no asymmetry, all the angles are equally

likely, the tip of ~P would lie on a circle (the green circle in the figure) of radius |~ρ| = 1 versus

ϕ. Now, considering a left-right asymmetry due to the spin-orbit coupling, the tip of ~P lies on

another circle (dotted red) shifted to the left by an amount proportional to ~L · ~S. We see that its

magnitude is larger in the left half than in the right half. So the protons would more likely scatter

with an angle ϕ between 0 and π. This shows why a left-right asymmetry leads to a continuous

azimuthal angular asymmetry. Figure 3.10 shows the evolution of the probability to scatter at an

angle ϕ relative to the unpolarized case given by |~P|−|~ρ||
|~ρ||

= |~P| − 1 as a function of ϕ when the

tip of ~P moves from the points 1 to 4. Points 2 and 4 are the points where the asymmetry is

maximum. Points 1 and 3 is where the probabilities in the polarized and unpolarized case are
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identical (intersection of the green and red dotted circles), |~P| − 1 = 0 and there is no asymmetry.

1
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Figure 3.10: Evolution of |~P| − 1 vs ϕ.

In general, for an incident proton propagating along the arbitrary direction of vector ~k, with

transverse polarization ~Π = Sx x̂ + Syŷ, the azimuthal angular distribution of the yield I of scat-

tered protons is given by:

I = I0

(
1 + Ay(p, ϑ)~Π · n̂

)
(3.8)

where I0 is the unpolarized yield, n̂ is the unit vector normal to the scattering plane defined as

n̂ = k̂× k̂′/|k̂× k̂′|, with k (k′) the unit vector in the direction of the incident (scattered) proton. The

quantity Ay(p, ϑ), which depends upon the incident proton momentum prior to the interaction

and the polar scattering angle ϑ, is the CH2 analyzing power. From equation 3.8, we can see that

Ay is the "size" of the asymmetry, described by ~Π · n̂, relative to the unpolarized case for 100%

polarization. The polar and azimuthal angles are defined by:

sin ϑ = |k̂× k̂′|, sin ϕ = −x̂ · n̂, cos ϕ = ŷ · n̂ (3.9)

From these definitions, the angular probability distribution of scattered protons is given by:

f (p, ϑ, ϕ) =
ε(p, ϑ)

2π

(
1 + Ay(p, ϑ)Sy cos ϕ− Ay(p, ϑ)Sx sin ϕ

)
(3.10)
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with ε(p, ϑ) the efficiency off the polarimeter which describes the proportionality of the scattered

protons relative to the incident protons. The factor 1/2π comes from the normalization of the

probability f .

The analyzing power is an important quantity because it defines the performance of the polarime-

ter through the figure of merit F given by:

F 2 =
∫
θ

dε

dθ
A2

y(θ)dθ (3.11)

with dε/dθ the differential efficiency of the process, defined as the number of "good" scattered

particles relative to the total number of incident particles N0. The figure of merit enters directly

in the statistical uncertainty of a measurement of the polarization ∆P given by:

∆P =

√
2

N0F 2 (3.12)

From this expression we see that for a given number of incident particles the choice of material

is important. A material with high analyzing power will reduce the statistical uncertainty more

than a low analyzing power material. Consequently, the running time of the experiment will also

be reduced.

Analyzer

The FPP analyzer is made, as mentioned above, of polyethylene (CH2). It consists of two re-

tractable doors each made of two blocks, allowing the data taking of straight through trajectories

for calibration and alignment studies of the FPP. Each block pair is 145 cm (tall)× 111 cm (wide)×

55 cm (thick) and made of several layers of CH2 held together by an outer aluminium frame. To

reduce the occurrence of leakage through the seam when the doors are inserted, an overlapping

step was designed into the edge; and being significantly heavy, the blocks are supported on a dif-

ferent frame than the detector and attached directly to the floor of the shield house. This ensures

that while inserting the doors the other detectors do not move. The doors can be inserted and

retracted by a hand crank mechanism installed in the HMS hut.
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The choice of CH2 as the analyzer material is a compromise between best analyzing power, cost

and a system that could fit in the confined space of the HMS hut. Even if hydrogen would be

the perfect candidate in term of analyzing power, it is evident that it is the worst when it comes

to safety. Furthermore, an experiment carried in Dubna, Russia [55], aiming at measuring the

analyzing power of the reaction ~p + CH2 → one charged particle + X at proton momenta up to

5.3 GeV/c revealed two important features: the CH2 analyzing power is larger than the one in

carbon; increasing the target thickness above the nuclear collision length (56.1 g/cm2 for the CH2)

and the polarimeter acceptance in pT ≡ p sin θ above 0.7 GeV/c does not improve significantly the

figure of merit. pT is called the transverse momentum, p is the proton momentum corrected for

energy loss up to the interaction point in the material, θ is the scattering angle. These arguments

lead to the actual design of the FPP analyzer.

FPP drift chambers

The tracking system of the FPP consists of two drift chamber pairs, one after each analyzer block.

They were made by the team of Y. Zanevsky at the Joint Institute for Nuclear Research (JINR) in

Dubna, Russia. The active area of the chamber is 164 cm (tall) × 132 cm (wide). Each chamber

contains three detection planes sandwiched and interspersed with cathode layers, with outer 30

µm thick aluminized mylar windows for the gas-tightness of the chambers and an outermost

aluminium frame on either side to ensure the mechanical rigidity of the whole system. A field

wire is positioned between each sense wire (spaced 2 cm apart from each other). The cathode

wires, spaced 0.3 cm apart, are located at 0.8 cm in front of and behind (in the transverse direction

of the chambers) the sense and field wire layer. The characteristics of the different wire are given

in table 3.6.

Material Diameter (µm) Tension (g)
Sense gold plated Tungsten 30 70
Field Beryllium-Bronze alloy 100 150

Cathode Beryllium-Bronze alloy 80 120

Table 3.6: Characteristics of the wires used in the FPP drift chambers.

The dimension of the resulting FPP drift chamber elementary cell are 1.6 cm (tall) × 2.0 cm (wide)
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as shown on figure 3.11. The three layers of detection of a chamber have different orientation:

+45◦, 0◦ and -45◦ relative to the x axis which points down. The ±45◦ layers have 104 sense wires

each, the 0◦ layer has 83 wires. The same order is repeated for all chambers, which are identical.

The 50%/50% Argon-Ethane gas mixture used to fill the chambers is supplied by the same system

as for the HMS. A high voltage of 2400V was applied on cathode and field wires; the sense wires

were at ground potential.

100 μm

30 μm

80 μm

2 cm 

1.6 cm 

Sense wire

Cathode layer

Field wire

Proton

Figure 3.11: Schematic of an elementary cell of the FPP drift chambers. The dimensions are not to
scale.

The readout system consists in amplifier/read-out cards, manufactured in Dubna, Russia, at-

tached to the left and right sides of the chambers with special connectors. Each card connects to 8

sense wires and they output ECL logic signal. The signals are transmitted via a standard 34-pair

ribbon cable (with two cards per cable) to VME-based F1 TDC modules which measure the event

time. A design drawing of the FPP with the HMS drift chambers and the trigger planes is shown

on figure 3.12.

3.3.3 Electromagnetic Calorimeter (BigCal)

A new electromagnetic calorimeter (BigCal) was designed and built to help the separation of “ep"

elastic events from the inelastic background, by detecting the electron in coincidence with the
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Figure 3.12: Design drawing of the FPP with the HMS drift chambers and the trigger planes.

scattered proton and determining the shower coordinates of the electron.

BigCal is made of a total of 1744 TF0-1 lead glass bars split into two different part as shown

in figure 3.13. The bottom part is composed of 1024 lead glass blocks of dimensions 3.8 × 3.8 ×

45 cm3, stacked in an array of 32 × 32, coming from the Institute for High Energy Physics (IHEP)

in Protvino, Russia. The 720 blocks of the upper part have different dimensions: 4 × 4 × 40 cm3

and are stacked in a 30 (horizontal) × 24 (vertical) array. They were made at the Yerevan Physics

Institute, Armenia and were previously used in the Real Compton Scattering (RCS) experiment

in Jlab Hall A. The whole calorimeter block array has then 56 rows and 32(30) columns for the

bottom (upper) part, respectively, resulting in an active area of approximately 122 × 218 cm2

The main characteristics of the TF0-1 glass are given in table 3.7. The glass stack is placed in a

frame attached to the BigCal platform. The total weight of the glass is about 4300 kg. Each bar

is individually wrapped in a thin aluminized mylar sheet and connected to a 12-stage, venetian

blind Russian FEU-84 PMT through a 5 mm thick Si-pad (called a "cookie"). PMTs and cookies are
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Figure 3.13: The 1744 lead-glass bars of BigCal ordered in several groups (in colors) for the trigger.

attached to a 2" thick aluminium adjustable cross bar. Each bar supports 4 rows of PMTs. In the

upper part of the calorimeter each then supports 120 PMTs, while in the lower part, a bar holds

128 PMTs.

Density, ρ (g.cm−3) 3.86
Index of refraction, n 1.6522

Radiation length, X0 (g.cm−2) 2.74
Nuclear absorption length, (cm) 22

Table 3.7: Main characteristics of the TF0-1 glass.

An electron hitting the lead glass surface of the calorimeter produces an electromagnetic cascade:

the primary electron losing energy in the glass produces Bremsstrahlung photons. Those photons

then produce electron-positron pairs which in turn produce other photons and so on, until the

primary electron and the secondary pair-produced particles lose enough energy to reach the crit-

ical energy. After what, they will mainly lose energy by ionization and then will get absorbed.

The incident and secondary electrons, moving faster than the lead-glass speed of light c/n, with
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n the refraction index given in Table 3.7, emit Cerenkov light in the glass, which is collected and

transformed into an electric signal by the PMTs, sent into Lecroy 1881M Fastbus ADCs.

An LED and lucite system is located in front of the glass bars. This system consists of a 0.5-inch-

thick aluminium plate drilled with 1744 0.25-inch-diameter holes to let the light, coming from

a 0.5-inch-thick lucite plate, go through the lead glass bars. The light is generated by an LED

and propagates through optic fibres coupled to the lucite plate. This LED system was, of course,

turned off during the production runs. Instead, it was used to perform rough calibrations mainly

during the test phase in the Testlab. In order to protect the glass bars from low energy photons,

a series of four 1-inch-thick aluminium plates could be placed at the very front of the calorimeter.

All four plates were used during the experiment, except at the lowest energy point where only

one was in place.

An extensive GEANT Monte Carlo simulation performed at Protvino estimated the coordinate

resolution of BigCal to be dx ≈ 0.54 cm/
√

E′e with E′e the energy of the scattered electron in

GeV. The simulation takes into consideration the features of the photocathodes of the PMTs, the

coefficient of reflection of the Mylar sheet used to wrap the bars, the lead glass absorption length

and refraction index and the plates of material in front of the glass. The scattering of the electrons

in air during their travel from the target to BigCal was not included in the simulation. The angular

resolution is the result of two contributions. There is of course a contribution coming from the

shower coordinate resolution but also a contribution from the fact that the target is extended. To

the shower coordinate given above corresponds an angular resolution of 0.7 to 2.3 mrad for the

different kinematics of the GEp(2γ) experiment. Despite the absorber in the front, the lead-glass

suffered from serious radiation damage over time, that altered significantly the energy resolution,

but only slightly the position resolution. At the beginning of the experiment, the energy resolution

was ≈ 10%/
√

E. At the end it decreased to ≈ 20%/
√

E. The presence of the absorber has also a

non-negligible effect on the energy resolution.
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3.4 Electronics and Trigger Set-up

The main data acquisition system was located on a platform in the hall, shielded from radiation by

a concrete bunker. The BigCal trigger and the main trigger were created on this platform whereas

the HMS trigger was formed inside the HMS hut.

3.4.1 BigCal trigger

The generation of the BigCal trigger comes from a succession of three summing levels. The signal

from the 1744 PMTs are fed to 224 NIM summing modules each with 8 inputs and 4 outputs.

The summing modules perform two tasks with the 8 inputs. One task is to amplify the individual

inputs by a factor 4.2 and outpout the individual signals sent to 28 LeCroy 19881M ADC modules.

The second task is to sum the 8 signals and produce 4 summed output signals.

The first level trigger consists of the analog sum of eight signals, discriminated (corresponding

to a group of 8 blocks in the same row) and sent to 3 Lecroy 1877 TDC modules of 224 channels

each. Another output (sum of eight) of each NIM module is sent to another bank of identical

modules.

The second level trigger is formed from 38 sums of 64 signals used to define the BigCal trigger.

The calorimeter is divided as follows: into 2 parts horizontally, each part being a compound of 19

overlapping groups of 4 rows and 16 columns. In figure 3.13, the sum of 64 are shown by color

groups overlapping each other vertically by one row (starting from the bottom). The 38 output

signals are represented by 19 black and 19 blue squares for the left and right part respectively.

This vertical overlapped pattern is used to increase the trigger efficiency. Indeed, without this

overlap, if a shower is created at the border of two rows, half of its energy will be deposited in the

upper row and the other half in the lower row. As a consequence, if the BigCal trigger threshold

was set to about the full shower energy, the later event would be lost. The overlapping pattern

allows then to increase the trigger threshold without significant loss in efficiency.

Finally, the sum of 64 signals are sent to 4 discriminator modules (one for each quarter of

BigCal), each with a remotely adjustable threshold and 16 inputs, creating the third and last trigger

level. The 4 logical outpouts of the discriminator are sent to 4 Fanin/Fanout NIM units, where
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a final logical OR on all the 38 second level sums is applied. So any signals above the threshold

coming from any quarters of BigCal is sufficient to generate a trigger.

3.4.2 HMS trigger

The HMS trigger consists of the coincidence between the S1 HMS trigger signal and either one of

the two signals coming from the two S0 paddles (figure 3.14). A S1 trigger is generated when both

the X and Y planes give a signal. For each plan, this requires both PMTs in at least one scintillator

paddle to fire. The S0 trigger is generated when both PMTs of either the S0X1, or the S0X2 paddle

fire. Two different trigger signals could then be generated: HMS1(2) which are the coincidence

signals between the S1 trigger and the S0X1(2) paddle respectively. Having two different triggers
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Figure 3.14: Schematic of the HMS trigger.

allows us to prescale them independently. The S0 detector was designed and placed in the HMS

hut so that the elastic event distribution for most of the kinematics would fit in one paddle. So for

a high rate kinematic, like the lowest energy one in this experiment, one paddle (S0X2) triggers

mainly on the elastic events, while the other triggers mainly on the inelastic events. The two

paddles being prescaled separately, this improves the trigger rate. The discriminators used to

build the HMS trigger had a fixed 40 mV threshold and a 30 ns output pulse width.
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3.4.3 Main coincidence trigger

From the two HMS triggers and the single BigCal trigger, five different triggers were available:

HMS1, HMS2, BigCal and the coincidence triggers HMS1 & BigCal = COIN1, HMS2 & BigCal =

COIN2. The timing, at all times, was set by the HMS signals arriving last and the BigCal trigger

arriving first. All these five triggers were sent to the trigger supervisor and could be prescaled

separately, which is very handy to prevent the data acquisition system from being overwhelmed

by too high rates. The COIN2 trigger corresponds to the S0X2 paddle, where almost all the

elastic events are originating from; it was always prescaled with a factor of 1. Depending on the

kinematic COIN1 was prescaled by a factor 1 to 10. The BigCal trigger was always prescaled by a

large factor due to its very high raw rate. A schematic of the trigger is shown in figure 3.15.

AND
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HMS1
Trigger

HMS2
Trigger

Trigger
Supervisor

COIN1 Trigger

COIN2 Trigger

BigCal
Trigger

Figure 3.15: Schematic of the main coincidence trigger.



Chapter 4

Data Analysis Part One: Tracking,

Reconstruction and Event Selection

In this chapter, we will describe and explain the data analysis process which leads to the polariza-

tion component ratio. We will first dwell on the event reconstruction in the HMS and in the FPP.

Then in a second step the separation of the elastic events from the inelastic background will be

detailed. In the third and last step, we will explain the extraction of the polarization components

through the spin transport calculation. Before doing so, it is appropriate to present the different

kinematics of the GEp(2γ) experiment.

4.1 Kinematics

The goal of the GEp(2γ) experiment was to search for a possible kinematical dependence in elastic

~ep scattering of the proton polarization component ratio R ≡ −µp

√
τ(1+ε)

2ε

Pt

Pl
and of the ratio of

the longitudinal polarization component to its Born value P`/PBorn
` . Three values of ε were chosen:

0.152, 0.635 and 0.785. Looking at the theoretical models (which predict a bigger effect at small

ε) one might wonder why two points at high ε were chosen. These choices were driven by the

beam time allowed: the cross section dropping by a factor 20 going from ε = 0.785 to 0.152,

replacing the middle ε point by a smaller one would have required much more beam time. These

87
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choices were also constrained by the available beam energy: as other experiments were running

in Hall A and B, only certain energies were available, thereby restricting the choice in ε since the

proton momentum was fixed (p0=2.0676 GeV/c). These compromises and constraints lead to the

kinematic table 4.1:

Ee, GeV E′e, GeV pp, GeV/c θe, ◦ θp, ◦ ε

1.875 0.543 2.0676 105.16 14.495 0.152
1.868 0.536 2.0676 105.08 14.495 0.152
2.848 1.516 2.0676 44.9 30.985 0.635
3.549 2.207 2.0676 32.579 35.395 0.773
3.680 2.348 2.0676 30.778 36.105 0.791

Table 4.1: Kinematic Table of the GEp-2γ experiment, with Ee the beam electron energy, E′e the
scattered elastic electron energy, pp the proton momentum, θe the electron scattering angle (BigCal
angle) and θp the scattered proton angle (spectrometer (HMS) angle).

Before presenting the calculation of some kinematic expressions of two-body elastic scattering,

we need to present the main coordinate systems used during the experiment. In the Hall-C

coordinate system the z-axis is along the beam direction with the x-axis pointing left when looking

downstream. The y-axis then points up so that the Hall-C system is right-handed. In the right-

handed BigCal system, the zcal-axis is along the scattered electron direction. The xcal and ycal point

left and up when looking downstream, respectively. In the right-handed focal plane systems, the

z-axis is along the direction of motion of the recoil proton. Looking downstream x f p (y f p) point

down (left) in the focal system. The azimuthal scattering angle ϕFPP is defined from positive x to

positive y (clockwise). Figure 4.1 presents the different coordinate systems.

It is now appropriate to derive the useful expressions of two-body elastic scattering. We first

consider an electron moving along the z direction which scatters in the xz plane off a proton

at rest. After the scattering, the electron and the proton are at angles θe and θp with respect to

the z-axis, respectively. Neglecting the electron mass, the four-vectors of the incident (scattered)
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Figure 4.1: Coordinate systems used during the GEp2γ experiment.

electron kµ (k′µ) and of the rest (scattered) proton pµ(p′µ) are given in the lab frame by:

~kµ =



Ee

0

0

Ee


, ~k′

µ
=



E′e

E′e sin θe

0

E′e cos θe



~pµ =



M

0

0

0


, ~p′

µ
=



E′p

−pp sin θp

0

pp cos θp


with pp the scattered proton momentum and M its mass. The conservation of energy gives:

Ee + M = E′e + E′p ⇒ E′e = Ee + M +
√

p2
p + M2 (4.1)
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The momentum conservation is given by:

along x: 0 = E′e sin θe − pp sin θp ⇒ E′2e sin2 θe = p2
p sin2 θp (4.2)

along y: 0 = 0 (4.3)

along z: Ee = E′e cos θe + pp cos θp (4.4)

Extracting E′2e sin2 θe from 4.4 and plugging it into 4.2 it follows that:

E′2e − p2
p sin2 θp =

(
Ee − pp cos θp

)2 (4.5)

Using 4.1 to replace E′2e , we obtain:

(Ee + M)
√

p2
p + M2 = M (Ee + M) + Ee pp cos θp (4.6)

Taking the square of this expression and solving for pp we finally get:

pp =
2Ee M(Ee + M) cos θp

M2 + 2Ee M + E2
e sin2 θp

(4.7)

This relation gives the proton momentum as a function of the beam energy and the scattered

proton angle. The momentum transfer squared Q2 is given by:

Q2 = 2k · k′ = 2M
√

p2
p + M2 = 2EeE′e (1− cos θe) = 4EeE′e sin2 θe

2
(4.8)

The different quantities derived above allow one to calculate the Jacobian of the reaction and

thus the distance from the target at which the calorimeter needs to be located in order to have

a matching acceptance between the electron and proton arms. The Jacobian J of the elastic

electron-proton scattering is defined as the ratio of the electron solid-angle dΩe (= sin θedθedφe) to

the proton solid-angle dΩp (= sin θpdθpdφp) with φp(φe) the electron(proton) azimuthal angle:

J ≡ dΩe

dΩp
(4.9)
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It can be shown that the Jacobian is given by the expression:

J =
p2

p

E′2e

∣∣∣∣∣∣∣
cos θp tan θp sin θp − sin2 θp

ppEe
M(Ee+M)

cos θe − E′e
M sin2 θe

∣∣∣∣∣∣∣ (4.10)

The proton solid-angle is known and defined by the HMS acceptance: ∆Ωp = 6.74 msr. The

distance from the target to the calorimeter d is given by:

d =

√
A

∆Ωe
(4.11)

with A (= 122 × 218 cm2) the lead-glass area of the calorimeter. The distance calculated with

Eq. 4.11 and the actual distance at which the calorimeter was located during the experiment were

different due to physical obstacles in the hall such as the rail of the spectrometer, the length of the

BigCal cables (signal and HV) or the Hall C AC units. Nonetheless, it is only when the calorimeter

is placed further than the distance required by acceptance matching that some elastic events start

to miss hitting the calorimeter. No elastic events were lost when the calorimeter was located closer

to the target than the matching acceptance suggested. The spot on the surface of the calorimeter

was just smaller. Table 4.2 summarizes the Jacobian, electron solid-angle, the calorimeter distance

d calculated from 4.11 and dHall the actual distance for the different kinematics.

Ee, GeV θe, ◦ J ∆Ωe,msr d, cm dHall , cm ε

1.875 105.16 14.72 99.2 517.7 493 0.152
1.868 105.08 15.26 102.9 508.5 494 0.152
2.848 44.9 2.09 14.1 1373 1200 0.635
3.539 32.579 0.99 6.7 1997 1116 0.773
3.680 30.778 0.88 5.9 2115 1102 0.791

Table 4.2: Jacobian and BigCal-target distance of the GEp2γ experiment.

It is important to add that the order of the kinematics in the table is not chronological. The

seconds parts of the lowest (ε=0.152) and highest (ε=0.791) ε points were done after the Christmas

break of 2008. The two parts of each kinematic were then merged and averaged. An individual

study of each part is interesting to check the stability of the detectors and the consistency of the
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results. The two parts of the smallest point being kinematically very close from each other will

not be analyzed separately. It has been checked that the results from those two samples were very

compatible.

4.2 HMS Hodoscope Calibration

We have seen in the previous chapter that the HMS hodoscopes defined the HMS trigger, and

measure and set the start time of the HMS and FPP drift chambers. A good calibration is essential

to obtain a clean trigger. Several corrections are applied to the hodoscopes information. First, we

needed to convert the TDC signal into a time. A conversion factor of 25.9 ps per TDC count was

applied. We also needed to account for different signal cable length.

Since the PMT signals are sent to a discriminator with a fixed threshold, a dependence be-

tween the amplitude of the pulse and the time at which the threshold is exceeded exists. A

pulse high correction, also known as walk correction, of the form t1/
√

ADC is applied, where the

parameter t1 is determined for each PMT.

Another correction, was required to take into account the different light velocity in each in-

dividual PMT. From the time difference between opposite PMTs, the coordinate d (along the

scintillator axis) of the point at which the particle went through the paddle is determined. Then a

correction of the form d/vPMT , with vPMT the light propagation velocity of each individual PMT,

is taken into consideration to obtain the average scintillator time. In the calibration procedure

vPMT is treated as a parameter.

Finally, as the start time of the drift chambers is defined at the focal plane (z = 0), we need to

account for a correction of the form z/βc for each average scintillator time, where z is the position

of each paddle with respect to the focal plane. In the relativistic factor β, the reconstructed

momentum of the spectrometer p is used.

The calibration is done by using a code written by Peter Bosted. It allows one to determine

by a minimization procedure the t1, vPMT and zero offset t0 parameters for each of the 52 PMTs.

A timing resolution of 0.25 ns was reached.
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4.3 HMS Tracking and Reconstruction

4.3.1 HMS Tracking Algorithm

The proton trajectories entering the HMS drift chambers are very nearly perpendicular to the wire

planes, so that the distance of closest approach between a track and a wire is in the plane of the

anode wire. The drift time is corrected for the propagation along the wire and difference in signal

cable length between the chambers and the TDC modules.

The first step in the tracking algorithm is to identify the hit clusters or space points in the

chamber. A hit is defined as the intersection in the xy plane of wires that have fired. For two hits

to be grouped with each other, and then define the very first space-point of coordinates x,y, the

distance between the two hits (in the xy plane) needs to be smaller than a hard-coded value (=
√

2

cm in the analysis). Other hits are added to the space point if they satisfy the above distance

requirement with respect to the coordinates of the space point. A minimum of 5 hits per space-

point is required. For space-points with more than one hit per plane, a routine is used to create

new space-points. A limit of 20 space-points and 3 planes with multiple hits per space-point

cannot be exceeded. In the situation where some planes still have multiple hits, the hit with the

shortest drift time in each plane is kept.

The next step in the track reconstruction is the fitting of a stub for each space point using the

drift time information. We assumed a uniform distribution of the drift position (in other words

distribution of events) after averaging over all the cells. A time-to-distance map (drift map) is

then generated for each wire plane. The drift distance D is obtained by integrating the drift time

distribution T (τ) up to the drift time Td given by the TDC:

D(Td) = Dmax

∫ Td
Tmin

T (τ)dτ∫ Tmax
Tmin

T (τ)dτ
= Dmax

Td∫
Tmin

T (τ)dτ (4.12)

since Tmin and Tmax define the allowed time window so that
∫ Tmax

Tmin
T (τ)dτ = 1. Dmax is the

maximum drift distance and equal to half of the wire spacing (0.5 cm). Since all the possible drift

positions are equally likely within a cell, the drift distance distribution is expected to be flat as
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in figure 4.2. The drift distance gives the absolute value of the distance between the track and

the wire but does not provide information about the relative position with respect to the wire:

whether the track passed on the right or the left of the wire. To resolve this so called left-right

ambiguity and assign the correct sign to the drift distance, a routine is used to test all the possible

left-right combinations of hits within a point. All the possible stubs (26 = 64) are fitted and the

one with the smallest χ2 is selected. Since all the tracks are nearly perpendicularly to the wire

plane, a small angle approximation for the Y and Y′ plane is used. These planes being offset by

0.5 cm, the left-right combination that makes the track go between the wires is the chosen one.

This improves the speed of the algorithm by reducing the number of combinations to be analysed

from 64 to 24 = 16.

Figure 4.2: HMS drift time and HMS drift distance distribution.

The best stubs of both chambers are compared by grouping their space points together and

testing all the combination in order to form a complete track. The stubs of the front and rear

chamber are projected back to the focal plane. If their slope x′, the coordinates x f p and y f p

satisfied some hard-coded requirements, a combination of two stubs is formed. For each of them,

now made of 10 to 12 hits, all the possible left-right combinations are tested to define the best

complete track. The fit parameters (slope in x′, y′ and the x, y coordinates) and the χ2 are stored.

At this point, it only remains to select the best complete track. All the tracks are reconstructed

back to the target using the HMS transport matrix, the vertex position ytgt, the vertical x′tgt and
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horizontal y′tgt angles and δ = p − p0/p0 the relative momentum of the spectrometer with re-

spect to the central momentum p0 = 2.0676 GeV/c. The timing is improved by using the track

information. The tracks pass then through a pruning test, consisting of an ordered series of cuts:

•
∣∣∣x′tgt

∣∣∣ ≤ 100 mrad

•
∣∣∣y′tgt

∣∣∣ ≤ 50 mrad

• |δ| ≤ 9%

•
∣∣ytgt

∣∣ ≤ 10 cm

• NPMT ≤ 3

•
∣∣∣t f p − t0

∣∣∣ 10 ns

with NPMT the number of PMTs on track and, t f p the focal plane time of the track and t0 the time

determined from the hodoscopes. From all the tracks passing the pruning test, the one which has

the smallest χ2 is selected and considered as the best track of the HMS. Figure 4.3 shows a flow

charts of the HMS tracking and reconstruction algorithm.

A resolution, obtained by comparing the position of the individual to the best fitted track

(residuals) and averaged over all the planes, of 280 µm is achieved. This translates into a spatial

resolution in x(y) of 140 µm (200 µm) and angular resolution of 0.24 mrad (0.35) in x′f p(y′f p)

respectively.
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Figure 4.3: Flow chart of the HMS tracking and reconstruction algorithm.
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4.3.2 HMS Transport Matrix (Optics)

As we have mentioned earlier, the five target coordinates (xtgt, ytgt, x′tgt, y′tgt, δ) are determined

from the focal plane coordinates (x f p, y f p, x′f p, y′f p) using the HMS transport matrix. It is clear

that this is an under-determined problem since the number of unknowns is greater than the

number of measured variables. We can make the reasonable assumption that the vertical beam

position yb, known from the beam raster, corresponds to the vertical target coordinates xtgt at

zspec = 0 (xtgt = −yb since in the raster coordinate system, the +y direction is oriented upward

along the vertical). Knowing xtgt, in other word fixing its value in the system of equations, allows

us to solve for the other 4 target coordinates. If this assumption is very good for thin targets,

additional corrections need to be applied for extended targets. The target coordinates can be

expressed as a Taylor-series of the focal plane coordinates on an event-by-event basis. For the

nth-event we obtain:

(y, x′, y′, δ)n
tgt =

i+j+k+l+m≤N

∑
i,j,k,l,m=0

Γi,j,k,l,m
(y,x′ ,y′ ,δ),n(x f p)i(y f p)j(x′f p)

k(y′f p)
l(xtgt)m (4.13)

The Γi,j,k,l,m
(y,x′ ,y′ ,δ) are the coefficients of the HMS optics matrix, calculated in an iterative fitting pro-

cedure [56] based on a starting model from the differential linear algebra based program COSY

INFINITY [57]. In the analysis, the expansion was performed up to the N = 6 order. Specific runs

using a sieve slit collimator on thin multi-foil targets were taken to perform the calibration of the

coefficients. The different targets used during the optics runs are given in Table 4.3. The common

0.95 cm offset comes from a survey of the target positions.

Target z position (cm)
Aluminum 3-foil 0.95, 0.95 ± 7.5

Carbon 2-foil 0.95 ± 2.0
Aluminum 2-foil 0.95 ± 3.8

Table 4.3: Thin multi-foil targets used during the dedicated optics runs.

The sieve slit collimator consists of an array of seven columns spaced by 2.540 cm and nine

rows separated by 1.524 cm of sieve holes. All the sieve holes are 0.508 cm in diameter except the
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central one which has a diameter two times smaller of 0.254 cm. The combined use of surveyed

thin foil targets and sieve holes provides point targets with fixed and known ytgt and track with

known angles (x′tgt = x′f oil , y′tgt = y′f oil) and ytgt = y f oil . These coordinates are then compared to

the ones reconstructed from the Taylor-series. From 4.13 we can see the coefficients Γ are specific

to each reconstructed quantity. Thus the optimization procedure needs to be performed separately

for each of them.

As mentioned before, the use of an extended target requires a correction to xtgt given by Eq.

4.14.

xtgt = −yb − x′tgtzint cos θspec (4.14)

with zint, the position along the target of the interaction vertex.

ybeam

zbeam

zspec

yspec

dspec

ysieve

y’foil

θspec

zfoil

yfoil

track

sieve hole

foil

≈ y’zcosθspec

xbeam

x’foil

xsieve + ybeam

dspec - zcosθspec

dspec - zfoilcosθspec

Figure 4.4: Schematic of the thin foil target and sieve slit collimator system.

From figure 4.4 it is clear that the coordinates of a track, originating from a foil target located at
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z f oil , passing through a sieve hole located at (xsieve, ysieve) (in the spectrometer coordinate system)

are given in the small angle approximation by:

y′f oil ≈
ysieve − z f oil sin θspec

dspec − z f oil cos θspec

y f oil = z f oil

(
sin θspec − y′f oil cos θspec

)
x′f oil ≈

xsieve + ybeam sin θspec

dspec − z f oil cos θspec
(4.15)

with dspec the distance from the origin to the center of the sieve slit collimator.

Data were taken at a central momentum value of 2.4 GeV/c with the HMS at a central angle

of 22.0◦. The results of the optimization on the angles are shown in Figures 4.5 and 4.6. Each plot

displays the difference x′di f f (y′di f f ) between the known angles x′f oil(y
′
f oil) and the reconstructed

angles x′rec(y′rec) versus x′f oil(y
′
f oil):

x′di f f = x′f oil − x′rec

y′di f f = y′f oil − y′rec (4.16)

The x′tgt optimization was performed 3 times. For the first iteration, since xtgt is not known,

the ybeam value is used. This will give a rough estimate of y′tgt, x′tgt and ytgt which will allow

us to use the full correction and perform other iterations. The first, second and third iterations

are shown in blue, green and red respectively. Data were collected using the 3 foil-Aluminum

and 2 foil-Carbon targets. After each iteration, the calculated coefficients were used for the next

iteration. Only one iteration was done for the y′tgt and ytgt optimization. On the x′di f f (y′di f f ) plot,

each columns corresponds to a row(column) of sieve holes on the collimator and for each column,

a symbol represents a sieve hole. In the ideal case, after the optimization procedure, x′di f f (y′di f f )

would be equal to 0, resulting in all the symbols aligned on a line x′di f f = 0 on the different

plots. In Figure 4.5, the slope in the x′di f f versus x′f oil plot of the outer foils of the Aluminum

target shows a strong ztgt dependence of xtgt and thus exhibits the significance and the need for a

xtgt correction for extended targets. After the optimization, the slope in x′di f f and in y′di f f almost

disappeared, showing the beneficial effect of the optimization.
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Figure 4.5: Difference x′di f f between the known angles x′f oil and the reconstructed angles x′rec

versus x′f oil for the 3 foil-Aluminum target (left) and 2 foil-Carbon target (right). In black using
the original set of coefficients, in blue, green and red using the coefficients from the first, second
and third iteration respectively.

Figure 4.6: Difference y′di f f between the known angles y′f oil and the reconstructed angles y′rec

versus y′f oil for the 3 foil-Aluminum target (left) and 2 foil-Carbon target (right). In black using
the original set of coefficients, in red those using the coefficients from the first iteration.
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ytgt was also optimized. The results for both the Aluminum and the Carbon targets are shown on

the same Figure 4.7. The difference ydi f f between the known coordinate y f oil and the reconstructed

coordinate yrec versus y f oil is plotted. Once again, the optimization improves the slope of the plot.

It is important to say that the 3 foil-Aluminum target allows us to cover almost all the acceptance

in ytgt

Figure 4.7: Difference ydi f f between the known coordinate y f oil and the reconstructed coordinate
yrec versus y f oil for the 3 foil-Aluminum target 2 foil-Carbon target. In black, results obtained
using the original set of coefficients, in red using the coefficients from the first iteration.

Dedicated runs on the 20 cm liquid hydrogen target were taken to check the momentum re-

construction. Data were taken at Ebeam = 4.109 GeV and p0 = 2.02 GeV/c. The calorimeter was

located at θcal = 25.8◦ and at 8.82 m from the target (position not surveyed but checked in soft-

ware). Successive runs were taken in steps of 1◦ from θp= 36.5◦ to 40.5◦ to cover the entire δ range

of the HMS and scan over the entire effective target length ytgt for each kinematics. The difference,

in terms of the fraction of central momentum p0, between the reconstructed momentum and the

proton momentum calculated from the proton angle using (4.7) versus the focal plane coordinates

(x f p, y f p) and angles (x′f p, y′f p) is shown in Figure 4.8. There is no noticeable correlation between

the momentum difference and the focal plane quantities which shows the very high quality of the

momentum reconstruction. Based on these results no optimization was performed.
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Figure 4.8: Difference in term of fraction of central momentum p0, between the reconstructed
momentum and the proton momentum from the proton angle as a function of the focal plane
coordinates x f p, y f p (top) and angles x′f p, y′f p (bottom).

4.4 FPP Tracking and Reconstruction

The FPP drift chambers are used to track protons after scattering in the CH2 analyser blocks. The

incident or reference trajectory is well known from the HMS tracking chambers. The tracks found

with the FPP are then compared with the HMS track and the polar and azimuthal scattering an-

gles, the distance of closest approach and the z-coordinate of the interaction point in the analyser

are reconstructed. The fact that the HMS tracks are almost perpendicular to the chamber plane,

simplifies and improves the speed of the reconstruction algorithm. This does not hold any more

for the FPP since tracks with a scattering angle up to ≈ 40◦ need to be reconstructed. Further-

more, FPP drift chambers are different in various aspects, mainly in the elementary cell size and

number of planes, resulting in different tracking philosophies.
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4.4.1 FPP tracking algorithm

The first step of the algorithm is to group hits from adjacent wires into clusters made of up to

three adjacent wires per plane. Several clusters are allowed in one plane. In the case where more

than three wires in one plane fired, the first three wires are selected to form the cluster. All

combinations of one cluster per plane are taken into consideration. The algorithm first considers

the combinations with six clusters and performs a rough fit based on the wire position. After

finding all the six cluster combinations, the algorithm will consider combinations with only five

clusters in case no hit had been recorded in one plane. This is the lowest acceptable limit for

the number of clusters on a track. The algorithm requires at least five clusters per track and will

ignore cases where only four or less planes fired. The rough tracks are then subjected to a χ2 test

defined as:

χ2 ≡
Nhit

∑
i=1

(
pwire − ptrack

σw,i

)2
(4.17)

with pwire the position of the wire center, ptrack the projection of the track along the wire that fired

and σw the ”wire resolution" given by the wire spacing ` divided by
√

12. In the case of clusters

made of two or three hits, a first track is fitted with all the wire hits. After projecting the track on

each individual plane, the residuals between the wire position and the track are computed. The

wire which gives the smallest residual is selected for another fitting procedure with all the single

hits per plane and the fitted track is also subjected to a χ2 test. The χ2 criterion is used to check if

the wire-positon based track is a good candidate to the drift-based tracking procedure.

Figure 4.9: FPP drift time and FPP drift distance distribution.
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Due to the high rates in the FPP and small number of detection planes, all the wire combi-

nations that passed the χ2 test are subjected to the drift based tracking algorithm. The drift time

is corrected for the propagation in the wire and a drift map is generated. Figure 4.9 shows the

drift time and distance distributions in the FPP. The 1σ resolution obtained from the FPP track

residuals is about 125µm.

A drift-based tracking procedure requires the determination of the correct left-right combina-

tion for each wire. For each wire combination, all of the 64 (=26) left-right combinations are tested

and the one which gives the smallest χ2 is chosen. The hits on this chosen track are marked as

used. The remaining hits are then considered by the algorithm in the search of additional new

tracks. These tracks need also to satisfy a χ2 test. If a track fails to pass the test, the hit giving

the worst contribution to the χ2 is left aside and the track is refitted. This procedure is repeated

until the track passes the test or the number of planes on the track passes below 5. In the analysis,

we require tracks with at least five hits and exactly one hit per plane. For a 6-hit track with at

least one multi-hit cluster, the hits originating from the multi-hit cluster are the first considered

to be dropped in order to improve the χ2. For a 2-hit cluster, the algorithm forces the track to

pass between the two wires and the left-right combination is then chosen accordingly. In a 3-hit

cluster case, the middle hit is identified and paired with both of the outer hits. The outer hit of a

combination outer-middle, that gives the worst χ2 contribution, will be removed. The 3-hit cluster

is then reduced to a 2-hit cluster and the left-right combination is chosen as explained above. For

5-hit tracks with at least one multi-hit cluster, all hits are kept as long as the track satisfies the χ2

requirement.

The resulting tracks pass an ultimate pruning test based on the scattering angle ϑFPP, the

z-coordinate zclose of the point and distance sclose of closest approach between the incident and

scattered track. The method of derivation of those quantities as well as the azimuthal angle ϕFPP

is given in the appendix. A summary of the FPP tracking algorithm is given in Figure 4.10.



105

TRACKS

Cluster formation:
Group hits from adjacent wires

Max. 3 hits per cluster
Several clusters per plane

Fit cluster combination
based on wire position

Nplane ≥5

Consider all the combinations 
of 1 cluster per plane

NO
No tracking

Multiple  
hit cluster

Select hit that gives
the smallest residual

NO

NO
No tracking Pass χ2

Fit with drift information
Check all L/R combinations

Force track to pass
between the 2 wires

Pass χ2

Multiple  
hit cluster

NO

Nplane ≥5

No tracking

2 hit cluster 

Drop 1 hit

NO

Pair outer and
middle hit

Pruning in zclose, sclose, θFPP

NO

NO

Figure 4.10: Flow chart of the FPP tracking and reconstruction algorithm.



106

4.4.2 Left-Right Ambiguities

The specific design of the FPP drift chambers has an intrinsic drawback that results in the code

choosing the wrong left-right determination nearly half of the time in a limited region of the

chamber. In the (x,y) plane, all the wires intersect at the center C of the chamber which acts as a

center of symmetry. Therefore any track which intersects nearly perpendicularly to the (x,y) plane

in the vicinity of C at M1 with drift distances (dx,1, du,1, dv,1) will have a mirror image M2 with

the same valid set of drift distances (dx,2, du,2, dv,2) as shown in Figure 4.11. In this case, the code

will have nearly 50% chance to assign the wrong drift sign. The three wires have also a common

intersection along the central horizontal wire W0. Thus tracks having an intersection within a

horizontal band of width equal to two wire spacings and centered along W0 will be subject to a

wrong left-right determination 50% of the time. However, the ±45◦ angles relative to the vertical

of the u,v planes makes the wire spacing in the x direction equal to 2
√

2 so that the irrationality of

the spacing makes this pattern never repeat itself anywhere else in the chamber. Still it happens

that the three wires intersect with each other nearly at the same point resulting in a potential

wrong left-right determination.

C

dx,1

du,1

dv,1

du,2

dx,2

dv,2

u

x

v

M1

M2

Figure 4.11: Diagram showing the left-right ambiguity in the vicinity of the chamber center.
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As the track needs to be nearly perpendicular to the wire plane, this phenomenon will happen

mainly at small angles. We will see in the next chapter the incidence of this effect on the track

reconstruction and how it affects the analyzing power.

4.4.3 FPP Alignment

The code written by Stephen Strauch was used to optimize the alignment of the FPP. From 2.2 GeV

” straight through" runs, where both of the CH2 doors were retracted, the software minimized the

difference between the track parameters (positions and slopes) of the HMS and FPP by a quadratic

fit of each track’s parameters. As a result, angular resolutions of 1.85 mrad in x’ and 2.1 mrad in

y’ were achieved.

4.4.4 Track Multiplicity

The minimal design of the FPP drift chamber (only six planes of detection to define a track) and

the possibility for the tracks to have nearly any angles (0 ≤ θ ≤ 90◦) induce a rather high track

multiplicity in the FPP. Table 4.4 presents a detailed study of the tracking statistics in both FPPs

at ε = 0.152. The columns are for the different event possibilities: SINGLE for one track per event,

MULTIPLE for more than one track per event, ZERO when no track had been detected in the

drift chambers and ALL regroups all the above cases. The rows are for the two FPPs and they

are each subdivided into two main cases: TOTAL refers to the total number of events without any

scattering cuts and PASS refers to the events passing the scattering cuts (zclose, ϑFPP, sclose and the

cone-test)1. The Coulomb scattering cases (abbreviated Cb in the table ) is also shown for each

FPP. The characterization of these events is presented in the next section. Finally, the row N1=0

stand for events which did not have a track in FPP1 but did or did not have one in FPP2. In each

box of the table, the number of events is given as well as a percentage relative to the number in

the row TOTAL if no other indication is specified. For example, in FPP1 there are 22,953,284 events

or, in other words, 19.5% of the total number of events (117,832,388) that scattered producing only

one track (SINGLE). This number also represents 71.2% of the events that passed all the scattering

cuts (32,255,509).
1The definitions of these variables are given in the next section.
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Table 4.4: Detail of the track multiplicity of the FPP at Q2 = 2.5 GeV2 and ε = 0.152.
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The interesting cases are highlighted in the table. The orange boxes show the consistency

of the single track event fraction in both FPPs which is around 72%. The red boxes give the

complementary fraction (multiple track events). Coulombs events (blue boxes) represent 30.3%

(15.9%) of the events that scattered in FPP1 (FPP2). An interesting number is the percentage of

zeros (events with no track.). There are 24.8% of zeros in FPP1 and 12.8% in FPP2. This difference

is explained by the fact that the particle will have to pass through almost twice as much material

than in FPP1 and thus is most likely to scatter in FPP2. However we see that 57% of the zeros in

FPP1 do not give a track in FPP2 which represent almost 13% of the total number of events. This

number gives us information about the inefficiency of the chamber but also about the number of

neutral produced in the CH2 analyser blocks. Finally the overall efficiency of the polarimeter is

given by the percentage of events that passed the scattering cuts in FPP1 and FPP2: 19.5% +8.7%

= 28.2%.

Figure 4.12 show the fraction of single (darker colors) and multiple (lighter colors) track events

as a function of the run number for the three kinematics and for both FPPs . This shows a good

stability of this fraction over time and over the kinematics. The fit results are given in table 4.5.

For ε = 0.152 the results given in both tables are very similar but not strictly identical because of

the fit procedure which induces some uncertainties.

Run Number
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(a) FPP1

Run Number
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Figure 4.12: Fraction of the single (darker colors) and multiple (lighter colors) track events as a
function of the run number for the three kinematics for FPP1 (left) and FPP2 (right).
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SINGLE MULTI
FPP1 FPP2 FPP1 FPP2

ε = 0.152 71.25% ± 2.88 72.64% ± 2.95 28.09 ± 1.81 27.06% ± 1.81
ε = 0.635 75.00% ± 4.43 76.78% ± 4.46 24.84 ± 2.55 22.91% ± 2.43
ε = 0.785 77.94% ± 4.32 78.57% ± 4.35 21.39 ± 2.26 21.40% ± 2.27

Table 4.5: Fit results of the fraction of single and multiple track events for both FPPs and for the
three kinematics.

4.4.5 Scattering Quantities

The polar scattering angle ϑFPP, the azimuthal scattering angle ϕFPP, the distance of closest ap-

proach sclose, the z-coordinate of the point of closest approach zclose and the cone-test are calculated

as in the appendix C. The effect of the latter is seen in the ϑFPP versus zclose distribution (figure

4.13).
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Figure 4.13: zclose versus ϑFPP distribution for both FPPs.

The red lines represent the physical width of the two analyser blocks. The ”razor blade" shape of

the distribution inside the CH2 blocks is a sign of the tracks passing the cone test. The cone-test

eliminates upstream tracks with large ϑFPP. The two sets of vertical lines represents the physical
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width of the two CH2 analyzer blocks. The vertical stripes outside the analyzer are due to bad

reconstructed events which appear to have scattered in the drift chamber. A discussion about these

events is done in section 6.2. The ϑFPP distribution of single track events and passing the cone-test

is shown on figure 4.14. The peak at small angle is due to Coulomb scattering characterized by

very low analysing power.

FPPθ0 5 10 15 20 25 30 35 40

310

410

510

FPP2
FPP1

Figure 4.14: Scattering angle ϑFPP distributions for both FPPs.

The distance of closest approach distribution is displayed in Figure 4.15.

closes0 1 2 3 4 5 6

310

410

510

FPP2
FPP1

Figure 4.15: Distance of closest approach sclose distributions for both FPPs.

The width of these distributions is due to multiple scattering which tends to blow up the sclose



112

reconstruction. The sclose distribution is wider for FPP2 since a proton has to go through almost

twice as much material as in FPP1. From these two figures 4.14 and 4.15, we notice that half as

many events scatter in FPP2 as in FPP1.

FPP scattering cuts

This is an appropriate place to give the different FPP scattering cuts applied in the analysis. First

we need to find the limit on the Coulomb scattering. The width θ0 of the multiple scattering

through small angle distribution is given by [58]:

θ0 =
13.6 MeV

βcp
z
√

x
X0

[
1 + 0.0038 ln

(
x

X0

)]
(4.18)

where p, βc, and z are the momentum, the velocity and the charge number of the incident particle.

x/X0 is the thickness of the scattered medium expressed in radiation lengths. Therefore for a

proton z = 1, with p = 2.0676 GeV/c, βc ≈ 0.71 and for an analyzer thickness of 54 (108) cm for

FPP1 (FPP2) with XCH2
0 = 47.9 cm the width of the distribution is θ

FPP1(FPP2)
0 ≈ 0.57(0.83)◦. In the

analysis we used a conservative 3σ cut:

θFPP1 > 1.7◦ (4.19)

θFPP2 > 2.5◦ (4.20)

A cut on the z-coordinate of the scattering vertex was applied. Events scattering outside the

physical width of the analyzer ±1cm were rejected leading to the cuts:

111.9 cm ≤ zFPP1
close ≤ 167.9 cm (4.21)

209.8 cm ≤ zFPP2
close ≤ 265.8 cm (4.22)

A loose cut on the distance of closest approach was applied:

sFPP1
close ≤ 3 cm (4.23)

sFPP2
close ≤ 6 cm (4.24)
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The cut in FFP2 is looser to account for the smearing of the sclose distribution.

The event failing the cone-test were rejected and we also selected single track events only:

NFPP1
track = 1 (4.25)

NFPP2
track = 1 (4.26)

We also always choose the HMS track as a reference track for FFP2. This conservative analysis of

the FFP2 events in addition with the strict zclose cut eliminates the possible double counting in the

case of a scattering in FFP1 and in FFP2.

4.4.6 BigCal Reconstruction

Up to this point, we only dwelled on the ”proton side" of the experiment. On the ”electron side",

the BigCal calorimeter is used to reconstruct the electron angles and energy. The electron energy is

determined by summing the hit energies of an array (cluster) of dimension up to 5× 5 contiguous

hits:

Ek = ∑
k∈5×5

ck Ak (4.27)

where the ck are the calibration constants and the Ak are the pedestal-subtracted ADC values. Each

of the calibration constants are obtained by minimizing the difference between the reconstructed

and known energies. In other words, minimizing the following χ2 results in solving 1744 linear

equations for the 1744 calibration constants:

χ2 =
N

∑
i=1

(
Eknown

i − ∑
k∈5×5

ck,i Ak,i

)2

(4.28)

Several calibration procedures were performed during the experiment in order to update the set of

calibration constants and PMTs high voltages. An energy resolution σE/E of 10.5% was achieved

at the beginning of the experiment. The resolution is altered over time due mainly to radiation

damage. At the end of the GEpIII experiment, despite a UV curing, the energy resolution was

found to be σE/E of 15.4%.
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Since the angular resolution of the HMS is altered by the S0 detector, the scattered electron angle

θe is calculated from the proton momentum pp using:

cos θe = 1−
MTp

Ee
(
Ee − Tp

) (4.29)

with Tp =
√

p2
p + M2 −M the proton kinetic energy. The azimuthal electron angle φe is calculated

by requiring co-planarity of the elastic scattering, thus:

φe = φp + π (4.30)

Finally, the knowledge of these angles and the beam position allows one to calculate the expected

electron coordinates (xe, ye) at the face of BigCal from two-body kinematics:

xe = xbeam + s sin θe sin φe − zbeam + s cos θe (4.31)

ye = ybeam − s sin θe cos φe (4.32)

with:

s =
dcal − xbeam sin θcal − zbeam cos θcal
sin θe sin φe sin θcal + cos θe cos θcal

(4.33)

dcal is the distance from the target to the center of the face of BigCal. In the BigCal coordinate

system, x and y are pointing in the direction of increasing θe and vertically upward respectively. A

resolution of 0.55cm in the horizontal coordinate was obtained. Unlike the horizontal resolution

which is dominated by the proton momentum, the vertical resolution is determined by x′tgt altered

by multiple scatterings in the S0 detector. As a result, the vertical resolution is 3 to 5 times larger

than the horizontal one. A complete and very detailed study of the electron angles and energy

reconstruction is done in [59].
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4.5 Elastic Events Selection

The reconstruction of the electron and proton quantities being done, the last task of the first part

of the analysis is the selection of the elastic event. There are different methods to isolate elastic

events from inelastic background. We can study the proton momentum and proton angle corre-

lation by looking at the relative momentum of the spectrometer p with respect to the momentum

calculated from the proton angle pθp (see in the equation 4.7). This difference pp
miss is expressed

as a percentage of the central momentum p0: pp
miss = 100× (p− pθp)/p0. Figure 4.16 shows the

pp
miss distributions for the three ε points. The elastic events peak around pp

miss = 0.
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Figure 4.16: pp
miss distributions for Q2 = 2.5 GeV2 at ε = 0.152 (a), 0.635 (b), and 0.785 (c) without

any cuts, in percentage of the central momentum value.

However the angular resolution of the HMS is insufficient to properly select the elastic events. So
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additional cuts on the electron side are needed. We could define a similar criterion of inelasticity

pe
miss by replacing pθp by the proton momentum calculated from the electron angle pθe and use

in addition a coplanarity criterion ∆φ = φe − φp − π. However in the final analysis we used an

equivalent method by applying elliptical cuts on the horizontal (∆x) and vertical (∆y) differences

between the measured shower coordinates and the coordinates predicted from the beam energy

and the reconstructed proton momentum, angles and vertex coordinates assuming two-body kine-

matics. Cuts of the following form were used:

(
∆x

xmax

)2
+
(

∆y
ymax

)2
≤ 1 (4.34)

Figure 4.17 displays the ∆x vs ∆y distribution for the ε = 0.152 kinematic.
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Figure 4.17: ∆y versus ∆x at Q2 = 2.5 GeV2 and ε = 0.152.

We can clearly see the elastic peak centered at (∆x,∆y) = (0,0). The results of the elliptical cuts on

the pp
miss spectra are given in Figure 4.18. The inelastic background is efficiently suppressed. The

different width of the spectra come from the different momentum spread of the three kinematics.
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Figure 4.18: pp
miss distributions for Q2 = 2.5 GeV2 at ε = 0.152 (a), 0.635 (b), and 0.785 (c) after

the elliptical cut, as a percentage of the central momentum value.

4.5.1 Source of Inelastic Background

It is now appropriate to describe the different source of inelastic background. Super-elastic events,

characterized by a higher momentum than the momentum (on the right of the eleastic peak)

expected from elastic ~ep scattering, have their origin in the target end-caps. They are far from

being the main background contribution. On the left of the elastic peak in Figure 4.16a), b)

and c), are the events having, this time, a momentum lower than the momentum expected by

elastic scattering. They are due to π0 electro-photoproduction and real Compton scattering. Both

processes are initiated by hard Bremsstrahlung in the target. The latter reaction γ + p → γ + p,

does not give a significant contribution to the inelastic background because of its smaller cross



118

section compared to the one of π0 photoproduction.

In the former, the interaction of the Bremsstrahlung photon with the proton produces a π0

and a proton:

γ + p → π0 + p (4.35)

For this reaction to happen and the event to be in the experimental acceptance, the photon energy

needs to be nearly equal to the electron beam energy. The produced π0 decays immediately into

two photons and each carry exactly half of the π0 mass in the π0 center of mass frame. In the

lab frame, these two photons are emitted in a forward cone along the π0 trajectory. One or both

photons could then hit the calorimeter and if their energy is greater than the BigCal threshold

they will be detected and produce very similar signals to the one from the~ep elastic electron. The

BigCal energy resolution being poor, it is crucial to eliminate the inelastic background by position

correlation. A residual background fraction, computed with the SIMC Monte-Carlo simulation, of

0.7% under the eleastic peak was found for the smallest ε point. The other two kinematics have

even smaller contamination: 0.4% and 0.3% for ε = 0.635 and ε = 0.785, respectively.



Chapter 5

Data Analysis Part Two: Focal Plane

Asymmetries, Spin Precession and

Polarization Observables Extraction

The last step in the analysis toward the extraction of the polarization component ratio is the

extraction of the physical azimuthal asymmetries. In the FPP, we measure these asymmetries at

the focal plane after the proton underwent a spin precession through the HMS magnets. A precise

understanding of the spin precession calculation, performed using a spin matrix determined by

the software COSY, is needed to reconstruct the polarization observables at the target with a

maximum likelihood method.

5.1 Angular Distributions and Asymmetries

The general angular distribution in the polarimeter based on Equation 3.9 is given by:

119
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N±(p, ϑFPP, ϕ) = N±
0

ε(p, ϑFPP)
2π

[
1 + (c1 ± AyPFPP

y ) cos ϕ +

(s1 ∓ AyPFPP
x ) sin ϕ +

c2 cos(2ϕ) + s2 sin(2ϕ) + . . .
]

(5.1)

where N±
0 is the number of protons corresponding to beam helicity ±1, Ay is the analyzing power

of ~p + CH2 → one charged particle + X scattering, PFPP
x and PFPP

y are the transverse polarization

components at the focal plane, ε(p, ϑFPP) is the fraction of protons of momentum p scattered

at an angle ϑ and producing one track. The terms c1, s1, ... have been added in comparison

with Equation 3.9. They are the Fourier coefficients of the false (or instrumental) asymmetry.

These asymmeries arise from the acceptance (the geometry of the polarimeter) which in theory

is independent of ϕ. We see that by taking the difference of the angular distribution of the two

helicity states, we have access to the physical asymmetries, whereas by taking the sum, we obtain

the false asymmetries. This separation in only possible because the false (physical) asymmetries

are helicity independent (dependent). The difference and the sum of the angular distribution

integrated over all momenta p and over a limited ϑFPP range, 1.7◦ ≤ ϑ ≤ 38◦, to exclude both

Coulomb and large angle scatterings for which Ay ≈ 0, are given by:

f + − f− =
π

∆ϕ

[
N+(ϕ)

N+
0

− N−(ϕ)
N−

0

]

=
Ay

∆ϕ

[
PFPP

y cos ϕ− PFPP
x sin ϕ

]
(5.2)

f + + f− =
π

∆ϕ

[
N+(ϕ)

N+
0

+
N−(ϕ)

N−
0

]

=
1

2∆ϕ
[1 + c1 cos ϕ + s1 sin ϕ + c2 cos 2ϕ + s2 sin 2ϕ + ...] (5.3)

with ∆ϕ the bin width. Figure 5.1 shows the measured helicity-dependent asymmetries for the

three ε points.
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Figure 5.1: Helicity difference distribution in the focal plane f + − f− for ε = 0.152, 0.635, 0.773
and 0.791 and for 1.7◦ ≤ ϑ ≤ 38◦.

The distribution is fitted by a sum of sine and cosine in ϕ up to the third harmonic:

f + − f− = C0 +
3

∑
i=1

ci cos (iϕ) + si sin (iϕ) (5.4)

The results of the fits are given in Table 5.1.

ε C0 c1 s1

0.152 -0.4084E-03 ± 0.247E-03 0.1650E-01 ± 0.242E-03 -0.1110E-00 ± 0.245E-03
0.635 0.6255E-03 ± 0.319E-03 0.6379E-02 ± 0.319E-03 -0.2066E-01 ± 0.321E-03
0.773 -0.1501E-02 ± 0.547E-03 0.2043E-01 ± 0.545E-03 -0.6951E-01 ± 0.550E-03
0.791 0.1725E-03 ± 0.393E-03 0.2015E-01 ± 0.391E-03 -0.6697E-01 ± 0.394E-03

ε c2 s2

0.152 -0.5044E-03 ± 0.245E-03 0.2735E-03 ± 0.244E-03
0.635 -0.1559E-03 ± 0.319E-03 -0.1546E-04 ± 0.320E-03
0.773 -0.2161E-03 ± 0.547E-03 -0.1060E-02 ± 0.549E-03
0.791 -0.3347E-03 ± 0.392E-03 -0.5744E-03 ± 0.393E-03
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ε c3 s3

0.152 -0.2205E-03 ± 0.243E-03 0.7449E-03 ± 0.244E-03
0.635 -0.1586E-03 ± 0.354E-03 -0.9005E-04 ± 0.354E-03
0.773 -0.1487E-02 ± 0.548E-03 0.2177E-03 ± 0.548E-03
0.791 0.1878E-03 ± 0.393E-03 0.3732E-03 ± 0.393E-03

Table 5.1: Fit results of helicity difference distribution in the focal plane.

We can see that the helicity difference is really defined by the first harmonic in ϕ as expected.

Looking closer at the coefficients, we notice that the shape of the distributions is a sine 1ϕ which

gives an idea of the relative size of the polarization components. The fit coefficients of the second

harmonic are an order of magnitude smaller. At this point, the polarization observables at the

focal plane can be extracted by a Fourier analysis. However, we need to take into consideration

the spin precession information in the HMS to determine them at the target.

The measured helicity-independent asymmetry is displayed on Figure 5.2. The distributions

have been fitted by a Fourier series up to the eighth harmonic in order to account for the fine

structure of the spectra:

f + + f− = C0 +
8

∑
i=1

ci cos (iϕ) + si sin (iϕ) (5.5)

The fit gives good quantitative results for all four kinematics and exhibits a strong cosine 2ϕ com-

ponent. The fit coefficients corresponding to other components are about an order of magnitude

smaller. Obviously this is not a perfect fit and we could have increased the number of harmonics,

but the goal of this study was to characterize the shape of the instrumental asymmetries and check

that they are independent of kinematics, as expected. The two parts of the smallest ε kinematic

were analyzed separately and gave very similar results. Only the average results of these two

parts is plotted.
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Figure 5.2: Helicity sum distribution in the focal plane f + + f− for ε = 0.152, 0.635, 0.773 and
0.791 and for 1.7◦ ≤ ϑ ≤ 38◦.

5.2 Spin Precession

On its way to the FPP, the proton spin precesses through the HMS superconducting magnets.

Before studying the full calculation, we will present two simplified models of the HMS magnetic

components: the dipole and geometric approximation.

5.2.1 Dipole Model

In this model, the HMS dipole is supposed to be an ideal dipole, with an uniform field and sharp

edges. In this approximation, we also neglect any effects coming from the HMS quadrupole. In

this situation, the proton spin precesses around the transverse dipole field by an angle χθ defined

by:

χθ = γκpϑbend (5.6)
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with γ the relativistic proton boost, κp = µp − 1 ≈ 1.79 the proton’s anomalous magnetic moment

and ϑbend the deflection angle of the trajectory given by:

ϑbend = θHMS + θtgt − ϑ f p (5.7)

with θHMS the spectrometer angle and θtgt (ϑ f p) the reconstructed (measured) vertical angle. These

angles are related to the vertical slopes at the target and at the focal plane respectively by: θtgt =

arctan x′tgt and ϑ f p = arctan x′f p. The value of the central precession angle is given in Table 5.2.

Q2, GeV2 p0, GeV/c χθ , ◦

2.5 2.0676 108.5

Table 5.2: Central precession angle χϑ for the HMS at Q2 = 2.5 GeV2.

In this model, we neglect any precession in the non-dispersive plane. Since the transverse po-

larization component is along the direction of the dipole field, it will not precess. Therefore the

polarization components at the target and at the focal plane are related by:


PFPP

t ≡ PFPP
y

PFPP
n ≡ −PFPP

x

PFPP
` ≡ PFPP

z

 =


1 0 0

0 cos χθ sin χθ

0 − sin χθ cos χθ




Pt

Pn

P`


In the first vector of this expression we have specified that the the transverse component at the

focal plane PFPP
t is measured along the +x axis (corresponding to the +y axis of the transport

coordinate system) and the normal component at the focal plane PFPP
n is measured along the +y

axis (corresponding to the -x axis of the transport coordinate system). In the Born approximation,

the normal component is equal to 0.

5.2.2 Geometric Model

In this model, the precession in the non-dispersive plane is accounted for. Furthermore, pre-

cession in the dispersive and non-dispersive plane give rise to independent deflections in both
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planes in which the dipole approximation is applied inducing dispersive χθ and non-dispersive

χφ precession angles given by:

χθ = γκp(θHMS + θtgt − θ f p) (5.8)

χφ = γκp(φ f p − φtgt) (5.9)

With φ f p and φtgt defined by the arctan of the horizontal slopes at the focal plane and at the target

respectively. We can now rewrite the relation between the polarization components at the target

and at the focal plane:


PFPP

t ≡ PFPP
y

PFPP
n ≡ −PFPP

x

PFPP
` ≡ PFPP

z

 =


cos χφ 0 sin χφ

− sin χφ sin χθ cos χθ cos χφ sin χθ

− sin χφ cos χθ − sin χθ cos χφ cos χθ




Pt

Pn

P`

 (5.10)

The helicity difference distribution in Equation 5.2 in the Born approximation (Pn = 0) becomes:

f + − f− =
Ay

∆ϕ

[
(Pt cos χφ + P` sin χθ) cos ϕ + (P` cos χφ sin χθ − Pt sin χφ sin χθ) sin ϕ

]
(5.11)

We see that each individual component we measure at the focal plane is a mix of the transverse and

longitudinal polarization components at the target. This mix is induced by the spin precession

in the non-dispersive plane corresponding to a horizontal rotation by an angle χφ and in the

dispersive plane corresponding to a vertical rotation by an angle χθ .

5.2.3 COSY Model

The full spin precession calculation is performed by the differential based code COSY [57] which

integrates the Thomas-Bargmann-Michel-Telegdi (Thomas-B.M.T.) equation along the full mag-

netic length of the HMS. For a given central momentum value, a map of coefficients is produced

in the output of the program. Since each individual proton has different target coordinates, each

proton will have its own trajectory through the HMS magnet. Thus, each of them will experience

a different magnetic field integral. The spin precession matrix needs to be calculated on an event-
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by-event basis. For this purpose, a polynomial expansion of the spin transport matrix in power of

the reconstructed target quantities (xtgt, ytgt, x′tgt, y′tgt) and δ up to the fifth order is performed:

Pij(xtgt, ytgt, x′tgt, y′tgt, δ) =
k+l+m+n+p≤5

∑
k,l,m,n,p=0

Cklmnp
ij (xtgt)k(ytgt)l(x′tgt)

m(y′tgt)
n(δ)p

(5.12)

where the Cij are the COSY expansion coefficients. The spin matrix coefficients are calculated in

the fixed transport coordinate system. The components at the target are expressed in the scattering

plane and in the co-moving coordinate system of the proton at the focal plane. Therefore two

additional small rotations, a first one F from the scattering plane to the transport system and a

second Q from the transport system to the focal plane frame, need to be included in the total spin

rotation matrix S = QPF.

We define the scattering plane as:

n̂ ≡
~ki ×~k f

|~ki ×~k f |

ˆ̀ ≡
~ki −~k f

|~ki −~k f |
t̂ ≡ n̂× ˆ̀ (5.13)

where~ki and~k f are the momenta of the incident and scattered electron respectively and t, n and

` stand for transverse, normal and longitudinal. Recalling that the momentum transfer ~q is given

by ~q =~ki ×~k f and in virtue of

~ki ×~k f =~ki ×~ki −~ki ×~q = ~q×~ki (5.14)
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the above definitions become:

n̂ ≡ ~q×~ki

|~q×~ki|
=

q̂×~ki

|q̂×~ki|

ˆ̀ ≡ ~q
|~q| = q̂

t̂ ≡ n̂× ˆ̀ (5.15)

In the transport coordinate system:

k̂ =


0

sin θHMS

cos θHMS

 (5.16)

q̂ =
1√

1 + x′2tgt + y′2tgt


x′tgt

y′tgt

1

 (5.17)

The rotation matrix F from the scattering plane to the transport system is then given by:

F =


t̂x n̂x ˆ̀x

t̂y n̂y ˆ̀y

t̂z n̂z ˆ̀z

 (5.18)

In a similar way the rotation matrix Q from the transport system to the focal plane frame is given

by:

Q =


T̂x T̂y T̂z

N̂x N̂y N̂z

L̂x L̂y L̂z

 (5.19)
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with

L̂ =
1√

1 + x′2f p + y′2f p


x′f p

y′f p

1

 (5.20)

N̂ =
L̂× x̂trans∣∣L̂× x̂trans

∣∣ (5.21)

T̂ = N̂ × L̂ (5.22)

with x̂trans the unit vector along the fixed x-axis of the transport frame. Therefore, the total spin

transport matrix S is given by the product:

S =


T̂x T̂y T̂z

N̂x N̂y N̂z

L̂x L̂y L̂z




P̂xx P̂xy P̂xz

P̂yx P̂yy P̂yz

P̂zx P̂zy P̂zz




t̂x n̂x ˆ̀x

t̂y n̂y ˆ̀y

t̂z n̂z ˆ̀z

 (5.23)

and the relation between the polarization components at the focal and at the target is:


P f pp

x

P f pp
y

P f pp
z

 =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz




Pt = Ptgt
x

Pn = Ptgt
y

Pl = Ptgt
z

 (5.24)

5.3 Maximum Likelihood Method

In the previous section we derived the relation between the polarization components at the target

and at the focal plane, accounting for the total spin precession in the HMS magnets. We can now

rewrite the angular probability distribution of a proton for the ±1 helicity states to scatter with
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angles (ϑ, ϕ) given in Equation (3.9) as:

fi(p, ϑ, ϕ) =
ε(p, ϑ)

2π

[
1 +

(
a1 ± hAy(p, ϑi)

(
Syx,iPx + Syz,iPz

)
+ Ay(p, ϑi)Syy,iPy

)
cos ϕ +(

b1 ∓ hAy(p, ϑi) (Sxx,iPx + Sxz,iPz)− Ay(p, ϑi)Sxy,iPy
)

sin ϕ +

+a2 cos 2ϕ + b2 sin 2ϕ + . . .

]
(5.25)

This is the most general expression in which we have included a possible induced normal polar-

ization component Py coming from inelastic processes, false asymmetries or effects coming from

higher order in ep scattering. In the analysis, since we are only interested in elastic events, we ne-

glect the induced polarization, but leave the possibility for a normal polarization component. We

build a likelihood function as the product of the N (assuming there are N protons to be analyzed)

individual angular probability distributions:

L =
1

2π

N

∏
i=1

fi(p, ϑ, ϕ) (5.26)

Since it is always easier to deal with sums than with products, taking the Napierian logarithm of

this expression allows us to transform the product into a sum. We are trying to determine the

values of the polarization components Pj j = x, y, z that maximize L or ln(L)1. The maxima of

ln(L) must satisfy:

∂ lnL
∂Pj

= 0, j = x, y, z (5.27)

As a result we obtain a system of coupled non-linear equations:

∂ lnL
∂Pj

= 0 ⇔ (5.28)

N

∑
i=1

∂

∂Pj

[
ln

(
1 + λ0,i + ∑

j=x,y,z
λj,iPj

)]
= 0 (5.29)

1Since the Napierian logarithm is a monotonically increasing function on R+, if Pi is a maximum of ln(L) it will also
be maximum of L
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where the λk are defined by

λ0,i ≡ a1 cos ϕi + b1 sin ϕi + a2 cos 2ϕi + b2 sin 2ϕi + . . . (5.30)

λx,i ≡ hεi Ay,i
(
Syx,i cos ϕi − Sxx,i sin ϕi

)
(5.31)

λy,i ≡ Ay,i
(
Syy,i cos ϕi − Sxy,i sin ϕi

)
(5.32)

λz,i ≡ hεi Ay,i
(
Syz,i cos ϕi − Sxz,i sin ϕi

)
(5.33)

Assuming small asymmetries and taking the Taylor expansion up to the second order of the

Napierian logarithm:

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n!
(5.34)

we obtain:

N

∑
i=1

∂

∂Pj

λ0,i + ∑
j=x,y,z

λj,iPj −

(
λ0,i + ∑j=x,y,z λj,iPj

)2

2

 = 0

N

∑
i=1

∂

∂Pj

(
λ0,i −

1
2

λ2
0,i + ∑

j=x,y,z
λj,iPj − ∑

j=x,y,z
λj,iPjλ0,i − ∑

j=x,y,z
λj,iPj ∑

k=x,y,z
λk,iPk

)
= 0

N

∑
i=1

λj,i (1− λ0,i) =
N

∑
i=1

∑
k=x,y,z

λj,iλk,iPk

We can rewrite the above system of linear equations in a matrix form B = AP:

N

∑
i=1


λx,i (1− λ0,i)

λy,i (1− λ0,i)

λz,i (1− λ0,i)


︸ ︷︷ ︸

B

=
N

∑
i=1


(λx,i)

2 λx,iλy,i λx,iλz,i

λy,iλx,i
(
λy,i
)2

λy,iλz,i

λz,iλx,i λz,iλy,i (λz,i)
2


︸ ︷︷ ︸

A


Px

Py

Pz


︸ ︷︷ ︸

P

(5.35)

The statistical error on the polarization components are given by the diagonal elements of the

covariant matrix A−1:

∆Pj =
√

(A−1)jj , j = x, y, z (5.36)
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The statistical error on the polarization component ratio R (= KPt/P` ≡ KPx/Pz), with K the

kinematic factor: K = Ee+E′e
2Mp

tan ϑe
2 , is then given by:

(
∆R
R

)2
=

√(
∆Pt

Pt

)2
+
(

∆P`

P`

)2
− 2

ρ

PtP`
(5.37)

with the correlation factor or covariance between Pt and P` given by:

ρ =
(

A−1
)

xz
(5.38)

5.4 False Asymmetries

Until now, we assumed and treated the false asymmetry as an additive helicity-independent term

in the angular distribution of events. A more general form of this distribution, with the inclusion

of a multiplicative false asymmetry term A(ϕ) is given by:

f± = A(ϕ)
1

2π
(1± Py cos ϕ∓ Px sin ϕ + λ0)

= A(ϕ)
1

2π
(1± Py cos ϕ∓ Px sin ϕ + a1 cos ϕ + b1 sin ϕ + a2 cos 2ϕ + b2 sin 2ϕ) (5.39)

A multiplicative false asymmetry will induced helicity-dependent high order (>1) terms and mod-

ify the lowest order. However, it has been shown [60] that the false asymmetries induced by a

multiplicative term cancel out to all order using the weighted sum estimators, as we do in the

maximum likelihood method, under the assumption A(ϕ) = A(ϕ + π) which is satisfied through

the helicity reversal. The fit parameters of order >1 in the difference spectra are two orders of mag-

nitude smaller than the ones of the first order which support a cancellation of any multiplicative

false asymmetry.

Based on the formalism of [60] we can see what is the effect on the polarization estimator of

an additive false asymmetry. The polarization estimators P̂x, P̂y are given by the difference of the

weighted sum estimators of the coefficients of sin ϕ and cos ϕ of both helicity states respectively:
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P̂x = −1
2
(B̂+ − B̂−) (5.40)

P̂y =
1
2
(Â+ − Â−) (5.41)

The B̂± and Â± satisfy the matrix equation:


2ϕ∫
0

f± cos2 ϕ dϕ
2ϕ∫
0

f± cos ϕ sin ϕ dϕ

2ϕ∫
0

f± cos ϕ sin ϕ dϕ
2ϕ∫
0

f± sin2 ϕ dϕ


Â+

B̂+

 =


2ϕ∫
0

f± cos ϕ dϕ

2ϕ∫
0

f± sin ϕ dϕ

 (5.42)

Solving the integrals, inverting the matrix by neglecting the quadratic terms we obtain the estima-

tors Â± and B̂±: Â±

B̂±

 =

1− a2

2
s2

2
s2

2
1 +

a2

2


±Py + a1

∓Px + b1

 (5.43)

The polarization estimators are then given by:

P̂x =
b2

2
Py + Px

(
1 +

a2

2

)
(5.44)

P̂y =
b2

2
Px + Py

(
1− a2

2

)
(5.45)

We see that only the 2ϕ components of the additive false asymmetry modify the polarization

estimator. Knowing the a2 and b2 coefficients (by a Fourier analysis of the sum distribution

spectrum) we can correct for the additive false asymmetry. One can show that we need to apply a

correction of the form: f±(1 + λ0) in the weighted sum estimators to finally have:

P̂x = Px (5.46)

P̂y = Py (5.47)

This result is counter intuitive but if we were applying a correction of the form: f±(1− λ0) this
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would double the effect of the false asymmetry. In the analysis we binned the sum spectra in 14

bins of the scattering angle ϑFPP (see Table 5.3) and determined the Fourier coefficients up to the

third harmonic.

ϑFPP bins (◦) 1.7 3 5 7 10 13 15 17 20 23 26 29 32 35 40

Table 5.3: False asymmetry ϑFPP bins.

5.5 CH2 Analyzing power at p0 = 2.0676 GeV/c

The analyzing power Ay(ϑFPP, p) of the ~p + CH2 → one charged particle + X reaction, which

depicts the size of the asymmetries, was originally unknown. Despite the fact that it cancels out

in the polarization component ratio, since we measure hAyPt and hAyP` (as shown in Equation

5.48), it is a quantity of primary importance in the determination of the ratio of the longitudinal

polarization component to its Born value, P`/PBorn
`

R = K
6 hAy/
6 hAy/

Pt

P`
(5.48)

Assuming the knowledge of the Born value of P`, the analyzing power is determined by taking

the ratio between the measured asymmetry AyP` to P`. The Born value PBorn
` is expressed in terms

of the beam energy Ebeam, the momentum p and the fitted value of the polarization component

ratio obtained in this experiment.

Ay =
(AyP`)meas.

PBorn
` (Ebeam,p,R)

(5.49)

PBorn
` is given by:

PBorn
` (Ebeam,p,R) =

√
1− ε2 1

1 +
εR2

τ

(5.50)
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Recalling the expression of the proton kinetic energy: T =
√

p2 + M2 − M, τ and ε can be written

in terms of T and thus of p:

τ =
Q2

4M2 =
1

2M
Q2

2M︸︷︷︸
T

=
T

2M
(5.51)

ε requires a little bit more work. We start from its usual expression:

ε =
1

1 + 2(1 + τ) tan2 ϑe

2

(5.52)

From:

Q2 = 4EbeamE′e sin2 ϑe

2
⇒ sin2 ϑe

2
=

TM
2Ebeam (Ebeam − T)

(5.53)

and

1 + tan2 ϑ =
1

cos2 ϑ
=

1
1− sin2 ϑ

⇒ tan2 ϑe

2
=

sin2 ϑe

2

1− sin2 ϑe

2

(5.54)

we obtain:

tan2 ϑe

2
=

TM
2E2

beam − T (2Ebeam + M)
(5.55)

Therefore:

ε =
1

1 + (2M + T)
T

2E2
beam − T (2Ebeam + M)

(5.56)

We could have determined the analyzing power from the measured transverse polarization com-

ponent Pt. However Pt is known with a larger relative uncertainty than P`. The analyzing power

is parametrized as a function of the transverse momentum pT = p sin ϑFPP corrected for energy

loss up to the interaction vertex in the analyzer. A functional of the form Ay = ApB
TeCpD

T was

used where A, B, C, and D are the fit parameters. This parametrization has for effect to decrease

the statistical uncertainty of the result by giving less weight to small and large angle events. The

distribution of Ay as a function of pT for single, multiple track events and for the average of the

two types (all) is shown in Figure 5.3. We see a clear dichotomy between the distributions for

single-track and multiple-track events.
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Figure 5.3: Analyzing power distribution as a function of the transverse momentum pT at Q2 = 2.5
GeV2 for all single and multi-track events and all (single + multi).

The energy loss was calculated using the Bethe-Bloch formula [15]:

Eloss = Kz2 Z
A

1
β2

[
1
2

ln
(

2mec2β2γ2Tmax

I2

)
− β2 − ln

(
h̄ωp

I

)
+ ln(βγ)− 1

2

]
L (5.57)

where K = 0.307075 MeV g−1 cm2, I = 57.4 eV is the mean excitation energy, h̄ωp =
√

ρZ/A ∗

28.816 eV is the plasma energy, L (=54 cm for one analyzer) is the length of the absorber and Tmax

is the maximum kinetic energy which can be imparted to a free electron in a single collision given

by:

Tmax =
2mec2β2γ2

1 + 2γ
me

M
+
(me

M

)2 (5.58)

For CH2, Z/A = 0.57034 and the density ρ = 0.89 g/cm3, we obtain Eloss ≈ 112 MeV (224 MeV

for both analyzer). Translating this energy loss into a momentum loss we have for the corrected

momentum for energy loss after a passage through the whole width of first analyzer:

pcorr =
√

(γM− Eloss)2 − M2 ≈ 1.94 GeV/c (5.59)
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We obain pcorr = 1.81 GeV/c after a passage through the whole width of both analyzers. The effect

of this correction on the momentum is shown on Figure 5.4. As expected at the exit of the first

analyzer for a momentum central value of p0 = 2.0676 GeV/c and for ε = 0.152, the momentum

corrected for energy loss is about 1.94 GeV/c. The colours can be misleading but looking at the

colour scale we see that the protons scattered within the whole width of the analyzers more or less

uniformly. The width in momentum of this distribution, corresponds to the momentum width of

the kinematic (δ = (p− p0)/p0 = ±2%).

(a) FPP1 (b) FPP2

Figure 5.4: Momentum corrected for energy loss pcorr as a function of zclose for FPP1 and FPP2

L. S. Azghirey et al. [55], in an experiment in Dubna, Russia aiming at measuring analyzing

powers for the reaction ~p+CH2 at pp =1.75-5.3 GeV/c, found that the maximum analyzing power

behaves linearly with the inverse of the incident proton momentum:

Amax
y = α

1
p

+ β (5.60)

Figure 5.5 presents a comparison between the previous Dubna and Gayou [61] data and the results

from the GEpIII and GEp2γ experiments. If the empirical linear behaviour of Amax
y versus 1/p

(which is also seen for the average analyzing power) is observed, we see that the values obtained
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in the latest experiments are systematically higher. The equations of the straight lines are:

Amax
y = 0.3480

1
p

+ 0.029 for the GEp experiments (5.61)

Amax
y = 0.3707

1
p

+ 0.001 for the Dubna and Gayou data combined (5.62)

Figure 5.5: CH2 Analyzing power versus 1/p.

One possible explanation is the suppression of multi-track events. As we have seen above, the

analyzing power of multi-track events is significantly lower than the one of single-track events.

Assuming that in the experiment we suppress all the multi-track events, we can give a rough

estimate of the residual multiple-track event fraction in the Dubna sample. We read on Figure

5.3: Amax
y,single ≈ 0.2 and Amax

y,multi ≈ 0.1. At p=2.0676 GeV/c, in order to get the maximum analyzing

power value given by the Dubna and Gayou fit Amax
y,DG = 0.179, the fraction x of multiple-track

events must satisfy:

Amax
y,single(1− x) + Amax

y,multix = Amax
y,DG (5.63)

which gives x ≈ 20%. This rough estimate of the residual multi-track event fraction is high but

not unreasonable.



Chapter 6

Results

In this chapter, we will present the results for the polarization component ratio R and for the

longitudinal component P`. We will also describe the different uncertainties identified in the

analysis. Finally, after a comparison between the results and the available theoretical models, we

will present an empirical determination of the real parts of the TPEX amplitudes.

6.1 Matching Acceptance Cut

In order to have the same spin transport and the same analyzing power for each of the three

kinematic, we apply a matching acceptance cut at the focal plane (FP cut). We cut the acceptance

of the two largest ε points to match the smallest ε points (see Figure 6.1). As the HMS magnets

are operating in a point-to-point mode, selecting the trajectories at the focal plane within a cer-

tain acceptance ensures all the selected protons underwent the same spin transport through the

magnetic elements. Of course, depending on the kinematic, the acceptance defined by the cut is

not populated the same way, but all along the magnets it is defined by an envelope common to

all three kinematics. In Figure 6.1, the original acceptances for ε=0.635 and 0.785 (black dots) are

cut at δ = ±2% corresponding to the momentum acceptance of the ε=0.152 point, for reason of

clarity. Selecting the same acceptance at the focal plane for all the kinematics results in the similar

average Q2 at the 10−3 level (see Table 6.1).

138
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Figure 6.1: x f p versus y f p distribution showing the matching acceptance cut. The distributions
for ε = 0.635 and ε = 0.785 are shifted vertically by +20cm and -20cm in x f p and the original
acceptance in black are cut at δ = ±2% for reason of clarity.

ε = 0.152 ε = 0.635 ε = 0.773 ε = 0.791
<Q2> (GeV2) No FP cut 2.493 2.481 2.462 2.458

<Q2> (GeV2) FP cut 2.493 2.490 2.490 2.489

Table 6.1: Average Q2 with and without the FP cut.

The maximum Amax
y ≈ 0.2 and the average analyzing power Āy behaves like 1/p, thus we can

look at the average momentum for the three kinematics and check the stability of the results. Table

6.2 shows the ratio of the average proton momentum for ε = 0.152 to one of the high ε points with

and without the matching acceptance cut. The values are the same at the 10−3 level when we apply

the cut. Therefore we expect the same stability for the analyzing power although we can not verify

it experimentally. The stability of the analyzing power is not significant for the determination of

the polarization component ratio R (since it exactly cancels outs), but it is of primary importance

to the extraction of the longitudinal component of the polarization transferred P`.
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pε=0.152
ave /pε=0.635

ave pε=0.773
ave /pε=0.152

ave pε=0.791
ave /pε=0.152

ave

No cut 1.0045 1.0107 1.0107
Match. Acc cut 1.0018 1.0016 1.0019

Table 6.2: Ratio of the average proton momenta with and without matching acceptance cuts.

6.2 Zclose Dependence of Ay and R

Before presenting the results for the longitudinal component P`, we will study the zclose depen-

dence of the average analyzing powerĀy and the polarization component ratio. Figure 6.2 shows

that Āy is constant for the first 2/3 of the width of both analyser blocks before it starts to drop.
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Figure 6.2: Āy versus zclose for FPP1 and FPP2. The dotted line shows the limit above which the
events are cut for the longitudinal polarization component extraction.

In contrast, R is constant within the whole width of both FPPs as expected since it is independent

of the analyzing power (see Figure 6.3). We interpret this decrease in the average analyzing power

as a consequence of mistracked events. We see in the ϕFPP versus zclose distribution displayed in

Figure 6.4, the presence of some peaks at very specific positions. A close look at the figure reveals

that the peaks appear every 45◦ and that each peak is located at a position z corresponding to

a drift chamber plane of detection. A simple Monte Carlo simulation showed that the events in

these very localized peaks came from Coulomb events for which the FPP track contains at least

two hits with a wrong left/right determination. As a results, they are mostly reconstructed in

the chambers but also "leak" into the analyzer block as we see in the figure. These wrongly re-
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Figure 6.3: R versus zclose for FPP1 and FPP2.

constructed Coulomb events are also characterized by a smeared scattering angle distribution:

0◦ ≤ ϑFPP ≤ 6◦. Since they are originally Coulomb events, they do not carry any analyzing power

and thus dilute the analyzing power in the last third of the analyzer blocks. Therefore for P`, we

apply a cut in zclose (represented by the vertical dashed line in the Figures 6.2a) and b)) to only

select the region of the CH2 blocks where the analyzing power is constant. A way to suppress, or

at least greatly reduce these mistracked events in future experiments using the FPP would be to

add a plane to each chamber. This would produce a greater redundancy in the track coordinates

and insure a better left-right determination.

6.3 Final Cuts

Global Cuts

Loose cuts were applied on the target slopes x′tgt and y′tgt:

|x′tgt| ≤ 0.08 (6.1)

|y′tgt| ≤ 0.04 (6.2)
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Figure 6.4: ϕFPP versus zclose distribution for the first analyzer block. The solid lines represent the
physical width of the block and the drift chambers. The dotted line shows the limit above which
the events are cut for the longitudinal polarization component extraction.

Matching Acceptance Cut

For both extractions of R and the longitudinal polarization component P`, the matching acceptance

cut (FP cut) was applied. (see Figure 6.1)

FPP Scattering Cuts

Cut were applied on the number of tracks Ntrack, the distance of closest approach sclose, the polar

scattering angle ϑFPP and the z-coordinate of the interaction point in the analyzer zclose for both

FPP1 and FPP2:

N
FPP1(2)
track = 1 (6.3)

s
FPP1(2)
close ≤ 3 (6) cm (6.4)

1.7(2.5)◦ < θFPP1(2)
< 40◦ (6.5)
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For the extraction of R :

112 cm ≤ zFPP1
close ≤ 168 cm (6.6)

210 cm ≤ zFPP2
close ≤ 266 cm (6.7)

For the extraction of P` :

112 cm ≤ zFPP1
close ≤ 150 cm (6.8)

210 cm ≤ zFPP2
close ≤ 247 cm (6.9)

The conetest was of course also applied, it rejects 0.75% of the elastic events satisfying the FPP

scattering and the acceptance cuts described above.

Elastic Event Selection Cuts

The elliptical cut and a cut on pp
miss, as described in Chapter 4, were applied. These cuts are

summarized in Table 6.3.

ε xcut, cm ycut, cm pp
miss cut, %

0.152 ≤ 9.9 ≤ 23.9 ≤ 0.672
0.152 ≤ 9.1 ≤ 24.2 ≤ 0.672
0.635 ≤ 5.9 ≤ 21.3 ≤ 0.138
0.773 ≤ 3.9 ≤ 13.9 ≤ 0.161
0.791 ≤ 3.7 ≤ 12.6 ≤ 0.161

Table 6.3: Elastic event selection cuts used in the final analysis.

The two rows for ε=0.152 correspond to the two parts of the kinematic with two different beam

energies. Being kinematically very close, the separate study of these two parts will not be detailed

here, but it has been checked that they give statistically compatible results.
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6.4 False Asymmetry Correction

As mentioned in the previous chapter, the false asymmetry coefficients were determined by a

Fourier analysis of the sum spectra up to the third harmonic. The data were binned in 14 bins

of the scattering angle ϑFPP. The analysis code was run a first time without implementing the

λ0 term in the maximum likelihood function (see equation 5.30) and then a second time with it.

The difference of the two results gives a small negative correction in R of at most |∆R| ≤ 0.012

as shown in Table 6.4. On the contrary, the correction to P` is small and positive as displayed in

Table 6.5.

ε = 0.152 ε = 0.635 ε = 0.773 ε = 0.791
∆R No FP cut -0.012 -0.011 -0.010 -0.009

∆R FP cut -0.012 -0.012 -0.011 -0.012

Table 6.4: Shift ∆R in R induced by the false asymmetries.

ε = 0.152 ε = 0.635 ε = 0.773 ε = 0.791
∆P` No zclose cut 0.009 0.005 0.004 0.004

∆P` zclose cut 0.002 0.001 0.001 0.001

Table 6.5: Shift ∆P` in the longitudinal polarization component P` induced by the false asymme-
tries.

As expected, the false asymmetries induce a shift in R which is kinematically independent. These

asymmetries come from the geometry, the acceptance and a residual misalignment of the detector

as well as detection efficiencies affected by a biased track reconstruction. The FP cut has almost

no influence on the correction in R. The zclose cut reduced the false asymmetry correction consid-

erably since we thereby suppressed mistracked events in the last third of the analyzer blocks.

6.5 Radiative Corrections

The ”standard" radiative corrections to the polarization transfer observables were calculated using

the model independent calculation of A. Afanasev et al. [14]. They consist of the vacuum polariza-

tion correction, the electron vertex correction and the internal and external Bremsstrahlung. The
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external Bremsstrahlung contribution to the polarization asymmetries is suppressed by reversing

the beam polarization. Unlike cross section measurements, polarization transfer experiments are

rather insensitive to radiative corrections. Indeed, polarization measurements are a ratio of a

polarized cross section σp to an unpolarized one σu:

σ
u,p
obs = (1 + δ)σ

u,p
0 + σ

u,p
B (6.10)

where δ is the radiative correction coming from the vertex and vacuum polarization correction

and σ
p,u
B is the unfactorized contribution from the Bremsstrahlung process. The relative correction

to the measured asymmetry is given by:

∆A ≡
σ

p
obs − σu

obs
σu

obs

=
(1 + δ)σ

p
0 σu

0 + σ
p
Rσu

0

(1 + δ)σu
0 σ

p
0 + σu

Rσ
p
0
− 1

=
δp − δu

1 + δ + δu
(6.11)

where δu,p = σ
u,p
B /σ

u,p
0 . The δ term can be as large as 30%, but it cancels exactly in the numerator.

This is why the radiative correction to the polarization observable are expected to be small and

much smaller than the corrections to the cross section. The Bremsstrahlung contribution can be

reduced drastically by applying a missing mass cut or inelasticity cut (this was done by the elastic

events selection). Furthermore, R being the ratio of two polarization asymmetries is then a ratio of

a ratio of cross section, and as a consequence, it will be even less sensitive to radiative corrections.

The radiative corrections to R were computed using the program MASCARAD developed and

writen by A. Afanasev [14]. Table 6.6 presents the small positive corrections ∆Rrad. found for the

different ε points. Because both parts of the highest ε are kinematically very close to each other,

the two inelasticity cuts are almost identical. Therefore, the radiative corrections were found to be

very similar and it was not important to separate them in this calculation. The corrections to the

longitudinal polarization components were found to be even smaller [14] and are not displayed

here.
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ε = 0.152 ε = 0.635 ε = 0.785

∆Rrad. 1.2×10−3 1.4×10−4 0.7×10−4

Table 6.6: Radiative corrections to R obtained from the program MASCARAD.

6.6 Polarization Component Ratio Results

In Chapter 3 it was shown (see Equation (3.11)) that the statistical uncertainties on the polarization

components are inversely proportional to the square root of the number of events as well as the

square of the analyzing power:

∆P ∝
1√
NA2

y

(6.12)

This behaviour can also be seen in Equation (5.35), since the diagonal elements of the covariant

matrix A−1 are proportional to (NhAy)2. The results of R with and without the FP cut and

corrected for the false asymmetries are given in Table 6.7.

ε = 0.152 ε = 0.635 ε = 0.773 ε = 0.791
R± ∆Rstat. No FP cut 0.695 ± 0.009 0.680 ± 0.007 0.684 ± 0.010 0.668 ± 0.008

R± ∆Rstat. FP cut 0.695 ± 0.009 0.688 ± 0.011 0.706 ± 0.018 0.684 ± 0.014

Table 6.7: Results for R corrected for the false asymmetries with and without the FP cut.

The FP cut has a significant effect on R by pulling it up for the highest ε points. However,

the results before and after the cuts are still statistically compatible. There is also a noticeable

difference between the results at ε = 0.773 and ε = 0.791 which are also statistically compatible.

The averages of the two parts with and without the FP cut are R = 0.674 ± 0.006 and R = 0.692 ±

0.011, respectively.

6.7 Longitudinal Component Polarization Results

Rather than looking at the longitudinal polarization component P` alone, it is customary in the

literature when studying the TPEX effect to consider its variation with ε with respect to its Born
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Figure 6.5: PBorn
` versus R

value PBorn
` . The Born value was calculated from the beam energy, the momentum and the fitted

value of R obtained in this experiment as described in Section 5.5. In the experiment, we are mea-

suring the asymmetry Pe AyP`. The beam polarization is known from the Möller measurements,

but we need to determine the analyzing power. As we are measuring the asymmetry at three

different values of ε, we cannot at the same time determine Ay and three values of P`. In the

limit ε → 0, the angular momentum conservation requires P` → 1 (seen in Equation 1.98) and is

independent of R [62]. Furthermore, from Figure 6.5 we see that at ε = 0.152, PBorn
` varies at most

by ±1.4% for 0 ≤ R ≤ 1 against ±5% and ±6.7% at ε = 0.635 and ε = 0.785. So its variation

around the value of R obtained in this experiment is negligible. Therefore, the first kinematic at

ε = 0.152 is used to determine Ay. Its average value, Āy, is found to be equal to:

Āy = 0.15260± 0.00038 (6.13)

Table 6.8 presents the P`/PBorn
` ratio results obtained with and without the zclose cut. The FP

cut was applied in both cases. The data show an enhancement in the ratio P`/PBorn
` up to 3.1%

±0.5% at high ε when both parts are combined. This effect is reduced by the zclose cut to 2.3%
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ε = 0.635 ε = 0.773 ε = 0.791 ε = 785 (ave.)
P`/PBorn

` ± stat. No zclose cut 1.012 ± 0.004 1.023 ± 0.008 1.035 ± 0.006 1.031 ± 0.005
P`/PBorn

` ± stat. zclose cut 1.008 ± 0.005 1.021 ± 0.009 1.024 ± 0.007 1.023 ± 0.005

Table 6.8: P`/PBorn
` results corrected for the false asymmetries with and without the zclose cut. The

last column shows the results of the two parts of the highest ε point averaged.

±0.6%. The application of a more severe zclose cut does not reduce this effect any further. Indeed,

selecting only the first third (18 cm) of both analyzers ,we obtained P`/PBorn
` =1.009 ± 0.007 for

ε = 0.635 and 1.029 ± 0.008 for ε = 0.785. In other words, we see an enhancement of 2.9% ±0.8%

at the highest ε. This result reflects the statistical fluctuations in the loss of 50% of the events with

respect to the nominal case where we keep the first thirds of both analyzers.

6.8 Systematic Uncertainties

The advantage of the ratio method, compared to individual determination of Pt and P` is that

beam polarization and the analyzing power cancel out exactly, reducing the sources of systematic

uncertainties significantly. As a consequence, the spin precession calculation makes the largest

contribution. Other sources are the proton momentum, the beam energy and the scattering az-

imuthal angle in the FPP; they have been accounted for in the analysis. For each source, an offset

was applied in both directions in the considered quantity and the average resulting shifts in R and

P` were recorded. Half of the false asymmetry correction was taken as the systematic contribution

from the false asymmetry for R and P`.

The nominal ∆δ = 0.1% momentum resolution of the HMS was taken as a systematic shift

in the proton momentum. Table 3.1 shows that the beam energy has an uncertainty of ∆Ebeam ≈

0.05%. A ϑFPP dependent systematic uncertainty was accounted for in the azimuthal FPP scatter-

ing angle ϕFPP. With estimated uncertainies of 0.1 mrad in the slopes x′ and y′ of a track in the

FPP, the uncertainty ∆ϕFPP in ϕFPP behaves like 0.14 mrad/ sin ϑFPP.

To estimate the sensitivity of R to the dispersive precession angle χθ and the non-dispersive

precession angle χφ, we use the Equation (5.10) with Pn = 0. Solving for the polarization compo-

nents at the target Pt and P`, taking their ratio in the limit χφ → 0 (since along the central ray the
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Figure 6.6: Kinematic factor K versus ε. The dots represent the three ε values of interest during
the experiment.

average χφ overlthe full acceptance ≈ 0) we obtain:

Pt

P`
≈ −χφ − sin χθ

PFPP
t

PFPP
`

(6.14)

The uncertainty due to the non dispersive precession angle is directly proportional to χφ = γκφbend

whereas the contribution of χθ enters as sin χθ . Therefore R will be less sensitive to variation in

the dispersive bend angle than to the non dispersive one. The uncertainty in R due to the non dis-

persive bend angle depends upon the kinematics through the kinematic factor K =
√

τ(1 + ε)/2ε

in front of the ratio of the polarization components:

∆Rφbend ≈ γκKφbend (6.15)

The uncertainty due to φbend will follow the evolution of K with respect to ε. From Figure 6.6

we expect the uncertainty to be almost twice as large at small ε as at the largest ε considered in

the experiment. A misalignment in the quadrupoles with respect to the central axis results in an

uncertainty in φbend. A dedicated study, aiming at quantifying the possible quadrupole offsets in
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θbend (mrad) φbend (mrad) Ebeam (%) δ (%) ϕFPP (mrad/sin ϑFPP)
2 0.5 0.5 0.3 0.14

Table 6.9: Offsets applied in θbend, φbend, Ebeam, δ and ϕFPP in the determination of the systematic
uncertainties.

ε = 0.152 ε = 0.635 ε = 0.785
∆θbend 0.0018 0.0018 0.0019
∆φbend 0.0102 0.0061 0.0058
∆Ebeam 0.0015 0.0001 5.8×10−5

∆δ 0.0036 4.4×10−5 0.0002
∆ϕFPP 0.0039 0.0025 0.0024

False Asymmetry (F.A.) 0.0062 0.0062 0.0058
TOTAL 0.0133 0.0092 0.0088

Table 6.10: Absolute systematic uncertainties in R

term of the non-dispersive bend angle, was carried out. Extensive details can be found in [59]. An

uncertainty of 0.5 mrad in φbend and 2 mrad in θbend were found. Table 6.9 summarizes the shifts in

the different quantities applied to determine the systematic uncertainties in R and P`/PBorn
` . The

same shift in Ebeam and δ were applied in PBorn
` for additional systematic uncertainties. Unlike the

ratio R, the determination of P`/PBorn
` is sensitive to the beam polarization. Relative uncertainty of

1% (or 0.5% point to point) in the beam polarization from the Möller measurements was taken into

account. This uncertainty is by far the most dominant contribution in the systematic uncertainty

budget of P`/PBorn
` . Table 6.10 shows the systematic uncertainties in R obtained from the different

sources described above for the three ε points. The systematic uncertainty budget is dominated

by the contribution of the non-dispersive bend angle φbend as expected; but also by the false

asymmetry correction. The effect of the kinematic factor K is noticeable at small ε, it magnifies

the systematic uncertainty coming from an error on the non-dispersive bend angle by almost a

factor two relative to the highest ε point. This kinematic factor is also the cause of the strong

difference in the uncertainty coming from an error in δ for the different ε. Table 6.11 summarizes

the systematic uncertainties in P`/PBorn
` . Additional uncertainties on PBorn

` resulting from errors

in the beam energy and δ were included. We see that the systematics are dominated by the

uncertainties on the beam polarization; the uncertainties from the other sources are negligible.
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ε = 0.635 ε = 785
∆θbend 0.0020 0.0016
∆φbend 0.0004 0.0003

∆δ 3.9×10−5 0.0003
∆ϕFPP 0.0002 0.0002

False Asymmetry 0.0007 0.0005
∆Ebeam from PBorn

` 0.0008 0.0007
∆δ from PBorn

` 0.0003 0.0003
Möller 0.01 0.01
TOTAL 0.0104 0.0104

Table 6.11: Absolute systematic uncertainties in P`/PBorn
`

The point-to-point (p.t.p.) systematic uncertainties were estimated by summing in quadra-

ture the differences between each systematic contribution from two considered kinematics. For

example, the p.t.p. systematic uncertainties between the kinematic ε = 0.785 and ε = 0.152 will

be:

∆Rp.t.p. ≡
√

∑
i
(∆Rε=0.785

i − ∆Rε=0.152
i )2 (6.16)

where i stands for the source of systematic uncertainty: i = θbend, φbend, Ebeam, δ, ϕFPP and F.A..

Table 6.12 gives the p.t.p. systematics for R relative to the highest ε = 0.785 point.

ε = 0.152 ε = 0.635 ε = 0.785
∆Rp.t.p. 0.0060 0.0006 0.0000

Table 6.12: Point-to-point (p.t.p.) systematic uncertainties for R relative to the highest ε = 0.785
point.

The same procedure is repeated for P`/PBorn
` . The relative systematic uncertainty coming from

the beam polarization measurement is 0.5%. As we can see in Table 6.13, they largely dominate

the p.t.p. systematic uncertainty given, this time, relative to the smallest ε = 0.152 point.

ε = 0.635 ε = 0.785
∆P`/PBorn

` p.t.p. 0.0051 0.0052

Table 6.13: Point-to-point (p.t.p.) systematic uncertainties for P`/PBorn
` relative to the smallest

ε = 0.152 point.
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We checked the quality of the spin precession calculation by looking at the dependence of

R or AyP` upon the reconstructed target variables and δ. Figures 6.7, 6.8 and 6.9 show that R

and AyP` are independent of the reconstructed target variables and δ. The results obtained with

the simplistic dipole model and the COSY model are shown in open triangles and filled circles

respectively. In each panel, the data are integrated and displayed over the full acceptance of the

other three variables of the considered kinematic. The significant non-physical dependence of

R upon φtgt in the dipole approximation is due to the absence of quadrupole effect corrections

(which affect mainly Pt), since in the non-dispersive plane, the precession mixes Pt and P`. In the

dispersive plane, the quadrupoles do not affect Pt significantly and their effects on P` compensate

each other for trajectories with symmetric φtgt, which explains the weak dependence of R and P`

upon θtgt even in the dipole approximation. The similar dependence upon δ reflects the correlation

between momentum and scattering angle in two-body kinematics. A χ2 of at most 2 attests of the

excellent quality of these high statistics data and demonstrates a very good understanding of the

spin precession calculation through the HMS magnets.

6.9 Summary and Discussion of the Results

The final results for R and P`/PBorn
` are summarized in Table 6.14 together with the range of ε re-

sulting from the focal plane cut, the statistical uncertainties (stat.), the total systematic uncertainty

(tot.) and the point-to-point (p.t.p.) uncertainties relative to the highest ε point for R and to the

lowest ε point for P`/PBorn
` . The results of both parts of the highest ε point are averaged.

ε R± stat.± p.t.p. tot. P`/PBorn
` ± stat.± p.t.p. tot.

0.152 ±0.025
0.030 0.695± 0.009± 0.006 0.013 − − − −

0.635 ±0.013
0.017 0.688± 0.011± 0.001 0.009 1.007 ± 0.005 ± 0.005 0.010

0.785 ±0.008
0.010 0.692± 0.011± 0.000 0.009 1.023 ± 0.006 ± 0.005 0.011

Table 6.14: Kinematic table with the average kinematical parameter ε. Both the ratio R and
longitudinal polarization P` divided by Born approximation PBorn

` are given with statistical (stat.),
total systematic (tot.) and point-to-point (p.t.p.) uncertainties relative to the highest ε point for R
and to the lowest ε point for P`/PBorn

` .

Figure 6.10 shows the results for R as a function of ε together with all available theoretical
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Figure 6.7: R (left column) and AyPl (right column) versus δ, ytgt and the dispersive (vertical) θtgt,
non-dispersive (horizontal) φtgt angles for ε = 0.152 using the COSY model (filled circles) and the
dipole model (open triangles).
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Figure 6.8: R (left column) and AyPl (right column) versus δ, ytgt and the dispersive (vertical) θtgt,
non-dispersive (horizontal) φtgt angles for ε = 0.635 using the COSY model (filled circles) and the
dipole model (open triangles).
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Figure 6.9: R (left column) and AyPl (right column) versus δ, ytgt and the dispersive (vertical) θtgt,
non-dispersive (horizontal) φtgt angles for ε = 0.785 using the COSY model (filled circles) and the
dipole model (open triangles).
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estimates. The data of this experiment are represented by the filled circles and the open triangle

shows the result obtained from the GEpI experiment [8]. The point-to-point uncertainties are

represented by a black band at the bottom of the figure. The solid horizontal line represents the

linear fit to the data:

R = 0.6920± 0.0058 (6.17)

Allowing a linear variation in ε of the form aε + b gives a = 0.696± 0.012 and b = −0.008± 0.021

which gives statistically compatible results with the constant fit since the error on the slope is at

the same level as its value. The total systematic uncertainty imposes an overall uncertainty of the

order of 0.01 in our knowledge of the constant value. Another way to described the systematic

uncertainties is to considered the correlated systematic uncertainties obtained by subtracting the

point-to-point from the total systematics. Due to the small point-to-point uncertainties, the cor-

related uncertainties are found to be close to the total systematics. Thus if the point at ε = 0.785

moves up by 0.009 the points at ε = 0.152 and ε = 0.635 will move up by their respective corre-

lated uncertainties. Our confidence in the fit function is also reinforced by the small point-to-point

uncertainties, which tell us that the relative variation between the two extreme ε point is at most

0.006. We conclude that the data do not show any evidence of an ε-dependence of R at Q2=2.5

GeV2.

As described in Chapter 2, the theoretical estimates make widely varying predictions for the

ε-dependence of R. It is appropriate here to recall the main characteristics and predictions of

these different models. The hadronic model of Blunden et al. [30], where a number of the proton

intermediate states are taken into account via a complete calculation of the loop integral using

4-point Passarino-Veltman functions [32], shows a significant positive TPEX contribution at small

ε. Kondratyuk et al. [35] showed that the inclusion of higher resonances, such as the ∆, makes

almost no difference. In contrast, the partonic model of Afanasev et al. [23], where the TPEX

takes place in a hard scattering of the electron by a quark which is "embedded" in the nucleon

through the GPDs, predicts a significant negative TPEX contribution. The pQCD calculation of

Kivel and Vanderhaeghen [43], which uses two different light front proton distribution amplitude

parametrizations, one from Chernyak et al. (COZ) [37] and the other one from Braun et al. (BLW)
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Figure 6.10: R as a function of ε with statistical uncertainties, filled circles from this experiment
and open triangle from [8]. The point-to-point systematic uncertainties, shown with a band at the
bottom of the panel, are relative to the largest ε kinematic.

[44], presents a behaviour similar to the partonic model. The lower ε limit of applicability of

the GPD and pQCD models is shown by the vertical dotted line in Figure 6.10. The electron

structure function (SF) based model developed by Bystritskiy et al. [46], which takes into account

all high-order radiative corrections in the leading logarithm approximation, does not predict any

measurable ε-dependence of R. While in good agreement with the other available data, the GPD,

hadronic and pQCD models predict a deviation of R at small ε which is not seen in the results

presented here. Refering to Equation (1.101), R is directly proportional to the Born value RBorn =

GE/GM, so all the theory predictions which use a GE/GM value from [7, 8, 9], can be renormalized

by an overall multiplicative factor.

Figure 6.11 shows the results for P`/PBorn
` as a function of ε together with its estimates from

the hadronic and GPD models. The data show an enhancement of 2.3% ± 0.6% at large ε which

is not predicted by these models.

To ensure that this effect is not biased from the analyzing power determination, we applied

a series of cuts on the two variables that Ay depends upon: the proton momentum p and the
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Figure 6.11: P`/PBorn
` as a function of ε with statistical uncertainties. The point-to-point system-

atic uncertainties, shown with a band at the bottom of the panel, are relative to the smallest ε
kinematic. The star indicates the ε value at which the analyzing power is determined.

scattering angle ϑFPP. Figure 6.12 shows the ratio between the ϑFPP distributions of the different

kinematics. The ratio is constant for most of the accepted ϑFPP range but differences exist at small

and large angles between the smallest and the other two ε points. We applied a cut (represented

by the vertical lines in the figure) to reject events with ϑFPP ≤ 6◦ and ϑFPP ≥ 33◦. Additional cuts

are defined on the δ = (p − p0)/p0 distributions: the first to select the common width of the δ

acceptance: −1.3% ≤ δ ≤ 1.3% and the second, more drastic, to reject events with |δ| > 1%. They

are represented by solid and dashed lines respectively in the Figure 6.13. More severe cuts are

not possible because they would induce drastic statistical losses. Figure 6.14 displays the results

obtained with different combinations of the cuts described above. The points obtained with the

cuts are intentionally shifted in ε with respect to the nominal point for the benefit of clarity. All

results for a particular kinematic are very similar. In particular, depending on the kinematic,

the cuts have different effects. While the cuts (−1.3% ≤ δ ≤ 1.3%) and (−1.3% ≤ δ ≤ 1.3%,

6◦ ≤ ϑFPP ≤ 33◦) decrease the values of P`/PBorn
` at ε = 0.785, they increase it at ε = 0.635. The

most drastic combination of cuts represented by hollow circles in Figure 6.14 tends to decrease the
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Figure 6.14: Results of P`/PBorn
` obtained with various combinations of cuts in ϑFPP and δ. The

points are intentionally shifted in ε with respect to the nominal value for the benefit of clarity.

ratio resulting in an enhancement of 1.5%± 1% but still remains statistically compatible with the

nominal case shown with filled circles. The different sets of cuts result in an important increase

of statistical uncertainty which masks any actual variation of the ratio P`/PBorn
` .

6.10 Empirical Determination of the TPEX amplitudes.

This section presents the results of the analysis from [63] aimed at determining the TPEX ampli-

tudes YM, YE and Y3 defined in Chapter 1 from the published results presented in this thesis [64]

and from the Jlab Hall A cross section measurements [6].

To extract the 3 TPEX amplitudes, the knowledge of GE/GM and GM is needed. The problem

is under-determined since we only extract separately three observables: R and P`/PBorn
` from the

polarization measurements and σr/(µpGD)2 from the cross section measurements and we need

to determined five unknowns: GE/GM, GM and the three TPEX amplitudes. We make then two

assumptions. In the first, since no evidence of an ε-dependence was found so far in R, we take

the fitted value of R obtained in the experiment to fix GE/GM. In the second, the TPEX correction
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to the reduced cross section vanish in the Regge limit (ε = 1). The result of the linear fit to

the reduced cross section σr/(µpGD)2 allows the determination of GM. The P`/PBorn
` data were

fitted with two different functional forms (driven by a perturbative QCD calculation). Figure

6.15 shows the ε-evolution of the three TPEX amplitudes YM, YE and Y3 defined in Chapter 1.

The two colours represent the results for the two functional forms. In Chapter 1 we showed

Figure 6.15: TPEX amplitudes as a function of ε for the two fits of P`, with their 1σ statistical
error bands. Fit 1 : grey bands; Fit 2 : red bands. The horizontal bands at the bottom of the plots
indicate the systematic errors.

that the TPEX correction to the reduced cross section behave like σ
2γ
r ≈ YM + εY3. The linearity

of the cross section imposes that YM is linear for most of the ε-range [0,1]. At large ε, YM has

to become non-linear in order that YM + εY3 remains linear. The YM is the best constrained of

the TPEX amplitudes and is not sensitive to the functionals used to fit P`/PBorn
` since the two

sets of error bands overlap. The TPEX corrections to R being proportional to YE + Y3, the ε-

independence of R implies that YE and Y3 compensate each other. P`/PBorn
` entirely defines Y3

since its TPEX correction is dominated by Y3. The two fits to P`/PBorn
` gives similar results at
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large ε where the data exist but have different behaviours at small ε. These results are the best of

what we can possibly achieve with the presently available cross section and polarization data in

the determination of the TPEX amplitudes. A better accuracy in the polarization measurements is

needed to improve the determination of the YE and Y3 amplitudes.



Epilogue

This thesis presents the results of the E04-019 (GEp2γ) experiment carried out at Jefferson Lab

in Hall C. The experiment was a search for effects beyond the Born Approximation in elastic

~ep scattering at a fixed momentum transfer Q2 = 2.5 GeV2 spanning a wide range of ε. The

ratio R = −µp
√

(1 + ε)τ/2εPt/P` and the longitudinal polarization component P` were mea-

sured separately with statistical and systematic uncertainties of ∆R ≈ ±0.01(stat) ± 0.013(syst)

and ∆P`/PBorn
` ≈ ±0.006(stat)± 0.01(syst)

A longitudinally polarized electron beam was scattered elastically off a 20 cm liquid hydro-

gen target. A new electromagnetic calorimeter BigCal was used to detect the electrons while a

new focal plane polarimeter (FPP) detected the coincidence protons. The polarization of the recoil

proton was determined from the azimuthal asymmetry in the difference of the angular distribu-

tions for the two states of the beam helicity. Careful checks were made to ensure that the spin

precession calculation through the HMS magnets, which represents the main source of systematic

uncertainties, was understood and performed correctly.

While most of the theoretical models predict a deviation of R at small ε and are in good

agreement with the available cross section data, no evidence of an ε-dependence was found in R

at the 1.5% level. P`/PBorn
` shows an enhancement at large ε of 2.3±0.6% not predicted by any

models. The data presented in this thesis put more experimental constraints on the TPEX process

and allow for the first time an empirical determation of the real part of the TPEX amplitudes.

The study of the ε dependence of the polarization observables is not the only possible test to

put in evidence a possible TPEX effect. A direct signature of this effect can be accessed from the

ratio Re+e− ≡ σe+ /σe− of the e± cross sections. Indeed one can expand the reduced cross section
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in powers of the fine structure constant α:

σe−p,e+ p = α2M2
1γ ∓ α3M1γ<(M2γ) + · · · (6.18)

where M1γ is the one-photon amplitude and <(M2γ) is the real part of the two-photon amplitude.

The interference term between the Born and two-photon terms is T-odd. It changes sign when

one replaces electrons with positron. The ratio Re+e− becomes [65]:

Re+e− ≈ 1 + 4
<(M2γ)

M1γ
(6.19)

Most of the theoretical models presented in Chapter 2 [30, 23, 36, 43] predict a deviation of few

percents of this ratio from unity. There are several experiments aiming at measuring Re+e− . One

has already been carried out in Novossibirsk, Russia at VEPP-3 [66] and the analysis is underway;

another one at Jlab Hall-B [67] was recently completed (March 2011), and a third one, OLYMPUS

at DESY, Germany [68], is expected to run in 2012. Another test of the TPEX is to look at the

beam (target) single spin asymmetry accessible with a polarized (unpolarized) electron beam

scattering off an unpolarized (polarized) target. The polarization of either the beam or the target

is normal to the scattering plane. This type of measurement studies the imaginary (absorptive)

part of the TPEX amplitudes. Several experiments [69, 70, 71, 72] measured the transverse spin

beam asymmetry up to an electron beam energy of 3 GeV. A recent Jlab Hall A experiment, E-05-

015 [73], carried out in 2009 will provide additional data on the single spin target asymmetries.

Finally, the linearity of the reduced cross section is still an open question. In this regards, the

E05-017 experiment at Jlab Hall C [74], which measured the reduced cross section over a wide

range of Q2 and ε, will give important results about a possible non linearity of the Rosenbluth

plot.

This shows the intensive experimental efforts that have been deployed to understand the

TPEX. Only a combination of the results presented in this thesis and the forthcoming experiments

will provide the information required to fully understand, quantify and characterize the TPEX

mechanism in electron-proton scattering.



Appendix A

Dirac Matrices, Dirac Equation and

Trace Identities

A.1 Dirac Formalism

Dirac matrices are defined by the anti-commutation relation:

{γµ, γν} = γµγν + γνγµ = 2ηµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(A.1)

where ηµν is the metric tensor.

In the general case, there exists an infinity of solutions to the above relation. Considering the

4×4 matrices, the ensemble of solutions defines a Clifford algebra, noted Cl1,3C, where the 4

Dirac matrices form a basis. The choice of the basis implies a different representation of the Dirac
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matrices. We will consider the so-called standard Dirac representation:

γµ = (γ0,~γ) (A.2)

γ0 = γ0 =

I2 0

0 −I2

 (A.3)

~γ =

 0 ~σ

−~σ 0

 (A.4)

γ5 ≡ iγ0γ1γ2γ3 = γ5 =

 0 I2

I2 0

 (A.5)

with the 2×2 unit matrix I2 and the 3 Pauli spin matrices ~σ = (σx, σy, σz) defined as:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 (A.6)

The matrix γ5, given by a combination of Dirac matrices, obeys the anti-commutation relation:

{γ5, γµ} = 0 (A.7)

The Dirac representation is obtained from the Weyl representation, which is found when one

derives the Dirac equation from the irreductible representation of the Lorentz group, by the trans-

formation:

γ
µ
D = Uγ

µ
WU† (A.8)

where D, W stand for the Dirac and Weyl representation respectively and the unitary operator U

is

U =
1√
2

 1 1

−1 1

 (A.9)
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The gamma matrices satisfy the commutation relation:

σµν =
i
2
[γµ, γν] =

i
2
(γµγν − γνγµ) (A.10)

Finally, the Pauli matrices obey the commutation and anti-commutation relations:

[σi, σj] = 2iεijkσk (A.11)

{σi, σj} = 2δij (A.12)

where εijk is the Levi-Civita tensor:

εijk =


+1 if ijk is an even permutation of 123

−1 if ijk is an odd permutations of 123

0 otherwise

(A.13)

A.2 Dirac Equation

The Dirac equation for a free spin 1/2 particle with positive energy is:

(γµ pµ −m)u(p, s) = (p/−m)u(p, s) = (γ · p−m)u(p, s) = 0 (A.14)

The solutions of this equation are:

u(p, s) =
√

E + M

 ξs

~σ ·~p
E + M

ξs

 (A.15)

and its adjoint by: ū(p, s) ≡ u†(p, s)γ0
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The Dirac spinors obey the normalization condition:

∑
α

ūα(p, s1)uα(p, s2) = ū(p, s1)u(p, s2) = 2mδs1s2 (A.16)

∑
α

u†
α(p, s1)uα(p, s2) = u†(p, s1)u(p, s2) = 2Eδs1s2 (A.17)

(A.18)

The unpolarized spin sum is given by:

∑
s

ū(p, s)u(p, s) = p/−m (A.19)

In the polarized case, the spin sum of the Dirac spinors becomes:

∑
s

ū(p, s)u(p, s) = (p/−m)
(

1− γ5

2

)
(A.20)

It is important to point out that in the above expressions the Dirac indices are tacit. For example

an explicit form of the unpolarized spin sum is:

∑
s

(ū(p, s))α (u(p, s))β = (p/)αβ −m (I4)αβ (A.21)

with I4 the 4×4 unit matrix.
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A.3 Useful Trace theorems

Tr[γµ] = Tr[γ5] = 0

Tr[I4] = 4

Tr[ 6 a 6 b] = 4a · b

Tr[γ5 6 a 6 b 6 c 6 d] = 4iεαβρσaαbβcρdσ

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.22)

The trace of any odd number of gamma matrices is equal to zero.

This list of theorems is far from being exhaustive but only shows the identities used to carry out

the calculations of the polarization components in Chapter 1 and the unpolarized cross section in

the next Appendix section.



Appendix B

Unpolarized cross section calculation

using the trace technique

B.1 General definitions

The general expression of the unpolarized cross section for two-body scattering is:

dσ =
d3k′

(2π)32k′0
d3 p′

(2π)32p′0
(2π)4

4k · p
δ(4)(k + p− k′ − p′)|T̄|2 (B.1)

We consider elastic electron-proton scattering:

e(k, h) + p(p, λp) → e(k′, h′) + p(p′, λ′p) (B.2)

where h,h′,λp and λ′p are the helicities and adopt the definitions:

q = k− k′ = p′ − p, q2 = −Q2, P =
p + p′

2
, K =

k + k′

2
(B.3)
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and define the Mandelstam variables:

s = (p + k)2, t = q2 = −Q2 = (k− k′)2, u = (p− k′)2 = (k− p′)2 (B.4)

A possible T-matrix expansion is:

T =
e2

Q2 ū(k′, h)γµu(k, h)× ū(p′, λ′N)
(

G̃Mγµ − F̃2
Pµ

M
+ F̃3

γ · KPµ

M2

)
u(p, λN) (B.5)

We can also write the T-matrix as:

T̄2 =
e4

Q4 LµνWµν (B.6)

The leptonic (for a massless electron) and hadronic tensors, Lµν and Wµν are defined respectively

by:

Lµν =
1
2 ∑

h,h′
ū(k′, h′)γµu(k, h)ū(k, h)γνu(k′, h′)

=
1
2

Tr[γµ( 6 k + me)γν( 6 k′ + me)]

me→0=
1
2

Tr[γµ 6 kγν 6 k′] (B.7)

Wµν =
1
2 ∑

λN ,λ′N

ū(p′, λ′N)Γµu(p, λN)ū(p, λN)Γ∗νu(p′, λ′N)

=
1
2

Tr[Γµ(p/ + M)Γν(p/′ + M)] (B.8)

with Γµ, the vertex function: Γµ = G̃Mγµ − F̃2
Pµ

M + F̃3
γ·KPµ

M2

The factor 1
2 in (B.7) and (B.8) comes from the average over the initial spin states.
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B.2 Trace calculation

There is a total of 10 traces to calculate. One for the leptonic tensor and 9 for the hadronic tensor.

The amplitude F̃3 ,which exists only at the 2γ level and beyond, is of order e2 (relative to the factor

e2 in (B.5)). As a consequence we will neglect the term of order e4 proportional to |F̃3|2. Using the

identities in (A.22), the nine traces are then:

Tr[γµ 6 kγν 6 k′] = 2(kµk′ν + kνk′µ − (k · k′)gµν) (B.9)

Tr[γµ(p/ + M)γν(p/′ + M)] = Tr[γµ p/γν p/′] + M2Tr[γµγν]

= 4[pµ p′ν + pν p′µ + (M2 − p · p′)gµν] (B.10)

Tr[γµ(p/ + M)(p/′ + M)] = MTr[γµ p/ + γµ p/′]

= 4M(pµ + p′µ) (B.11)

Tr[(p/ + M)γν(p/′ + M)] = 4M(pν + p′ν) (B.12)

Tr[(p/ + M)(p/′ + M)] = Tr[p/p/′ + M2]

= 4(M2 + p · p′) (B.13)

Tr[γµ(p/ + M)( 6 k′+ 6 k)(p/′ + M)] = Tr[γµ p/( 6 k′+ 6 k)p/′ + γµ( 6 k′+ 6 k)M]

= Tr[γµ p/( 6 k′+ 6 k)p/′] + 4M2(kµ + k′µ)

= Tr[γµγα pαγβkβγτ p′τ + γµγα pαγβk′βγτ p′τ ] + 8M2Kµ

= 4(pαkβ p′τ + pαk′β p′τ)(gµαgβτ − gµβgατ + gµτ gαβ)

+8M2Kµ
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= 4[pµ(k · p′)− kµ(p · p′) + p′µ(k · p)] + same(k → k′)

+8M2Kµ

= 4[pµ(k · p′ + k′ · p′) + p′µ(k · p′ + k′ · p)

−2(M2 − p · p′)Kµ] (B.14)

Tr[( 6 k′+ 6 k)(p/ + M)γν(p/′ + M)] = 4[pν(k · p′ + k′ · p′) + p′ν(k · p′ + k′ · p)

−2(M2 − p · p′)Kν] (B.15)

Tr[(p/ + M)( 6 k′+ 6 k)(p/′ + M)] = Tr[p/( 6 k′+ 6 k)M] + Tr[M( 6 k′+ 6 k)p/′]

= 4M(k′ + k) · (p + p′)

= 16MK · P (B.16)

Tr[( 6 k′+ 6 k)(p/ + M)(p/′ + M)] = 4M(k′ + k) · (p + p′)

= 16MK · P (B.17)

B.3 Kinematic identities

We define the 4-momenta of the incident electron (proton) and scattered electron (proton), respec-

tively to be:

kµ = (k0, k) = (Ee, 0, 0, Ee) (B.18)

pµ = (p0, 0) = (M, 0, 0, 0) (B.19)

k′µ = (k′0, k) = (E′e, E′e sin θe, 0, E′e cos θe) (B.20)

p′µ = (p′0, p′) = (Ep,−pp sin θp, 0, pp cos θp) (B.21)

Those equations show that the incident electron direction is along the z axis, and that the xz plane

is the scattering plane. We are now ready to derive the dot products needed in the different trace
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calculations and other useful identities:

k · k′ =
Q2

2
(B.22)

p · p′ =
Q2

2
+ M2 (B.23)

k · p = k′ · p′ = MEe (B.24)

k′ · p = k · p′ = ME′e = MEe −
Q2

2
+ M2 (B.25)

The Mandelstam variables become:

s = M2 + 2k · p = M2 + 2k · p = M2 + 2MEe (B.26)

t = (k− k′)2 = (p− p′)2 = −2k · k′ = 2(M2 − p · p′) (B.27)

u = M2 − 2k · p′ = M2 − 2k′ · p (B.28)

Momentum and energy conservation give us:

ν

M2 ≡ s− u
4M2 =

Ee + E′e
2M

= K · P (B.29)

Q2 = 2EeE′e(1− cos θe) = 4EeE′e sin2 θe

2
(B.30)

= 2(p · p′ − M2) = 2Mν (B.31)

E′e =
Ee

1 + 2Ee
M sin2 θe

2

(B.32)

B.4 Leptonic-hadronic tensor contraction

We divide the hadronic tensor into 3 parts: Wµν = Wµν
M2 + Wµν

M3 + Wµν
23 . The first part contains

terms proportional to |G̃M|2, |F̃2|2 and a cross term G̃M F̃2. The second and third parts contain

only interference terms between G̃M and F̃3 and F̃2 and F̃3, respectively. Using (B.10) - (B.13) we
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find:

Wµν
M2 = 2|G̃M|2[pµ p′ν + pν p′µ+(M2 − p · p′)gµν] +

1
2
|G̃E − G̃M|2
(1 + τ)2M2 (pµ + p′µ)(pν + p′ν)(M2 + p · p′)

+
1

(1 + τ)
[
G̃M(G̃∗

E − G̃∗
M) + G̃∗

M(G̃E − G̃M)
]
(pµ + p′µ)(pν + p′ν)

(B.33)

The use of

|G̃E − G̃M|2 = |G̃E|2 + |G̃M|2 −
(
G̃∗

EG̃M + G̃EG̃∗
M
)

(B.34)

M2 + p · p′ = 2M2 +
Q2

2
= 2M2

(
1 +

Q2

4M2

)
= 2M2(1 + τ) (B.35)

gives:

Wµν
M2 = 2|G̃M|2[pµ p′ν + pν p′µ+(M2 − p · p′)gµν] +

|G̃E|2 − |G̃M|2
(1 + τ)

(pµ + p′µ)(pν + p′ν) (B.36)

The contraction of Lµν and Wµν
M2 is equal to:

LµνWµν
M2 =2(kµk′ν + kνk′µ − (k · k′)gµν)×

[
2|G̃M|2[pµ p′ν + pν p′µ + (M2 − p · p′)gµν]

+
|G̃E|2 − |G̃M|2

(1 + τ)
(pµ + p′µ)(pν + p′ν)

]
=4|G̃M|2

[
2((k · p)(k′ · p′) + (p · k′)(p′ · k))− 2(k · k′)(p · p′)− 4M2(k · k′)

+4(k · k′)(p · p′) + 2M2(k · k′)− 2(k · k′)(p · p′)
]

+ 2
|G̃E|2 − |G̃M|2

(1 + τ)

[
2k · (p′ + p)k′ · (p′ + p)− k · k′(p + p′)2

]
=8|G̃M|2

[
(k · p)(k′ · p′) + (p · k′)(p′ · k)− M2k · k′

]
+ 4

|G̃E|2 − |G̃M|2
(1 + τ)

[
k · (p′ + p)k′ · (p′ + p)− k · k′(M2 + p · p′)

]
(B.37)
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The contraction of Lµν and Wµν
M3 is equal to:

LµνWµν
M3 = (kµk′ν + kνk′µ − (k · k′)gµν)×

[
G̃M F̃∗3

M2

[
pµ(k · p′ + k′ · p′) + p′µ(k · p + k′ · p)

+(M2 − p · p′)(kµ + k′µ)](pν + p′ν)
]
+ G̃∗

M F̃3same(µ → ν)
]

=
G̃M F̃∗3 + G̃∗

M F̃3

M2

[
[(k · p)k′ · (p + p′) + k · p + p′(k′ · p)− (k · k′)p · (p + p′)][k · p′ + k′ · p′]

+[k · p′k′ · (p + p′) + k · (p + p′)k′ · p′ − (k · k′)p′ · (p + p′)][k · p′ + k′ · p]

+ [k · (k + k′)k′ · (p + p′) + k · (p + p′)k′ · (k + k′)− (k · k′)(p + p′) · (k + k′)]︸ ︷︷ ︸
=0

[M2 − p · p′]


(B.38)

The contraction of Lµν and Wµν
23 is equal to:

LµνWµν
23 = −(kµk′ν + kνk′µ − (k · k′)gµν)

F̃2 F̃∗3 + F̃∗2 F̃3

2M2 (k′ + k) · (p + p′)(pµ + p′µ)(pν + p′ν)

= −
F̃2 F̃∗3 + F̃∗2 F̃3

M2 (k′ + k) · (p + p′)︸ ︷︷ ︸
4ν

[k · (p + p′)k′ · (p + p′)− k · k′(M2 + p · p′)]

= −4ν
F̃2 F̃∗3 + F̃∗2 F̃3

M2 [k · (p + p′)k′ · (p + p′)− k · k′(M2 + p · p′)] (B.39)

Using the relations (B.22) - (B.25) we find:

LµνWµν
M2 = 8|G̃M|2

[
M2E2

e +
(

MEe −
Q2

2

)2

− M2Q2

2

]

+4
|G̃E|2 − |G̃M|2

(1 + τ)

[(
2MEe −

Q2

2

)2

−Q2M2(1 + τ)

]

= 8
{
|G̃M|2

[
2M2E2

e −Q2MEe −
M2Q2

2
+ Q2M2τ

]
+
|G̃E|2 − |G̃M|2

(1 + τ)

[
2M2E2

e −Q2MEe −
M2Q2

2

]}
= 8M2

[
|G̃M|2Q2τ +

|G̃E|2 + τ|G̃M|2
(1 + τ)

(
2E2

e −
Q2Ee

M
− Q2

2

)]
(B.40)
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LµνWµν
M3 =

G̃M F̃∗3 + G̃∗
M F̃3

M2

[(
2MEe −

Q2

2

)
MEe

(
2MEe −

Q2

2

)
+
(

MEe −
Q2

2

)
×
(

2Ee −
Q2

2

)2

−Q2
(

2MEe −
Q2

2

)(
2M2 +

Q2

2

)]

=
G̃M F̃∗3 + G̃∗

M F̃3

M2

(
2MEe −

Q2

2

)[
2
(

2MEe −
Q2

2

)2

−Q2
(

2M2 +
Q2

2

)]

= 4
(
G̃M F̃∗3 + G̃∗

M F̃3
) (

2MEe −
Q2

2

)(
2E2

e −
Q2Ee

M
− Q2

2

)
= 8ν

(
G̃M F̃∗3 + G̃∗

M F̃3
) (

2E2
e −

Q2Ee

M
− Q2

2

)
(B.41)

The last term between brackets in (B.37) is the same as the term between brackets in (B.39). So we

can directly rewrite the contraction of Lµν and Wµν
23 :

LµνWµν
23 = −8ν

(
F̃2 F̃∗3 + F̃∗2 F̃3

) (
2E2

e −
Q2Ee

M
− Q2

2

)
(B.42)

From (B.30) and (B.32) it follows:

2E2
e =

Q2

2sin2 θ
2

(
1 +

2Ee

M
sin2 θ

2

)
=⇒ 2E2

e −
Q2Ee

M
− Q2

2
=

Q2

2
cot2 θe

2

(B.43)

Futhermore:

F̃2 F̃∗3 + F̃∗2 F̃3 = −
(
(G̃E − G̃M)F̃∗3 + (G̃∗

E − G̃∗
M)F̃3

) 1
1 + τ

= −
(
(GE + δG̃E − GM − δG̃M)F̃∗3 + (GE + δG̃∗

E − GM − δG̃∗
M)F̃3

) 1
1 + τ

= −2
GE − GM

1 + τ
<(F̃3) (B.44)
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G̃M F̃∗3 + G̃∗
M F̃3 =

(
GM + δG̃M

)
F̃∗3 +

(
GM + δG̃∗

M
)

F̃3

= 2GM<(F̃3) (B.45)

|G̃E|2 = G2
E + 2GE<(δG̃E) (B.46)

|G̃M|2 = G2
M + 2GM<(δG̃M) (B.47)

Where < stands for the real part

The total contraction of Lµν and Wµν is then:

LµνWµν = 8M2Q2 cot2 θe

2

[
G2

E + 2GE<(δG̃E) + τ(G2
M + 2GM<(δG̃M))

2(1 + τ)

+τ tan2 θe

2
(G2

M + 2GM<(δG̃M)) +
ν

M2<(F̃3)
(

GM − GE − GM
1 + τ

)]
(B.48)

B.5 Unpolarized cross Section

We can show that the differential cross section for the reaction is:

dσ

dΩe
=

¯|T|2
64π2M2

(
E′e
Ee

)2

=
LµνWµν

64π2M2

(
e
Q

)4 (E′e
Ee

)2

(B.49)

Using (B.30) and e4 = (4πα)2 we obtain:

dσ

dΩe
=

α2

4E2
e sin4 θe

2

E′2
Ee

cos2 θe

2︸ ︷︷ ︸
σMott

[
G2

E + 2GE<(δG̃E) + τ(G2
M + 2GM<(δG̃M))

(1 + τ)

+2τ tan2 θe

2
(G2

M + 2GM<(δG̃M)) +
2ν

M2<(F̃3)
(

GM − GE − GM
1 + τ

)]
(B.50)
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With ε =
(

1 + 2(1 + τ) tan2 θe
2

)−1
, (B.50) becomes:

dσ

dΩe
= σMott

τ

ε(1 + τ)

[
(G2

E + 2GE<(δG̃E))
ε

τ
+ τ(G2

M + 2GM<(δG̃M))

+
ε(1 + τ)

τ

2ν

M2<(F̃3)
(

GM − GE − GM
1 + τ

)]

= σMott
τ

ε(1 + τ)

[
(G2

E + 2GE<(δG̃E))
ε

τ
+ τ(G2

M + 2GM<(δG̃M))

+2
νε

τM2

(
GE<(F̃3)− GM<(F̃3) + (1 + τ)GM<(F̃3)

)]

= σMott
τ

ε(1 + τ)

[
G2

M +
ε

τ
G2

E + 2GM<
(

δG̃M +
νε

M2 F̃3)
)

+2
ε

τ
GE<

(
δG̃E +

ν

M2 F̃3)
)]

(B.51)

The reduced unpolarized cross section including the two-photon exchange correction is then:

σr = G2
M +

ε

τ
G2

E + 2GM<
(

δG̃M +
νε

M2 F̃3)
)

+ 2
ε

τ
GE<

(
δG̃E +

ν

M2 F̃3)
)

(B.52)



Appendix C

FPP Scattering Quantities

Reconstruction

In this appendix, we will derive the expressions for the scattering quantities in the FPP: the polar

scattering angle ϑFPP, the azimuthal scattering angle ϕFPP, the distance of closest approach sclose

between the incoming and outgoing track, and the z-coordinate of the point of closest approach

zclose.

C.1 Tracks Equations

Giving two tracks in the space D1 and D2, two points P1 at z = z1 and P2 at z = z2 belonging to

D1 and D2 respectively, have for coordinates:

P1 :


m1

xz1 + x1

m1
yz1 + y1

z1

 , P2 :


m2

xz2 + x2

m2
yz1 + y2

z2



with m1,2
x ≡ dx1,2

dz
and m1,2

y ≡ dy1,2

dz
the slope in x and y of the tracks D1 and D2 respectively.
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The unit vectors of D1 and D2 are given by:

û1 :
1

N1


m1

x

m1
y

1

 , û2 :
1

N2


m2

x

m2
y

1


with N1 and N2 the normalization factors:


N1 =

√
(m1

x)2 + (m1
y)2 + 1

N2 =
√

(m2
x)2 + (m2

y)2 + 1

C.2 z-coordinate zclose of the point of closest approach

If the distance between P1 and P2 is the distance of closest approach, the vector
−−→
P1P2 and the unit

vectors û1 and û2 must satisfy the relations:


û1 ·

−−→
P1P2 = 0

û2 ·
−−→
P1P2 = 0

which is equivalent to:



m1
x

N1
(m1

xz1 + m2
xz2 + x1 − x2) +

m1
y

N1
(m1

yz1 + m2
yz2 + y1 − y2) +

1
N1

(z1 − z2 = 0

m2
x

N2
(m1

xz1 + m2
xz2 + x1 − x2) +

m2
y

N2
(m1

yz1 + m2
yz2 + y1 − y2) +

1
N2

(z1 − z2) = 0
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Solving for z1 and z2 we obtain:

z1 =
(x1 − x2)

[
m1

x(1 + (m2
y)2)−m2

x(1 + m1
ym2

y)
]
+ (y1 − y2)

[
m1

y(1 + (m2
x)2)−m2

y(1 + m1
xm2

x)
]

2(1 + m1
xm2

x + m1
ym1

y)− N2
1 − N2

2 − (m1
xm2

y −m1
ym2

y)2

z2 =
(x1 − x2)

[
m1

x(1 + m1
ym2

y)−m2
x(1 + (m1

y)2)
]
+ (y1 − y2)

[
m1

y(1 + m1
xm2

x)−m2
y(1 + (m2

x)2)
]

2(1 + m1
xm2

x + m1
ym1

y)− N2
1 − N2

2 − (m1
xm2

y −m1
ym2

y)2

The z-coordinate zclose of the point of closest approach is then given by:

zclose =
z1 − z2

2
(C.1)

C.3 Distance of closest approach sclose

The distance of closest approach is equal to the magnitude of
−−→
P1P2:

sclose ≡ ||−−→P1P2|| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (C.2)

C.4 Polar scattering angle ϑFPP

The polar scattering angle between D1 and D2 is simply related to the dot product of the unit

vector of the incident and scattered tracks:

ϑFPP = arccos (û1 · û2) (C.3)

C.5 Azimuthal scattering angle ϕFPP

To calculate the azimuthal angle between the incident and scattered tracks, we rotate both tracks

so that the incident track is the new z-axis. We previously defined the unit vector of the incident

and scattered track to be û1 and û2 respectively. Let v̂1 and v̂2 be the unit vectors of the rotated

incident and scattered track respectively so that: v̂1,2 = Mû1,2 with M the rotation matrix given
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by:

M =


cos α − sin α sin β − sin α cos β

0 cos β − sin β

sin α cos α sin β cos α cos β



with m1
x =

tan α

cos β
and m1

y = tan β The azimuthal scattering angle ϕFPP is then given by:

ϕFPP =
v̂y

2
v̂x

2
=

cos βûy
2 − sin βûz

2

cos αûx
2 − sin α sin βûy

2 − sin α cos βûz
2

(C.4)

C.6 Cone-test

A rectangular detector such as the FPP drift chambers will induce false asymmetries in the az-

imuthal angle. In order to suppress this effect a cone-test is applied. It requires that the full

ellipse described by the intersection of the scattering cone and the plane of detection, lies within

the chamber’s acceptance.

Mathematically, this is derived as follows: the slopes mx and my in x and y respectively of the

incident track, the scattering angle ϑ and the z-coordinate of the point of closest approach zclose

of the scattered track are known. The intersection between the scattering cone (with an opening

angle equal to 2ϑ) and the plane of detection is an ellipse for non perpendicular tracks or a circle

otherwise. For this ellipse to lie within the chamber acceptance, the distances X1 = xclose + x1 and

X2 = xclose + x2 (see figure ) need to be contained in the chamber active area. The coordinates of

the interaction vertex M are (xclose = x f p + x′f pzclose, yclose = y f p + y′f pzclose, zclose). Figure C.1 only

shows a cut in the x direction, a similar derivation can be done in the y direction leading to the

distances Y1 and Y2. According to the figure, with mx = tan ϕ:
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X1 = xclose + Z (tan ϕ− tan (ϕ− ϑ))

= xclose + Z
(

tan ϕ− tan ϕ− tan ϑ

1 + tan ϕ tan ϑ

)
= xclose + Z

(
mx −

mx − tan ϑ

1 + mx tan ϑ

)

X2 = xclose + Z (tan (ϕ + ϑ)− tan ϕ)

= xclose + Z
(

tan ϕ + tan ϑ

1− tan ϕ tan ϑ
− tan ϕ

)
= xclose + Z

(
mx + tan ϑ

1−mx tan ϑ
−mx

)

Similarly in the y-direction:

Y1 = yclose + Z
(

my −
my − tan ϑ

1 + my tan ϑ

)

Y2 = yclose + Z
(

my + tan ϑ

1−my tan ϑ
−my

)

with z = zplane − zclose the distance between the interaction vertex and the last plane of the drift

chamber considered. A track will pass the cone-test if the following conditions are satisfied:

X1 ≤ xcenter +
Dx

2
(C.5)

X1 ≥ xcenter +
Dx

2
(C.6)

X1 ≤ xcenter +
Dy

2
(C.7)

Y1 ≥ ycenter −
Dy

2
(C.8)

with the (xcenter, ycenter) the coordinates of the center of the FPP drift chamber
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Incident track

θ

θ

φ

z

xplane

z

X2

X1x1

x2

M (xclose, yclose, zclose)

Figure C.1: Diagram showing the cone-test in the FPP.
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