
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M O D IFIC A TIO N S OF SPACETIM E A N D  PARTICLE PH Y SIC S B EY O N D

TH E STA ND A RD M O D EL

A Dissertation 

Presented to 

The Faculty of the Department of Physics 

The College of William and Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy

by

Justin M. Conroy 

2005

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



UMI Number: 3201114

IN F O R M A T IO N  TO  U S E R S

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a com plete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be rem oved, a note will indicate the deletion.

®

UMI
UMI Microform 3201114  

Copyright 2006  by ProQ uest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Com pany  
300  North Zeeb  Road  

P.O. Box 1346  
Ann Arbor, Ml 4 81 06 -1 34 6

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

Justin iroy

Approved by the Committee, August 2005

Christopher D. Carone, Chair

Carl E. Carlson

Joshua Erlich

Marc Sher

Nahum Zobin 
M ath Department

11

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



D ED ICA TIO N

I present this dissertation in honor of my parents, James and Sharonlee Conroy.

iii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Table of Contents

Acknowledgments........................................................................................................ vi

List of Tables . . . . ...........................................................  vii

List of F ig u res ..................    viii

Abstract..........................................................................    x

CHAPTER

1 Introduction.................................................................................................... 2

1.1 The Standard Model: Successes arid S h o rtc o m in g s ...............................  2

1.2 Going Beyond the Standard M o d e l .............................................................. 6

2 Phenomenology of Lorentz-Conserving Noncommutative Q E D   14

2.1 In troduction .......................................................................................................  14

2.2 Algebra and QED F o rm u la tio n ....................................................................  16

2.3 Collider S ig n a tu re s .........................................................................................  22

2.3.1 Dilepton Production, e+e~ — l+l~ .............................................. 23

2.3.2 M dller S ca tte rin g ................................................................................  25

2.3.3 Diphoton Production, e+e~ —>■ 7 7 .................................................  26

2.4 Bounds on Ajvc from c o l l id e r s ....................................................................  28

2.5 Conclusion ....................................................................................................... 31

3 Universal Extra Dimensions and Kaluza-Klein Bound S ta te s ............... 32

3.1 In troduction ....................................................................................................... 32

3.2 U E D ............................................................................................ ' ..................... 35

iv

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3.3 Bound States ....................................................................................................  39

3.3.1 Decay widths and branching ra tio s ..................................................  40

3.3.2 Production cross-sections................................................................... 44

3.3.3 Mass S p lit tin g s ....................................................................................  45

3.4 D e te c t io n ...........................................................................................................  48

3.5 C o n c lu sio n s........................................................................................................ 51

3.6 Decay Width F o rm u la e ...................................................................................  52

4 Higgsless GUT Breaking and Trinification....................................................  54

4.1 In tro d u c tio n ........................................................................................................ 54

4.2 F ra m e w o rk ........................................................................................................ 57

4.3 Symmetry B reak in g ..........................................................................................  61

4.4 Gauge U nification .............................................................................................  6 8

4.5 Other Possib ilities.............................................................................................  71

4.6 C o n c lu sio n s ........................................................................................................ 75

5 Improved Trinification in 5 D .........................................................................  76

5.1 In tro d u c tio n  1 .......................................... -......................................  76

5.2 S U ( 3 ) 3 k  Z 3 ....................................................................................................  77

5.3 S U (9 ) x S U (3 )3 .............................................................................................  8 6

5.4 C o n c lu sio n s ........................................................................................................ 8 8

Bibliography.......................................................................................    90

V it a ..........................................................................................  100

v

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



A C K N O W L E D G M E N T S

It is with great pleasure that I thank my advisor Christopher D. Carone for always 
providing inspiration and exciting research topics. I’d like to thank him for his guidance 
over the past five years.

I would like to thank my wonderful wife Jen for her infinite amount of patience, 
love, and support.

I would also like to thank my collaborators and the entire Particle Theory Group for 
making my work over the past five years such an enjoyable experience.

Four friends and fellow graduate students deserve special mention. I want to thank 
Herry Kwee, Josh Moss, Jeff Secrest, and Keoki Seu for their friendship and the many 
physics discussions over the years.

I ’d also like to thank my undergraduate advisor, Bulent Atalay, for inspiring me to 
go into this field.

Finally, I would like to express my gratitude to my parents for their unconditional 
love and encouragement.

vi

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



L I S T  O F  T A B L E S

2.1 Bhabha Scattering: Data from L3 experiment and SM Prediction [1] . . .  29

2.2 e+e~ —>• ii+n~'. Data from L3 experiment and SM Prediction [ 1 ] ..............  30

3.1 The partial decay width of V  —> e ' <■ for both isodoublet and isosinglet
KK-quark bound states...................................................................................... 45

3.2 Energy shifts and radial wave functions at the origin computed numerical
assuming the potential in Eq. (3.28). The parameter a 0 here is l/( //a .s), 
where // =  M k k / 2 is the reduced mass. The last two columns show the 
result obtained when neglecting the linear term in the potential................... 48

4.1 SU(3) 3 reps in the product of two trinified 27-plets containing Standard
Model singlet components, with hypercharge defined as in Eq. (4.33). 
Parentheses delimit indices that are symmetric............................................... 6 6

4.2 Contributions to the beta function coefficients from the zero modes (6 ,) 
and the KK levels (b, ) in our minimal scenario. Here represents a chiral 
multiplet in the adjoint rep................................................................................. 69

5.1 Contributions to the beta function coefficients from the zero modes (6 ,) 
and the KK levels (/>, ). Here the 4> represent chiral multiplets in the adjoint 
representation. Results in the second and third lines represent sums over 
all fields with the stated quantum numbers...................................................... 85

vii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



LIST OF FIGURES

1.1 Spectrum of the first massive KK modes in the UED model [ 2 ] ................... 12

2.1 2-fermions-1-photon vertex..............................................................................   24

2.2 Bhabha Scattering......................................................................................................  24

2.3 Two fermions - two photon vertex.......................................................................... 27

2.4 Feynman diagrams for e+e“ —^ 7 7 ........................... ..........................................  27

3.1 The mass splitting between KK-quarks and the LKP, 7 ^ ,  as well as the
splitting between the weak KK-gauge bosons and the LKP, as a function 
of 1 /i?  for AR  =  20. Here, Q L stands for all isodoublet KK-quarks 
except top, u R for up and charm isosinglet KK-quarks, and dR for down, 
strange and bottom isosinglet K K -quarks ............................................. 39

3.2 The production and decay chains o f c/^ and qrp  pairs. Note that all of the
decays in the decay chain are two-body, leading to monochromatic 
quarks and leptons..................................................................................................... 40

3.3 The total decay width of n  =  1 isosinglet and isodoublet down KK- 
quarks as a function of i?~] for fixed Ai? =  5, 10, 20. The solid lines 
represent the total decay widths of isodoublet down KK-quarks for each 
corresponding AR  value, respectively. The dashed lines are for the isos- 
inglet case. The isodoublet up KK-quark total decay width is equal to that 
of the down and the isosinglet up KK-quark’s width is four times larger
than that of the isosinglet down.............................................................................  42

viii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3.4 The resonance production cross section for isodoublet KK-quarkonia states, 
except KK-toponium, as a function of T? ^ 1 for AR  =  5, 20. The solid 
lines represent down type KK-quarkonia states and the dashed ones repre
sent up-type KK-quarkonia states, and the upper (lower) lines correspond
to XR  =  5 (20)...........................................................................................................  46

3.5 The same as Fig. 3.4 but for isosinglet KK-quarkonia states. Here the
upper (lower) lines correspond to XR = 20 (5)..................................................  47

3.6 The cross section for KK-quarkonia formed by isosinglet KK-quarks as a
function of \ f s  for 1 / R  =  500 GeV and AR  =  20. The labels V D refer 
to the bound states of isosinglet KK-down, KK-strange and KK-bottom 
quarks, while V u refers to the bound states of isosinglet KK-up and KK- 
charm quarks..............................................................................................................  49

3.7 The cross section for KK-quarkonia formed by isodoublet KK-quarks as 
a function of y/s  for 1 / R  =  500 GeV and A R  =  20. The label refers
to all of the isodoublet KK-quarks, except for the KK-top..............................  50

3.8 The cross section for KK-quarkonia formed by isosinglet KK-quarks as
a function of yfs  for 1/7? =  300 GeV and AT? =  20. The labels are the 
same as in the previous figures............................................................................... 51

3.9 The cross section for KK-quarkonia formed by isodoublet KK-quarks as
a function of yjs  for 1 / R  =  300 GeV and AT? =  20. The labels are the 
same as in the previous figures............................................................................... 52

4.1 Gauge unification for M c =  4 x 1015 G eV .........................................................  70

4.2 Unification and 5D Planck scales as functions of M e. For definitions of
scales, see the text.....................................................................................................  71

ix

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



ABSTRACT

In this dissertation we consider spacetime modifications that result in new physics 
beyond the standard model. We investigate various collider implications of a particular 
Lorentz-conserving formulation of QED in which spacetime coordinates are noncommut
ing. We also consider collider implications of Universal Extra Dimensions. Specifically, 
we address the possible formation of bound states involving the first quark KK-modes, 
i.e. KK-quarkonium. In addition, we consider the use of boundary conditions in extra di
mensions to break gauge symmetries in unified theories. These boundary conditions can 
be related to a boundary Higgs sector that decouples from the theory. This technique of 
“Higgsless” symmetry breaking is applied to several models based on the trinified gauge 
group G t  =  S U (3)c x S U (3) /_, x S U (3) R. In addition, we analyze various phenomeno
logical issues such as coupling unification and proton decay.
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CHAPTER 1

Introduction

1.1 The Standard Model: Successes and Shortcomings

The Standard Model of particle physics has proven to be a remarkably successful 

theory. Its predictions have matched experimental results with unprecedented accuracies 

and with few, if any, discrepancies. This high level of success is particularly true with 

regard to accelerator-based experiments making it clear that the Standard Model is the 

correct theory of nature from the length scales of atomic physics down to roughly 1 0 ~ 3 8 m.

One area which has demonstrated remarkable agreement between standard model 

theory and experiment has been the precision tests of QED, in particular the precise m ea

surements of the Lamb shift and the anomalous magnetic moment o f the electron [3], In 

addition, some of the most notable accomplishments of the standard model have been the 

prediction and discovery of the W and Z  bosons, as well as the precision measurements 

of their masses and decay widths [4].

Although the standard model has been remarkably successful, there is little reason 

to believe it to be the ultimate theory of nature. One shortcoming o f the standard model 

is the numerous parameters such as couplings, masses, and mixing angles that must be

2
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inserted by hand. One would hope that a complete theory would uniquely determine most 

or all of these parameters.

The standard model is also incapable of accommodating massive neutrinos, if the 

theory is defined such that lepton number is conserved. However, results over the last 

several years on solar and atmospheric neutrino oscillations convincingly demonstrate 

that neutrinos are in fact massive although extremely light. There are simple extensions of 

the standard model which allow for neutrino masses, but they are extensions nonetheless 

and cannot be attributed to the standard model itself. Besides the issue of how to give 

mass to the neutrinos, one also has to explain why they are so light. This is typically 

attributed to a new large mass scale. Clearly, neutrino physics requires there to be some 

new physics beyond the standard model.

There are also several cosmological issues that cannot be reconciled with the stan

dard model. For example, recent data suggests the existence o f dark matter, which cannot 

be explained using standard model particle content and interactions. Other cosmological 

issues that lie beyond the standard model are the baryon asymmetry in the Universe and 

Dark Energy [5].

More generally, an unattractive feature o f the standard model is that it does not take 

gravity into account. One would expect that a fundamental theory of nature would accom

modate gravity as well. String theory, which appears to be a promising candidate for such 

a Theory of Everything, suggests many specific ideas of what physics might exist beyond 

the standard model. As we will discuss later, many of the ideas .that are investigated in 

this thesis are motivated by string theory:

Perhaps the most troubling issue of the standard model is that of Electro weak sym

metry breaking (EWSB), which we briefly review. In the standard model, EWSB is gen-
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erated by an SU(2) weak Higgs doublet

H  = ( 1-1)

with hypercharge Y  =  + 1 /2 . For the potential

V  = m 2H ]H  + ( 1-2)

with m 2 <  0 the Higgs doublet develops a vacuum expectation value (vev)

(1.3)

which breaks the standard model gauge symmetry SU (2)w x  U(1)Y down to U(1)e m - 

The parameters m  and A cannot be determined by the standard model. Rather, the vev v 

is obtained from the experimentally measured values of the W and Z masses which gives 

v =  246 GeV. In other words, the standard model does not determine the scale of EWSB. 

In addition, the individual parameters A and m  remain free parameters of the theory. No 

experiment has yet to find the Higgs boson and its mass is not predicted by the standard 

model. Current bounds place its mass to lie in the range 114 GeV < m h < 300 GeV [4], 

In 2007, the Large Hadron Collider (LHC) will turn on and probe energies between 

1 and 10 TeV, which offers the promising possibility o f discovering the Higgs boson. One 

might wonder if it is most likely then that the LHC will simply reveal this minimal model 

of the standard model gauge group spontaneously broken by a Higgs doublet, and that no 

new physics beyond the standard model will be discovered. However, the EWSB sector 

itself not only offers reasons to believe that there is new physics beyond the standard 

model, but that this new physics should be detectable within the energy range probed by

This reasoning follows directly from the mass of the Higgs boson. Consider the ad

dition of the following mass term for the Higgs doublet to the standard model Lagrangian,

the LHC.

(1.4)
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This term is invariant under all the symmetries of the standard model and can easily ac

commodate a Higgs mass in the allowed range given above. On the other hand, what 

prevents m/t from being at the Planck scale ~  1018GeV? Even if the Higgs mass is set to 

zero the Higgs will still receive a mass contribution from radiative corrections. These con

tributions arise from one-loop diagrams the most significant of which come from the top 

quark, the standard model gauge bosons, and the Higgs itself. These one-loop diagrams 

are all quadratically divergent and require the introduction of a cutoff scale A signifying 

the appearance of new physics. The contribution from these one-loop diagrams is

$m h =  +  ?>gl +  gf +  A) A2 (1.5)

where y t is the top quark yukawa coupling, (j\ and g2 are the weak SU(2) and U (l) hyper

charge couplings respectively, and A is the Higgs self-coupling [6 ], If the standard model 

is correct up to the Planck scale (or even the GUT scale) a tremendous fine-tuning must 

occur in order to cancel the bare mass and radiative corrections and give a Higgs mass of 

0 (1 0 0  GeV). This is known as the gauge hierarchy problem. The hierarchy problem is 

perhaps the most compelling reason for why there must be physics beyond the standard 

model.

Observe from Eq. (1.5) that if the cutoff scale were taken as A ~  1 TeV an elec- 

troweak scale Higgs mass is naturally obtained. This suggests that beyond the standard 

model physics should reveal itself not far above the electroweak scale.

The most well known solution to the hierarchy problem is supersymmetry. In super- 

symmetric theories one introduces a new symmetry that associates every fermion with a 

boson (and vice versa) having the same quantum numbers except spin. In this case par

ticles that contribute to the one-loop diagrams now have a superpartner also contributing 

to the one-loop diagrams but with a minus sign due to their opposite spin. Therefore all 

quadratically divergent loop diagrams cancel at each order of perturbation theory thus 

eliminating the hierarchy problem.
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1.2 Going Beyond the Standard Model
6

It is clear that there are well-motivated reasons to consider physics beyond the stan

dard model. There are two fundamentally different methods of introducing new physics. 

The first is to assume that spacetime is ordinary four-dimensional (4D) Minkowski space 

and to add new symmetries and interactions. Alternatively, one can modify the structure 

and characteristics of spacetime itself and study the consequences that these modifications 

have on particle physics. Modifying spacetime provides interesting solutions to many of 

the problems discussed in the previous section. For instance, we will discuss shortly how 

a particular modification of spacetime can offer a solution to the hierarchy problem. Fi

nally, it should be emphasized that a realistic theory of nature could require changes in 

particle content, symmetries, and spacetime structure.

A well known example of new physics in ordinary spacetime is Grand Unification. 

In grand unified theories (GUT) one embeds the gauge structure and matter content of 

the standard model into a larger symmetry group. The best known example of a GUT 

is SU(5), which is the group of smallest rank that can contain the standard model as a 

subgroup [7]. One motivation for GUT’s is the behavior of the standard model gauge 

couplings at high energies. The running of the gauge couplings is dictated by the renor

malization group equations and for nonsupersymmetric standard model particle content 

one finds that they almost meet at a single value at an energy o f 1014GeV. It is clear 

that these models still suffer from the hierarchy problem with Mpianck being replaced by 

M q u t ■ This leads one to consider supersymemtric GUT’s which unify the standard model 

gauge groups and stabilize the hierarchy. Adding supersymmetry also yields the profound 

result that the couplings do in fact unify at a single point (up to threshold corrections) at 

M q u t  ~  2  x  lCfi6 GeV.

As mentioned, besides introducing physics beyond the standard model by enlarging 

the symmetries, particle content, and interactions of the standard model within ordinary
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4D Minkowski space, it is interesting to consider what physical effects might result from 

the modification of spacetime itself. String theory provides several motivations for doing 

so. For instance, constructing a consistent string theory requires that the Universe contain 

extra spatial dimensions, typically 6  or 7 of them. This motivates one to consider what 

effect adding extra dimensions would have on particle physics. In string theory the extra 

dimensions can be compactified on orbifolds (defined below) whose radii are small. These 

extra dimensions are undetectable if their radii are smaller than the best experimental 

resolution. However, recent advances have suggested that modifying spacetime through 

additional spatial dimensions can not only provide solutions to long-standing problems 

of the standard model, but that these extra dimensions need not be far beyond our current 

experimental resolution.

In 1997, Arkani Hamed, Dimopoulus, and Dvali (ADD) [8 , 9, 10] suggested the idea 

that there are such extra dimensions, but that only gravity can propagate into the higher

dimensional space, referred to as the “bulk”. Standard model fields are restricted to a 

4D subspace called a “brane” which corresponds to the typical Minkowski space. From 

Gauss’ law an immediate consequence o f this is that the actual higher-dimensional Planck 

scale is related to the measured 4D Planck scale by

Mpianci = V ,M ':+2, ( 1-6 )

where Vn is the volume of the n-dimensional space. From this point of view, the 4D 

measured Planck scale is a derived quantity whose value can be much larger than the 

fundamental scale AT* due to the volume of the higher-dimensional space. One can then 

ask whether the fundamental scale o f gravity could arise at the TeV scale. In fact, as

suming M* ~  (9(1 TeV) implies that two extra dimensions should have radii as large as 

R ~  1 0 0 pm, which is just below the current distance scales probed by table top experi

ments that look for deviations from Newtonian gravity [11, 12].

Although extra dimensions were motivated earlier by string theory, the ADD model
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offers the possibility that extra dimensions could be of value purely from a particle physics 

perspective k In addition, the idea that certain fields could exist in a higher-dimensional 

space, while restricting other particles to a brane suggests a wide range of model-building 

possibilities, several of which are considered in this thesis.

To illustrate some of the generic consequences of an extra spatial dimension, con

sider a massless scalar field $  propagating along an extra dimension y. The bulk action 

is

<S =  j  dx* j  dy y )dM^ { x tM, y ) , (1.7)

where JVM), 1,2,3,y. By imposing a periodic boundary condition along the extra dimen

sion <J>(y) =  $ (y  +  27rj?), the field may be expanded in a complete set of states

$ ( ^ , y ) . =  ^ ^ M e in^ .  ( 1 .8 )
71

Varying the bulk action gives the 5D massless Klein Gordon equation dMd M$  =  0 . 

Substituting in the expansion Eq.(1.8)yields

~  =  0  - d - 9)

Therefore, in the effective 4D theory the extra dimension reveals itself as a tower of 

particles with m ass~  n / R .  These towers of Kaluza Klein (KK) modes are a generic 

consequence of a compactified extra dimension. For a small enough extra dimension, the 

mass of the first KK-mode could be large enough so as to avoid experimental detection.

Extra dimensions can also be compactified into more complicated spaces that can 

provide a wider range of choices for model building. Viable models are most often com 

pactified on an orbifold. A simple example is a single extra dimension compactified on 

a S l /Z -2 orbifold. This is obtained by first imposing the periodic boundary condition un

der the translation y —>- y  +  2-kR and then identifying points related by the reflection

1 We mention for completeness an al ternative solution to the hierarchy problem first proposed by Randall 
and Sundrum which utilizes a warped extra dimension. However, the details of this model lie beyond the 
scope of this thesis [13, 14],
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y  — 7 —y. The physical region along the extra dimension is then the interval [0, ttR] with 

the two endpoints, so called fixed points, being invariant under these operations. By com- 

pactifying on an orbifold, the KK expansion in Eq. (1.8) now will only be a function 

of sine’s or cosine’s depending on whether the field is odd or even under the Z '2 parity 

transformation. This provides a wealth of new options for model building. Consider a 

generic gauge theory in one extra dimension. In this case the 5D action contains gauge 

bosons which are Lorentz 5-vectors, A M . In 4D this reduces to an ordinary 4-vector 

and a scalar .45 (and associated KK-towers). By assigning to be even and A 5 to be 

odd under the Z 2 parity, their wavefunctions become

A^ixA,  y) = J 2  cos( n y / R ) ,
n

A 5 (xIJ', y) =  A 5 (xfl) sin { n y /R )  . (1.10)
Tl

The result of the orbifold projection is that although both fields acquire a tower of KK- 

modes, only A M contains a massless zero mode. In other words, the adjoint scalar has 

been projected out of the low energy spectrum. Clearly, orbifold projections offer a large 

range of possibilities for model building in extra dimensions.

Rather than only permitting gravity to propagate in the bulk, one could also imagine 

a universe in which all fields propagate in the bulk. This model of Universal Extra D i

mensions (UED) was proposed by Appelquist, Cheng, and Dobrescu [15]. Since all fields 

propagate in the bulk, all fields develop associated KK-towers of particles. An immediate 

consequence of this is that KK-mode number is conserved simply due to conservation 

of (discrete) momentum along the extra dimension. By compactifying on an orbifold, 

translational invariance along the extra dimension is broken since two special points are 

now distinguished. However, after compactification a discrete KK-parity remains unbro

ken. This renders the lightest KK-mode stable, making it a possible dark matter candidate 

[16, 17, 18, 19]. For standard model fields propagating in the bulk, the tightest bounds on
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the possible size of an extra dimension are most severely constrained by Z-pole observ

ables. Due to the parity conservation in the UED model, KK-modes of gauge bosons can 

only be pair-produced. This results in a bound on the mass of the first KK-mode to be as 

light as 300 GeV [20], thus offering the prospect of their detection in the next generation 

o f experiments.

There are other ways in which the modification of spacetime can lead to new physics 

beyond the standard model. One simple idea is to make spacetime noncommutative. 

This is accomplished by promoting the spacetime coordinates to operators satisfying the 

following commutation relations

[fT , x 1' ]  =  9 ^  . (1.11)

In the canonical formulation of noncommutative field theory, 9 ^  is simply an antisym

metric c-number. This idea of noncommutative spacetime is motivated by string theory, 

where one finds that for an open string propagating in an antisymmetric background field 

the endpoints of the string are described by noncommuting coordinates [21, 22, 23].

Rather than construct a field theory based on these noncommutative coordinate op

erators, one would clearly prefer to use ordinary commuting coordinates. This is accom

plished by introducing a modified multiplication rule

( f * 9 ) ( x )  =  /(x )e x p [^  d„ 9 ^  d„]g(x) , ( 1 .1 2 )

known as the star or Moyal-product. By promoting all multiplication to the star-product, 

a field theory action can be constructed from fields that are functions o f ordinary com

muting coordinates. In other words, the star-product encapsulates the noncommutativity 

of spacetime. An immediate consequence of this form of spacetime noncommutativity 

is that Lorentz invariance is broken. For example, el^k9^  defines a preferred direction in 

a given Lorentz frame. Experiments looking for Lorentz violation place tight bounds on 

the possible scale of noncommutativity in this simple version [24, 25, 26, 27].
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Carlson, Carone, and Zobin (CCZ) have proposed a Lorentz-conserving version of 

noncommutative QED [28]. This was accomplished by promoting 9 ^  to an antisymmet

ric Lorentz tensor satisfying the Lie algebra

{ 9 » \ x x} = 0 ,

[#V ; ^/3] _  o. ( L 13)

Fields are then functions of both £  and 9 ^ .  This lead CCZ to introduce a new star-product

( f  * 9 ) (x,0)  = f  (x, 9) e x p [ | d». 0 ^  d„]g(x ,9) , (1.14)

where the difference from the star-product of canonical noncommutativity is the func

tional dependence on 9. The QED action is then obtained by promoting all multiplication 

to this modified star product. In this case, the fields are still functions of x  and 9. CCZ 

demonstrated how to obtain interactions involving fields that are only functions of x.  This 

was accomplished using a particular field redefinition and an expansion in powers of 9. 

This results in a new version of QED containing new Lorentz-invariant interactions that 

are a direct result of spacetime noncommutativity.

It is interesting to note that the Lie algebra of Eq. (1.13) proposed by CCZ is the same 

as the Lie algebra proposed by Doplicher, Fredenhagen, and Roberts (DFR)[29, 30], DFR 

arrived at this Lie algebra by considering the general properties of a theory combining the 

Heisenberg uncertainty principle with classical gravity, i.e. a quantum theory of gravity.

The first two chapters of this thesis deal with different collider signatures that are 

the result of a modified spacetime. In Chapter 2, we consider the phenomenological im 

plications of the model of Lorentz-conserving Noncommutative QED proposed by CCZ. 

We calculate modifications to the differential and total cross sections for Bhabha, Mpller, 

and e+e~ —>• scattering, as well as e+e“ -> 7 7  up to second order in the noncom

mutative parameter. From this we extract bounds on the noncommutativity scale from
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LEP data and consider whether this form of noncommutativity may be probed by a Next 

Linear Collider (NLC).

In models of UED all SM fields propagate in the bulk and therefore have KK towers 

with the tree level mass
n 2

m KK ~  ■ (1-15)

Even for a relatively small compactification radius, these masses are nearly degenerate at 

each KK level. In this case, radiative corrections are important and lead to a breaking of 

this degeneracy. Fig. 1.1 shows the mass splittings for the first KK modes for a typical

650 650

600 600

>
©
o

550 550

w,z

500 500

FIG. 1.1: Spectrum of the first massive KK modes in the UED model [2]

choice of parameters. For a reasonable choice of parameters, one finds a small mass 

difference between the lightest KK particle (LKP) and the first quark KK modes. In 

Chapter 3 we consider the implications of this mass spectrum on the possible formation 

of KK-quark bound states, i.e. KK-quarkonium.

Extra dimensions also offer new ways of constructing theories that, although are not 

directly testable at colliders, can explain the unity of fundamental forces. For instance,
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orbifold parity on an extra-dimensional interval can be chosen such that only some com

ponents of a gauge multiplet retain a massless zero mode, thus reducing the gauge sym

metry. However, this procedure does not allow a reduction in group rank. On the other 

hand more generalized boundary conditions may be imposed on the group generators al

lowing group rank to be reduced. These generalized boundary conditions can be thought 

of as arising from the vev of a brane-localized Higgs field. In the limit that the vev is taken 

to infinity, the symmetry breaking Higgs field completely decouples from the theory, and 

the mass o f the KK modes is set by the size of the extra dimension.

In Chapter 4, we apply this technique, called “Higgsless” symmetry breaking, to

ward the breaking of GUT gauge symmetries, and in particular to the trinified group 

G t  = S U (3)c x S U (3) l  x S U (3)r. In Trinification, the Higgs fields are placed in a 27 

of G t ,  which leads to a complicated and rather undesirable Higgs sector. We introduce 

boundary breaking Higgs fields that break G t , leaving the MSSM particle spectrum in 

the low-energy theory. Exotic fermions couple to these boundary fields and are decou

pled from the theory (along with the symmetry breaking Higgs fields) in the Higgsless 

limit. We also show that unification is delayed and can coincide with the 5D Planck scale.

In Chapter 5 we construct improved models of Trinification utilizing a single extra 

dimension. In these models the GUT gauge symmetry is broken by a combination of 

orbifold parities and generalized boundary conditions. For the boundary conditions, we 

explicitly give the corresponding boundary Higgs representations needed to break Trini

fication down to the MSSM. The two MSSM Higgs doublets are identified with some of 

the higher-dimensional components of the gauge fields in an approach called gauge-higgs 

unification [31, 32, 33, 34, 35], We discuss various phenomenological issues such as 

gauge coupling unification and proton decay.
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CHAPTER 2 

Phenomenology of Lorentz-Conserving 

Noncommutative QED

2.1 Introduction

It is interesting to consider the possibility that the structure of space-time is nontriv

ial. In one of the most popular scenarios position four-vectors are promoted to operators 

that do not commute at short distance scales [36, 37, 38, 39, 40, 41,42, 43,44, 45, 46 ,47 , 

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 28, 60, 61, 29, 30, 62]. There has been a lot 

of work on field theories with an underlying noncommutative space-time structure. Jurco 

et ai. [42] have presented a formalism on how to construct non-Abelian gauge theories 

in noncommutative spaces from a consistency relation. Using a similar approach Carl

son, Carone and Zobin (CCZ) [28] have formulated noncommutative Lorentz-conserving 

QED based on a contracted Snyder [62] algebra, thus offering a general prescription as 

how to formulate noncommutative Lorentz-conserving gauge theories. In this algebra the 

selfadjoint spacetime coordinate operators satisfy the following commutation relation,

[ S f , xv] = i0‘u/. (2.1)

14
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Here 9 ^  — —9V>1 txansforms as a Lorentz tensor and is in the same algebra with x >l. This 

algebra is Lorentz covariant.

The Lie algebra considered by CCZ is the same as the Lie algebra of Doplicher, 

Fredenhagen, and Roberts (DFR) [29, 30]. Interestingly enough DFR came to the formu

lation of their algebra by considering modifications of spacetime structure in theories that 

are designed to quantize gravity. The DFR algebra places limitations on the precision of 

localization in spacetime. As noted in [29, 30], quantum spacetime can be regarded as a 

novel underlying geometry for a quantum field theory of gravity.

Interest in noncommutative spacetime originated with the work of Connes and col

laborators [63, 64, 65, 6 6 ] and has gained more attention due to developments in string 

theory [2 1 ], where noncommutative spacetime has been shown to arise in a low en

ergy limit. In string theories 9 ^  is just an antisymmetric c-number. Theories involving 

noncommutative spacetime structure based on algebras with c-number 9 ^  suffer from 

Lorentz-violating effects. Such effects are severely constrained [46, 47, 48, 49, 50, 51,

52, 53, 54] by a variety of low energy experiments [24, 25, 26, 27], Lorentz-violating 

effects appear in field theories as a consequence of 9Ql and e^ k9lj defining preferred di

rection in a given Lorentz frame. In contrast to this the noncommutative QED (NCQED) 

formulated by CCZ based on Eq. (2.1) is free from Lorentz-violating effects.

Carlson, Carone and Zobin have connected the DFR Lie algebra Eq. (2.1), and the 

antisymmetric tensor 9 to experimental observables, by showing how to formulate a 

quantum field theory on this noncommutative spacetime. Similar issues have been dis

cussed by Morita et al. [60, 61]. These theories make it possible to study phenomeno

logical consequences of Lorentz-conserving noncommutative spacetime. As a beginning, 

CCZ have studied light-by-light elastic scattering and obtained contributions that can be 

significant with respect to the standard model background.

In this chapter we calculate other phenomenological consequences of Lorentz-conserving 

NCQED formulated by CCZ. We consider various collider processes such as Bhabha and
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M 0 ller scattering, e+ e~ —> /j,+h ~ and e+e~ —» 7 7 . The experiments at planned colliders 

will provide means of testing the properties and the structure of space-time at smaller 

distance scales. We note that any property prescribed to space-time, if confirmed experi

mentally, must affect all interactions.

In the following section we discuss the underlying formalism of noncommutative 

Lorentz-conserving gauge theories, with emphasis On NCQED. In Section 2.3 we study 

the Lorentz-conserving NCQED by considering various collider processes. In Section 2.4 

we obtain bounds on the noncommutativity scale from Bhabha scattering, e+er  —> p +p~ 

and e+er  -> 7 7  experiments. We summarize our discussion in Section 2.5 with some 

concluding remarks.

2.2 Algebra and QED Formulation

The simplest construction of a Lorentz-conserving noncommutative theory involves 

promoting the position four-vector to an operator which satisfies the DFR Lie algebra

[ e ^ , x x] = 0 ,

{§»■’' J aP] = 0 , (2 .2 )

where 9^'  is antisymmetric and transforms as a Lorentz tensor.

On the other hand, CCZ took as the starting point Snyder’s algebra,

iT] =  

[A > " ; ;?;*] =  i { x ^ g ^ x -  x V - A),

[ M ^ ,  M oP] =  +  M vag ^  -  M uf}g^Q). (2.3)

Snyder’s algebra (which is the same as the algebra of SO (4,l)) describes a Lorentz-
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invariant noncommutative discrete spacetime characterized by a fundamental length scale

erators, the Lorentz invariance of Eq. (2.3) was demonstrated [62], CCZ then extracted 

the DFR Lie algebra by performing a particular contraction on Eq. (2.3). Specifically, by 

rescaling M ^  =  9 ^ /b  and holding the ratio a2/b  =  1 fixed, the lim it b —> 0 , a -*  0 

yields the DFR Lie algebra. Thus, the Lorentz covariance of Snyder’s Lie algebra implies 

the Lorentz covariance of Eq. (2.2) [28]. The commutator of 9 ^  and is

as one would expect if 9 ^  is a Lorentz tensor. Note that the contraction also implies that 

the eigenvalues of the position operator of the DFR algebra are continuous.

To develop a field theory on a noncommutative spacetime, one defines a one-to- 

one mapping which associates functions of the noncommuting coordinates with func

tions of the typical c-number coordinates. In the canonical noncommutative theory this is 

achieved via a Fourier transform

mapping involve a new c-number coordinate 9[W (no hat). Functions of the noncommuting 

coordinates are then related to functions of c-number coordinates by

a. By constructing an explicit representation for x  and M  in terms of differential op-

(2.4)

(2.5)

In the Lorentz-conserving case the presence of the operator 9IU/ requires that the

f ( x ,  9) = I
f  d4a  deB  J (27r)4 (27t)6

(2.6)

where

(2.7)

Lorentz invariance re tensor.

To ensure that operator rnutriplication be~preserved, + g, one finds tha t tho
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rule for ordinary multiplication must be modified:

( f * 9 ) { x , 0 ) = f ( x , 6 ) Q x p [ ^ d ^ 0 , l vdv]g(x,$) .  (2 .8 )

The 9 dependence of the functions distinguishes this result from the ^-product of the 

canonical noncommutative theory. Eqs. (2.6) and (2.7) allow one to work solely with 

functions of classical coordinates x  and 9, provided that all multiplication be promoted to 

a ^-product.

The introduction of a Lorentz invariant weighting function W(9)  allows for the fol

lowing generalization of the operator trace:

T r/  =  I  d4x d69 W ( 9 ) f ( x , 9). (2.9)

In [28] CCZ took the normalization to be

J d e9 W {9 )  =  1. (2.10)

It is straightforward to demonstrate the cyclic property of Eq. (2.9), i.e. Trf g  — T ry /.

One requires that for large \9ul/\, W(9)  dies off sufficiently fast in order that all integrals

be well defined [28]. Lorentz-invariance requires that W  be an even function of 9, which 

yields

j  d6 9 W { 9 ) 9 ^  =  0. (2 .1 1 )

As will be seen, this restriction has interesting consequences on possible collider signa

tures of the theory.

Field theory interactions are extracted by performing the <f9 integral, resulting in 

the action

5  =  T r t  = j  d4x  de9 W{9)  £ (&  d(j))* , (2.12)

where the notation in £ ( / ,  $</>)* indicates ^-product multiplication.

As was mentioned, in the Lorentz-conserving noncommutative theory the initial 

“fields” are generally functions of x  and 6 , and must be related to ordinary quantum fields
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which are only functions of x  . CCZ showed how this can be done for NCQED using a 

nonlinear field redefinition and an expansion in 6 . Since the phenomenology of NCQED 

is the topic of this chapter, all developments will be directed toward a U (l) gauge theory. 

For completeness the formalism presented in [28] is reviewed.

In Lorentz-conserving NCQED, one has a matter field y'j and gauge field A . For a 

U (l) gauge transformation characterized by a parameter A(:r. 8 ), the fields transform as

ib{x, 8 ) - * U  * i ’(x, 8 ), (2.13)

and

At, ( x , e ) - ^ U * A „ ( x , e ) - k U - 1 +  ^U-kdllU ~ \  (2.14)

where

U =  (eiA)*

=  1 +  i A ( x , 6 ) +  ^ i A ( x , 8 ) * i A ( x , 8 ) +  .... (2.15)

A U (l) gauge invariant Lagrangian is

C =  j  <?8 W { 8 ) 1 - ^ ^ *  F»v A  ti + t i l j ) - (2.16)

where

-  te A fl, (2.17)

and the field strength is

F,» =  dnAv -  d , A lL -  ie[A^ * Av]. (2.18)

In demonstrating the gauge invariance of Eq. (2.16) and the cyclic property of Eq. (2.9),

the following identity is useful

J' dAx f  -kg =  j  d4 x f g .  (2.19)
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Eqs. (2.16), (2.17), and (2.18) are similar in form to those obtained in the canonical NC

QED case, the difference again being the 8  dependence of the fields vAx, 8 ) and A(x ,  8 ) 

in Eq. (2.16). One must have a way of relating tp and A  to ordinary quantum fields which 

are only functions of x.  This is accomplished by utilizing the behavior of the weighting 

function Eq. (2.9), which allows an expansion of the fields and gauge parameter in pow

ers of 8 . A  similar technique involving field expansions was first used in constructing a 

noncommutative SU(iV) gauge theory in [42]. The coefficients of the power series are 

thus only functions of x  and correspond to ordinary quantum fields. From requirements 

of gauge invariance and noncommutativity, these coefficients can be determined order by 

order in 8 .

The matter field, gauge field, and gauge parameter of NCQED are expanded as:

A„ (*, B ) = a ( x )  + 0»"A « (*;<*) +  f T 'S "  A « „  (x; a )  +  ■ • ■ , (2.20)

A„(x, 6 ) = A„(x)  +  < T A % { x )  +  „ ( x )  +  ■■■, (2.21)

y (x ,B )  =  </>(*) +  +  " “v S h M  +  ’ ' ■ ■ 0 -2 2 )

The lowest order term in each expansion corresponds to the ordinary QED term. Thus, 

ordinary QED can be extracted by taking the commutative limit, 8 ^  —> 0.

Consider an infinitesimal transformation of a matter field ib{x) in an ordinary U (l) 

gauge theory:

5aip(x) = ia (x )A(x) .  (2.23)

For a Lorentz-conserving noncommutative theory, this is generalized to

5aip(x , 8 ) =  iA a (x, 8 ) * ip(x, 8 ). (2.24)

In an Abelian gauge theory two successive gauge transformations must then satisfy the 

relation

(6 a6 p -  6 p8 a)‘ip(x,8 ) =  0. (2.25)
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For Eq.(2.25) to hold, A must satisfy

iSaAp — iSpAa +  [Att * A^] =  0. (2.26)

The parameter A can then be determined at each order in 9. Specifically, it can be shown 

that

Aji)(ar;a) =  ^ d ^ a { x ) A v{x) (2.27)

e2

and

a )  =  —y  d ^ a i x ) A v (x)dtrA l/(x) (2.28)

satisfy the condition of Eq. (2.26). The gauge and matter fields are treated in a similar

manner.

The restriction of a gauge field transforming infinitesimally as

=  dcrA a +  i[Att * Aff], (2.29)

is satisfied by the following expressions for and A ^ :

=  - \ A ^ A „  +  F “,), (2.30)

4 X . M )  = ~  W A V .  +  V W ) .  < 23 l )

where

F t  = d^A,, -  dvA»  (2.32)fiv —

is the ordinary QED field strength tensor.

Likewise, one can show that for a matter field transforming infinitesimally as Eq. (2.24), 

the appropriate forms of tA1) and vA1 '1 are

(2.33)

and

(3') g (  iduAjjdisdpip T  c A p A v 0^c1 T  ‘2€,A^dL/A rida w

+ e A flFtda'il-’ ~  ^ d ^ A riduA a%ij +  ie2 A flA advA iy‘ii’). (2.34)
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Interactions are extracted by substituting Eqs. (2.27), (2.28), (2.30), (2.31), (2.33), (2.34) 

into the Lagrangian Eq. (2.16). We expand the Lagrangian through 92 and evaluate the 

d69 integral using the weighted average

noncommutative effects become relevant. The restriction on W  from Eq. (2.11) demands 

that only terms containing even powers of 9 will result in interaction vertices. Thus, for 

example, the three-photon vertex of canonical NCQED is not present. The next section 

focuses on the phenomenology of a U (l) theory whose spacetime coordinate operators 

obey the DFR Lie algebra. Possible collider signatures are considered and bounds on the 

energy scale A NC are obtained.

2.3 Collider Signatures

The Lagrangian for QED with Lorentz-invariant noncommutative spacetime Eq. (2.16) 

can be written as an expansion in 9 order by order using the nonlinear field redefinition 

described above. The zeroth order in 9 will give the ordinary QED Lagrangian, The first 

order is zero due to the evenness of the weighting function W{9).  The first nontrivial 

contributions come from the second order, they include:

1. the 4-photon vertex, which has been discussed extensively in [28],

2. the correction to 2-fermion-1-photon vertex (ordinary QED vertex),

3. the 2-fermion-2-photon vertex.

d5 9 W  ( 9 ) 9 ^ 9 ^ (2.35)

where the expectation value is defined as

(2.36)

It is natural to define A NC =  (1 2 / (92) )1''4- which characterizes the energy scale where
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The lowest order correction to the ordinary QED vertex comes from the following 

terms in Lagrangian density:

$ — m)ip^

+  ̂ { (D (0V ,)I(0) )D(0) +  * ,(/^°'>)}> (2.37)

where we retain only the second order term in contributions to the ^-product shown 

in the last two terms. The first two terms will go to zero if both fermion fields are on shell. 

And the 2-fermion-2-photon vertex comes from:

i p ^ ( i  $  — m)ip^  $ — m)yP^  +  <j!) —- m ) w ^

+  (2.38)

where this time we retain only the first order in the ^-product shown.

2.3.1 Dilepton Production, e +e~  -> l+l~

First we consider processes in which all fermions are on shell, i.e. dilepton produc

tion e+e “ —»■ l+l~ . For processes up to tree level Feynman diagram, only

| { $ (0)* 4 (0)W->(0) +  v3(0)( / 0) * ^ (0))}

will contribute to the vertex correction since all the fermions are on shell. This Lagrangian 

term reduces to:

^ m d lA 4 ) ( d » d ^ )  + (d»d"-Md„dI, 4 ),p).  (2 .3 9 )

From this we obtain the following Feynman rule for the 2-fermion-1 -photon vertex 

with all fermions on shell and with momenta labeled as in Fig. 2.1:

ie{ l +  | ^ ( p 3) V ‘, (2.40)
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FIG. 2.1: 2-fermions-l-photon vertex.

FIG. 2.2: Bhabha Scattering.

where we have not made the assumption that the fermions are massless (although we do 

set m  =  0  in the cross section formula).

We will consider the following processes which are affected by this vertex correc

tion: Bhabha scattering, e+e-  —>• and Mpller scattering. The matrix element with 

vertex correction for Bhabha scattering (Fig. 2.2) is:

i M  = u{pz) { i e ^ ) { l  +  ~ ~ g 4)u(|?4 )

x v ( p 2) { i e ^ ) ( l  +  | ^ g 4M p i)

- v { p 2 ) { i e Y ) { l  +

x u ( p z)(ie 7 m) ( 1  +  ■ ^ •g /4)n (p i). (2.41)

Squaring the matrix element and summing(averaging) over the final (initial) fermion
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spin states will give:

W ?  = 2e4 { F l ( ~ r ^ )  +  (2.42)s

where we define Fs =  {1 +  ^  j -} 2 with s,t and u are the Mandelstam variables. To 

first order in (#2}/12 this will give us the center of mass (CM) differential cross section:

do (  do \  7TQ'2 (92) , o o ^ o  <> s..>
1 5 =  1 ----- 5 + t  + 2u +  u  “  +  7 >> (243)d c  os 9 \ d c o s 9  J QED s 96 s t

where 6  is the CM scattering angle.

The same results for e+e~ —> p +p~ can be obtained easily by just throwing away 

the t  channel in the Bhabha scattering calculation, assuming the muons are massless. The 

spin average square matrix element is:

\ M f  =  2et F H t— ^ ) -  (2.44)Q4.s

And to first order in (92)/12  this will give us: 

da r (  da  ^ (i +  -2) n  4 o
dcos 6 \ d c o s 6  J  q ED 96

2.3.2 M0ller Scattering

For Mpller scattering, the spin average square matrix element is obtained by using

crossing symmetry from Bhabha scattering:

2 2 2 2 2 
\ M \ i  =  2e4{ +  2F,F„e  +  i * ( i ± L ) } .  (2.46)

t  tu  u.

To first order in (92) /12  this gives us the CM differential cross section:

da f  do  \  7r a 2 (92) , n 0 0 ,u  i , .
 -----^ =  1  5 + ------ - F F i f +  u +  25 +  s 7  +  "  >■ (2.47)d cos 6 \  a  cosy /  qED s 96 t u
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2.3.3 Diphoton Production, e + e ~  —> 7 7

In order to calculate the cross section for e+e~ —> 7 7 , we first need to calculate 

the full correction to ordinary QED vertex, not just the case when all fermions are on 

shell. This requirement comes from the fact that in diphoton production we have fermion 

propagators in the Feynman diagrams. By using the non-linear field redefinition for 

the Lagrangian for the full correction can be written as:

[{dil.A^){(d2w){i $  -  rri)w +  { ( ida +  m ) ip y fa(d2tb)} 

- ( d fJA„){{d^d' / 'ip)(i $ -  m)ip + {(ida +  m ) ^ Y i a{dttd uw)}

+  ( d » d ^ ) ( d , d „ 4 ) i > } } -  (2.48)

Then the Feynman rule for the 2-fermion-1-photon vertex with all fermions and photons 

possibly off-shell is (Fig. 2 .1):

' H A  +  [{A. -  m)plp%  -  ( A  -  m)plp%

+ { A  - m )  (px ,p3 )p$ -  ( A -  m)  (p2 -P3 )p2

+ ^{ (P i-P 3 ) 2 +  (pz-Ps)2} ^ ] } -  (2.49)

Next we need to calculate the contribution from the new vertex, i.e., 2-fermion-2- 

photon vertex. The Lagrangian for this vertex is:

ie2 | 2 p „ (9 „ y i„ ){ ( a ^ )7 “ (a‘'v )  -  {9‘V b ‘W }

-  { d „ A , ) { 0 » S r $ )  M  

+ 2A r F m {{d * $ ) - f (d r i> )  -  ( d W ( d ‘ V ’ } ]  ,  ( 2 -50 )

and we put all the fermions and photons on shell to simplify the calculation. This sim

plification is possible since in the calculation for diphoton production up to second order 

in 6  for the 2-fermion-2-photon vertex all fermions and photons are on shell. Labeling 

momenta as in Fig. 2.3, we obtain the Feynman rule for the 2-fermion-2-photon vertex
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FIG. 2.3: Two fermions - two photon vertex.

FIG. 2,

+

P

FIG. 2.4: Feynman diagrams for e~e~ 77

with all fermions and photons on shell:

, 7  ( ? )
ie - ^ r{ (p i -P z ){F 2 J rl -  

+(pi.p 4) { p h P -  

+  ( # » -  ?>4) { P l P 2 -

p h p}

pW 1}

(2.51)

Putting all these rules together, the cross section up to first order in (02)/12  for dipho

ton production can be calculated (Fig. 2.4). The matrix element for diphoton production 

can be written as the sum of the three diagrams: iM.  =  iM.\  + i M 2 +  1M 3 , with each 

matrix element defined below:

i M x -  - i e 2 €*Jp-i)el{p4 )v(p2) 7" 4Y-  +  (02)
t  ' 96 

w(Pi), (2.52)
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i M 2 =  — ie2 e* (p3) e* (p4)f  (P2)
u  9 6

102)
ie2€*(p3)e*(p4) — u(p2)

X  -  P a  Y * }  +  W -C PiT '*  -  P 2 7 " }

+  2 (^ 3 -  tfi)(PlP2 - P 1P2 )] u (Pl)-

2 8

(2.53)

(2.54)

It is easy to show that if either one of the polarization vectors is replaced with its 

momentum, the matrix element will be zero as we expect from gauge invariance. Next it 

is straightforward to show that the spin average square matrix element is:

\ M \2 =  2 e
t  u  (92) . , 9 '

x f { t 2 + u 2)
u  t 96

To first order in (6 2) / 12 this gives the following CM differential cross section:

da (  da

(2.55)

d cos 9 \ d  cos 9 QED 192 2
(2.56)

2.4 Bounds on A,vc from colliders

Mpller scattering experiments do not provide data at high enough energy to set a 

bound comparable to the one obtained from Bhabha scattering. For Bhabha scattering 

the bound can be extracted from a series of LEP experiments [1]. The total cross section 

integrated between 90 and 180° — 90 predicted by our calculation can be written as:

i i a2s r 25 7 , 1 — a ,
=  CTsM +  8A ^ { 7 a + 12 “  + 2 l n T E ~ a ] '

(2.57)

with a — cos 0O- This matches the cut introduced by the L3 experiment where 

9a — 44° is the angle relevant to the L3 detector. Here we use a Su  instead o f oqED 

to take into account the weak interaction and radiative corrections. We have neglected 

the noncommutative correction to higher order QED and weak interactions. We use the
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v/i(GeV ) crexp ±  A stat ±  A,s.^(pb) crSM(pb)
130.10 51.10±2.90±0.20 56.50
136.10 49.30±2.90±0.20 50.90
161.30 34.00±1.90±1.00 35.10
172.30 30.80±1.90±0.90 30.30
182.70 27.60±0.70±0.20 26.70
188.70 25.10±0.40±0.10 24.90

TABLE 2.1: Bhabha Scattering: Data from L3 experiment at LEP and SM Prediction [1]

numerical values of the data above (TABLE 2.1) [1], and for the theoretical prediction we 

add the correction due to noncommutativity obtained in the previous section to the listed 

SM cross section. The x 2 function is defined as follows:

X2 =  (2-58)
i exp

with A 2̂  =  A 2t(lt +  A 2 s and % sums over the energy range. Performing the x 2 analysis 

over the energy range shown in TABLE 2.1, we obtain the bound A NC >  137 GeV 

(95%C.L.).

A similar analysis can be performed on e+e~ /x+/jT using the data from the same 

experiment at LEP [1]. The total cross section integrated between 6 0 and 180° — 6 0 is:

7ra:2.s g3

=  a s u  +  s X x : r  (Z59)

with a defined above and 90 =  44°. Fitting our theoretical prediction to LEP data 

(TABLE 2.2) [1] using x 2 fit will set the bound for ANc  >  8 6  GeV (95%C.L.) Note that

the correction term arising in the differential cross section can be written as 0 A2 , which
°anc

is larger than one for i / s  =  188.7 GeV. Therefore this bound cannot be trusted. However, 

the other bounds obtained in this section are perturbatively valid and are much stronger 

than this result.

For diphoton production, the bound can be extracted from a series o f experiments at 

LEP[67, 6 8 , 69, 70, 71, 72]. The total cross section integrated between # 0 and 180° — 90
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V s(G eV )' & e x p  ± A stat ±  A,5y,s(pb) o~5M(pb)
130.10
136.10
161.30
172.30
182.70
188.70

21.00±2.30±1.00
17.50±2.20±0.90
12.50±1.40±0.50
9.20±1.30±0.40
7.34±0.59±0.27
7.28±0.29±0.19

20.90 
17.80
10.90 
9.20
7.90 
7.29

TABLE 2.2: e.+e —>• /i+/i : Data from L3 experiment and SM Prediction [1] 

predicted by our calculation can be written as:

with a =  cos0o- This time the bound is obtained from an analysis done by the 

experimenters themselves for the purpose of bounding a generic contribution for ‘new 

physics.’ The bound set from diphoton production experiments at LEP, as obtained by 

the DELPHI collaboration and translated to our definition of noncommutativity scale is 

A n c  >  160 GeV [67, 6 8 , 69, 70, 71, 72], A similar analysis by the L3 collaboration 

yields a similar bound [67, 6 8 , 69, 70, 71, 72],

A next linear collider (NLC) with a luminosity 3.4 x  1034 cm - 2  s- 1  and center of 

mass energy 1.5 TeV will set a better bound for A NC. We calculated the number of events 

predicted by ordinary QED at 1.5 TeV and took the statistical uncertainty from the square 

root of the number of events. By requiring the ‘new physics’ effect to be significant 

only if it can produce an effect at least 2  standard deviations away from this predicted 

value, a prediction for the bound that could be set for the noncommutative scale can be 

obtained. Our calculation for Bhabha scattering predicts a reach for A NC ~  2.0 TeV, for 

e+e-  —» Af fc  ~  1-7 TeV, for Mpller scattering A NC ss 2.7 TeV and for diphoton 

production Ajvc ~  2.0 TeV. From this we can conclude that the bound obtained from 

these experiments will be about «  2 TeV and is comparable to the energy scales where 

the experiments are performed.

(2.60)
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2.5 Conclusion

We have considered the phenomenology of a Lorentz-conserving version of noncom

mutative QED. In this theory, spacetime coordinates are promoted to operators satisfying 

the DFR Lie algebra. As opposed to the Lorentz-violating canonical noncommutative the

ory, field theory variables have an additional dependence on the operator 9 which charac

terizes the noncommutativity. This is handled by expanding the fields in powers of 9, and 

using gauge invariance and noncommutativity restrictions to determine the fields order by 

order in 9. Lorentz-invariance restricts interaction vertices to contain only even powers of 

9, which has distinct consequences on the phenomenology of the theory. We considered 

various e+e-  and e~e.~ collider processes. The cross section was calculated to second or

der in 9 for Bhabha, Mpller, and e+e~ —> //+/i“ scattering, as well as e+e “ -> 7 7 . Results 

were then compared to LEP 2 data, and bounds on the energy scale of noncommutativity, 

ANc,  were obtained. The tightest bound came from diphoton production which yielded 

ANc  > 160 GeV at the 95% confidence level. We also determined that an NLC running 

at 1.5 TeV with a luminosity of 3.4 x 103 4 cm~2 s~] will be able to probe A NC up to 

-  2 TeV.
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CHAPTER 3 

Universal Extra Dimensions and 

Kaluza-Klein Bound States

3.1 Introduction

The possibility of large extra dimensions has met considerable scrutiny in recent 

years. Sub-millimeter sized extra dimensions, in which only gravity can propagate in 

the bulk, allows for a reinterpretation of the hierarchy problem [73, 8 , 9]. TeV-scale 

extra dimensions allow gauge and matter fields to propagate in the bulk as well, and 

have the virtue of allowing for an accelerated gauge unification [74, 75]. These and 

related scenarios are well-motivated by string theory, where the existence of extra spatial 

dimensions is necessary for the consistency of the theory.

The notion that the propagation of gauge and matter fields in the bulk implies com- 

pactification radii of order a TeV " 1 follows from consideration of precision electroweak 

constraints [76, 77, 78, 79, 80, 81, 82]. In the first types of models studied, at least one 

Higgs field was assumed to be confined to an orbifold fixed point. The vacuum expec

tation value (vev) of such a field necessarily results in mixing between the Z  boson and

32
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its Kaluza-Klein (KK) excitations. O ne’s intuition from models with extra Z'  bosons and 

Z - Z '  mixing suggests that the bounds on the first KK excitation will be of order a TeV, 

with some reduction if the vev o f the Higgs responsible for this mixing is particularly 

small.

Universal extra dimensions (UED) were proposed as a way of avoiding such tree- 

level contributions to precision electroweak observables altogether [15], in UED, all fields 

propagate in the bulk. Conservation of KK number prevents mixing between KK and 

zero-mode electroweak gauge bosons, so that the bounds described earlier are avoided. 

In the case of one extra dimension compactified on a Z 2 orbifold, a residual Z 2 symmetry 

of the effective four-dimensional (4D) Lagrangian allows interactions only between even 

numbers of the odd numbered KK modes. This renders the lightest KK particle (LKP) 

exactly stable. Typical bounds on the scale of compactification, 1/i?,, are weakened to 

the collider bounds for the pair production of KK states, or approximately 300 GeV [20]. 

The possibility that the LKP is a dark matter candidate has also been investigated [16, 17, 

83, 19, 18].

In the absence of radiative corrections and electroweak symmetry breaking, all KK 

modes at a given level would be exactly degenerate, with masses given by n / R ,  where n  

is a non-negative integer. Electroweak symmetry breaking introduces small corrections 

to this spectrum, with perhaps the exception of the KK excitations of the top quark, since 

rnt0p is not necessarily much smaller than 1/i?. A more sizable effect results from loop 

corrections to the KK mass spectrum, which can be divided into two types [2]. There 

are finite corrections, resulting from the propagation of bulk fields around the compact 

dimension, which are insensitive to momentum scales above 1 /i? . There are also loga

rithmically divergent contributions that are localized at the orbifold fixed points. These 

renormalize the possible 5D Lorentz-violating interactions that exist at the fixed points 

and alter the KK mass spectrum. If  we think of these interactions as counterterms, a renor

malization condition must be chosen to fix their finite parts. Corrections to KK masses
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are thus determined by 1 / R ,  the ultraviolet cutoff of the theory A, and the renormaliza

tion condition that determines the finite parts of the fixed-point-localized counterterms. 

Although in the most general case, these finite parts are undetermined (and the scenario is 

devoid of predictivity) one can adopt a minimal assumption that they vanish at the cutoff 

A. This boundary condition is no worse than, for example, the assumption of universal 

soft masses at the unification scale in the minimal supersymmetric standard model. We 

will adopt this assumption for the present purpose, and will show later that our results do 

not strictly depend on it.

A consequence of an otherwise degenerate mass spectrum corrected by loop effects 

is the possibility that some approximate degeneracies may remain. In particular, we note 

in the present work that the mass difference between the Kaluza-Klein excitations of the 

quarks (which we will refer to as KK-quarks, for brevity) and the LKP can be relatively 

small, for reasonable choices of R  and A. The implication that we explore is the possible 

formation of KK-quark bound states, and we investigate whether they may be discerned at 

future electron-positron and muon colliders. In the case of heavy standard model quarks, 

it is well known that toponium bound states do not form because the lifetime of the top 

quark is short compared to the time scale associated with hadronization. It is usually said 

that this is a consequence of the heaviness of the top quark, but more precisely, it is a 

consequence of the large top-bottom mass difference. In the UED scenario of interest, 

the lightest KK quarks must decay to the (stable) LKP, and the phase space suppression 

leads to a different conclusion, for a wide range of model parameters. An investigation 

of KK bound states is not merely a topic of academic interest. It is possible that the pair 

production of KK modes of the first level may be accessible at colliders while that of 

the second level may be kinematically out of reach. Then the search for bound states 

of the first KK modes via a threshold scan may be the quickest approach to discovering 

additional interesting physics.

This chapter is organized as follows. In the next section we give a detailed review
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of UED, including the topic of radiative corrections to the mass spectrum. In Section 3, 

we discuss the criterion for the formation of bound states, determine the model param

eter space that is consistent with this constraint, and compute the bound state spectrum. 

In Section 4, we discuss the production and detection of “KK-quarkonia” at electron- 

positron, and at muon colliders. In particular, we show that the bound state decays have a 

distinctive signature that should allow easy discrimination from backgrounds. In the final 

section we summarize our conclusions.

3.2 UED

In this section we review the derivation of the 4D Lagrangian assuming one universal 

extra dimension. We begin by considering the simplified example of a U (l) gauge theory 

and then immediately generalize to the full standard model gauge group. We focus on 

results that will be used in the phenomenological analysis that follows.

Consider a 5D U (l) gauge theory with a fermion of unit charge e5D propagating in 

the bulk. In 5D, the Clifford algebra is given by

{rM , r }̂ =  2gMH , (3.1)

where P* =  7 M and r 5 =  —i j a. Here Roman indices run over all dimensions, while 

Greek indices run over the familiar four. It follows that the 5D spinor fields '5 have 

four components, like their four-dimensional counterparts. However, since q 5 no longer 

purely anticommutes with the 5D Dirac operator iVMd u , no chirality can be assigned to 

a massless 5D spinor field.

We now compactify the theory on the orbifold S ] /Z 2. Four-dimensional chiral

ity is obtained by imposing the boundary conditions 'I'fxC  y) — T fxC  y + 2irR) and 

T fxC  y) =  —7 5 vI; ( P ,  —y). This implies that there is a Zo even field \1/+ that is left

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3 6

handed, and an odd field that is right handed,
OC

=  cos (ny /R )  , ~{xM) =  5 3 ^ ^ \ x u) s in (n y /R )  . (3.2)
Tl=0 71=1

Since has no n  =  0 component, only a left-handed zero-mode remains, while each 

higher KK level is composed of a vector-like pair. A 5D gauge field may be similarly 

decomposed
OO OO

A p { x M) =  ^  cos {n y /R )  , A 5 {xM) =  ^ - ^ G O  s in{ny/R)  . (3.3)
77-=0 71=1

This choice of Z 2 parities assures that an unwanted scalar photon zero mode is also pro

jected away by the orbifold boundary conditions.

The 4D Lagrangian may be obtained by substituting these expansions into the 5D 

action

■ S  = J  d5x  (VzT MD M^  -  \ f m NF MN +  £gaugC fixing) , (3.4)

where D M = d M — i e ^ A M, and integrating over the extra dimension y. Terms quadratic 

in the n th mode T (-n) 0r A ^  in the 4D theory are then found to be multiplied by a factor

of 2 x R  if n  =  0, or n R  if n  =  k > 0. Thus, properly normalized kinetic terms are

obtained only after the rescalings

(k)4(°) — __L_4(°) 4W — __i_ 4  W xT;(°) — _L _,/, (°) \Er(fc) —  ̂ ySk
-  ^ R K  ^  "  V ^ R  M ’ + "  V ^ T + ’ "  ^ R W±

(3.5)

Notice that the fields T  and A u. have mass dimensions 2 and 3 /2 , respectively, while the 

rescaled fields w and A u, have their usual 4D mass dimensions. Taking these rescalings 

into account, and that derivatives with respect to y  become factors of n / R  in the 4D  

theory, one may easily find the tree-level masses

m ^n)  =  rnA{u) — n / R  . (3.6)

The gauge field fermion interactions for the Z2-even fermion fields follow from  the

5D term

ebDA>+A ^ +  ■ (3.7)
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Integrating over y, one finds

e5_D ( 2 n R ¥ (°) + Y ^ 7rR' ^ (+ A (n)%+]
n >  0

+  E  ( 'W - 'l  + 'W - H - ) ^ C “) A '”’* ? )  ■ (3.8)
m > 0 , n , r

O f relevance to our investigation of KK quark decays later are the gauge interactions 

involving n  =  0 and n  =  1 modes. With the field rescalings described above, and 

including the Z 2 odd fermion field one finds

where the 4D gauge coupling e =  e5o / \Z2ttR.  Note that the 5D gauge coupling e5jr> has 

mass dimension —1/2, while e is dimensionless, as we expect. This expression may be 

written more compactly be embedding the left- and right-handed modes u>+ and into 

Dirac spinors w

£ lh  =  e ( V 0) / (O)P L'0(O) +  ? 0) 4 {0)i ^  +  [^ (0) 4 {1)P l ^ {1) +  /i.e.]) . (3.10)

Here Pl = {1 — 7 5) /2 , and the right-handed component of the zero-mode Dirac spinor 

is arbitrary. A similar expression for a fermion with a right-handed zero-mode can be 

obtained from Eq. (3.10) by replacing PL by P r . If radiative corrections render m ^ o  >  

m A(!) +  than the last term can lead to KK fermion decay.

The field rescalings and the KK mode numbers in Eq. (3.10) are all independent 

of the chosen gauge group. We therefore may immediately generalize to the standard 

model. The interaction terms relevant to the KK-quark decays that we consider later are
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as follows:

sin(0 vv +  8 1 ) — \  s i a ( ^ r — # i)_ |
u<°> ^ ' P hn f  +  ^ p - u < ° >  4 ('>P„u U

cos 9w
cos(6 W -  9i) +  2 cos(flw +  g1) _ (0) (1) (1) _  2 sin#! _ f0) ~(i)p  (1)

sin 2 0 w L "" cos R

d{0) / V p Ld{l ] + ^ p - d i0) f i {l)PRd $

sin 29-w
1

+  3 6  

1

3 6 

1

~  3 6 

1
H----

> /2

sin(^w- +  0 ]) — 2 sin(6W —

■5(0)

sin 2 0 w-  ̂ cos 6 w
2  cos(0w  -  +  cos{9W +  9l )-(o) ^  D ^(1) _  s in ^  - (o) ^ (1) p ^ (1)

cossin 29w 

-u(0) W ^ P i A i

cos -̂ (0)

d (0) ^ ^ 4

+  h.c. (3.11)
_sm vw

Note that the n  =  1 fields above are complete Dirac spinors (with both left- and right- 

handed components), and the subscript indicates only the chirality of the associated zero 

mode. In addition, dw  is the zero-mode weak mixing (Weinberg) angle, while 9] is the 

corresponding angle for the n  =  1 modes. In the absence of radiative corrections, the 

electroweak symmetry conserving contributions to the B ^ - W ^  mass squared matrix 

are precisely diagonal (and equal to 1 / i f 2), so that we expect 9W — 9j . In that limit, the 

photon and Z couplings in Eq. (3.11) have the same values as their couplings to either left- 

or right-handed up or down quarks. However, radiative corrections lead to much smaller 

values of 9\. For example, for AR  — 20 and R r l =  500 GeV, sin2 9X ps 10- 2  [2]. In the 

following section, we omit the dependence on 9X to streamline our analytical expressions. 

The full dependence on 9X has been taken into account in all our numerical results, and 

complete analytical expressions are provided in the Appendix.

Radiative corrections to the KK-gauge boson and KK-quark masses allow for two- 

body decays via the interactions in Eq. (2.11). Over the range of AR  and R r ] that 

we consider, the LKP is the first KK excitation of the photon, rf(]) [2 ]. The radiative 

corrections to the KK-quark and the KK-gauge boson masses were calculated by Cheng, 

Matchev and Schmaltz [2]. Adopting their assumption that the finite parts of counter 

terms vanish at the cutoff scale A, we plot the mass splitting between the KK-quarks and 

the LKP, as well as the splitting between the weak KK-gauge bosons and the LKP, as a
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function of 1 / R ,  in Fig. 3.1, setting the value of AR  =  20. Complete expressions for the 

radiative corrections that are taken into account in this figure can be found in Ref. [2], As 

a consequence of the smallness of the n  =  1 mixing angle 9\, the LKP, is almost 

entirely a K K -B  boson, while the KK-W and KK-Z are virtually degenerate in mass. As 

we will see in the next section, the values of A M  in Fig. 3.1 are small enough to lead to 

KK-quark bound state formation.

120

100

>(D
CD

<
60

40 W, Z

350 400 500 550300 450 600
FT1 (GeV)

FIG. 3.1: The mass splitting between KK-quarks and the LKP, as well as the splitting 
between the weak KK-gauge bosons and the LKP, as a function of 1 / I i  for AR  — 20. Here, Q l 
stands for all isodoublet KK-quarks except top, ur for up and charm isosinglet KK-quarks, and 
dn for down, strange and bottom isosinglet KK-quarks

3.3 Bound States

From Fig. 3.1, one finds that radiative corrections to the KK masses in UED are 

typically in the 10-100 GeV range. We will show that this is numerically small enough to 

allow for the formation of bound states of KK quarks. The smaller phase space available 

for KK-quark decay renders the bound states narrower than the spacing between adjacent 

KK-quarkonia levels, at least for the first few levels. In this section, the decay widths
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and branching ratios of the KK-quarks are calculated and discussed, as well as the mass 

splittings of the different KK-quarkonia energy levels and the production cross sections 

at lepton colliders.

3.3.1 Decay widths and branching ratios

With the Lagrangian and mass splittings given in the previous section, it is straight

forward to determine the decay widths and branching ratios of the KK-quarks. We will 

begin by considering the weak isosinglet KK-quarks (except the KK-top), then the weak 

isodoublet KK-quarks, and finally the unusual case of the isosinglet KK-top quark. While 

the partial decay widths of KK-quarkonia through annihilation are typically tens of keV, 

we will see that the decay widths of the KK-quarks (except the KK-top) are typically 

close to a hundred MeV. Thus, the decay width of a KK-quarkonium state will be twice 

the decay width of the KK-quark.

7*,Z*

FIG. 3.2: The production and decay chains of <3̂  and q ^  pairs. Note that all of the decays in 
the q'p decay chain are two-body, leading to monochromatic quarks and leptons.

Isosinglet KK-quarks

Isosinglet KK-quarks cannot decay into KK-W bosons and their decay into KK- 

Z bosons is suppressed by a factor of sin2 Qx. In addition, their decay into KK-Higgs 

bosons is suppressed by small Yukawa couplings. As a result, the dominant decay mode
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is qW as shown in Fig. 3.2. Since the LKP is stable, the decay signature

will be a monochromatic quark and missing energy. The one exception is the isosinglet 

KK-top quark, which cannot decay into a top quark and the LKP; we will discuss that 

case shortly. Including the small coupling to the KK-Z boson, we find that the branching 

ratio into a quark and a KK - 7  is over 98 percent (consistent with the results in [84]). 

Neglecting the mass o f the light quark and sin2 9U we find the decay width

rfT/W d ~ (ih  =  6  ( 1 _  ( 2 +  m 4 1} ^  ( 3  l2)
R R 28 8 7T cos2 9W y  m 2(1) J  y  m?w J

An exact expression is given in the Appendix. The decay width for the is larger by a 

factor o f four. Given values for 1 / R  and AR,  this width is completely determined. The 

results are shown in Fig. 3.3. We see that the widths are typically within a factor of two 

of 10 MeV. As noted above, the decay signature is a monochromatic quark and missing 

energy; for 1 / R  — 500 GeV and AR  =  20, the quark energy is 67 GeV.

Isodoublet KK-quarks

For the isodoublet KK-quarks, decay channels into KK-W and KK-Z bosons are 

available. Although there is less phase space into these than into the KK - 7  boson, the 

couplings are substantially larger, and the KK-W and KK-Z modes dominate. The decay 

width into a KK-W is given by

e2m.n) (  \ 2 (  ™2,o) \
r ( 4  -+ u L w U )  =  . L  l ^ f  1 -  - F 1  2  +  - F -  , (3-13)

647r sm 9w  \ /  \  wil) J

where FA is the relevant CKM element. The identical decay width, of course, applies to

d i  W (] > decays. The decay width into a KK-Z is given by
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1000

AR=20

AR=10

AR=5100

>
©5 AR=20
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R '1 (GeV)

FIG. 3.3: The total decay width of n — 1 isosinglet and isodoublet down KK-quarks as a function 
of R ~ l for fixed AR = 5, 10, 20. The solid lines represent the total decay widths of isodoublet 
down KK-quarks for each corresponding AR  value, respectively. The dashed lines are for the 
isosinglet case. The isodoublet up KK-quark total decay width is equal to that of the down and 
the isosinglet up KK-quark’s width is four times larger than that of the isosinglet down.

We see that the branching ratio into the KK-W bosons are 2|V y |2 times that of the KK- 

Z bosons. The branching ratio into KK - 7  bosons is negligible, always less than a few 

percent. These decays will give spectacular signatures. The decay into a KK-W boson, as 

shown in Fig. 3.2, leads to the decay chains d P  —f  u L - f  u L I and d p  —1 

u i  W (Vj —f  u L l (d  y  - v  m  I v  -d1) leading to a monochromatic quark, a lepton, and 

missing energy. For example, for 1 / R  =  500 GeV and AR  =  20, the quark energy will 

be 46 GeV. Assuming measurement of the quark je t allows reconstruction of the W (J ) 

four-momentum, then the lepton energy can be completely determined’. The decay into 

a KK-Z is even more spectacular, with the chain d p  - f  d i  Z (l) - f  dL I lP } - f  d j J , l 7 W , 

where I is a charged lepton. Again, the initial quark je t energy is fixed, and the sequential 

two-body decays should allow for easy reconstruction of the event, and suppression of 

backgrounds. O f course, in both the KK-W  and KK-Z cases, there will also be hadronic

1Even if the four-room.en.tum can’t be reconstructed, the spread in the lepton energy will, be 
0 (10%).
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decays -  we have focused on the leptonic because the signatures are much cleaner. The 

resulting total widths are plotted in Fig. 3.3; and the KK-W final state accounts for 2/3 of 

the widths (for the first two generations).

For the first two generations, generation-conserving decays are favored, since the 

CKM matrix is nearly the identity. However, for the third generation, a decay into a top 

quark is not kinematically allowed. For the KK-top quark, this means that only the decay 

into a KK-W is possible. Due to CKM suppression, decays of the KK-bottom into KK-Z 

and KK - 7  are favored and thus the decay width of the KK-bottom is 1/3 of those shown 

in Fig. 3.3. For the isodoublet KK-top, the mass is somewhat larger than the other KK- 

quarks, and thus more phase space is available. For most o f parameter-space, we find that 

the decay width of the KK-top (entirely through the KK-W chain) is approximately 80 

percent of the widths shown in the figure.

isosinglet KK-top quarks

Due to radiative corrections the isodoublet and isosinglet KK-top quarks mix, with 

a mass matrix given by

 ̂ 1 /i?, -h <5mr i m top 

^ mop —1 / R  — Sm t i 

where the S m ’s are small radiative corrections. The result is a mixing angle given 

by tan  29] =  2 m tupR / (2  -I- R  +  S m Li R),  which leads to a coupling of the isosinglet 

top quark to a b-quark and a KK-W boson 2. The decay width is then [85]

r = + 2 M U  < 3 - , 5 )

For 1/R~ 500 GeV, the decay width is 10 MeV [85], Therefore, the isodoublet KK- 

top quark can form a bound state whose decay signature is a monochromatic b-quark, a 

monochromatic lepton and missing energy.

2We thank Marc Sher for pointing this out..
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3.3.2 Production cross-sections

The cross-section for production of a vector resonance, e+er  - 4  V  —> X  is given by

[86]
i27r(5/M-i)reer A-

(s -  M l  )2 +  M 2r 2. ’ 1 i j

where ree, Y'x and Tv are the partial widths for V  -> e+e~, for V  -» X and for the total 

width, respectively. Since we are interested in the total production cross-section, and since 

the partial width into Y ee is much smaller than the total width, we can set T x  =  T y  (this 

will be valid for all cases except the isosinglet KK-top quarkonia). At the peak resonance, 

the production cross-section is then given by

^  =  i | i v  • (3-17>

We need the partial decay width of V  - x  e+eX. The decay width through a virtual photon 

is given by

16as47raeo ,

r(V 7- -► e e~) = r, = ~ ^ f \ M 1 - (3.18)
3tt

where \Fv\2 is related to the wave function at the origin, and is given by 12M y|T y (0) |2. 

The partial decay width including virtual Z exchange is related to this

T (F  —>■ 7 *, Z* - x  e+e ) =  ( M y j e2cq)2(\Gv\2 +  |G ^ |2 )T7  , (3.19)

where

_ e2eQ 8G FM l ______ gypy______  n
M y  M y  — A f| + i Y z M z  { )

and

8G FM g  g jg y
A \ /2  M 2 -  M |  +  i T z M z  ' ( j

Here, gv  and gA are the vector and axial vector couplings of the fermion to the Z, and 

9vr = 9ql , 9vr = (9Ql +  9Qr ) / 2  with gQ = T3 -  eQ sin2 8W. Finally, we need the wave
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Afiv(GeV) Tee:(^L UL )(keV) r ee( 4 M 1J)(keV) r ^ V ^ X k e V )  r ee(4 ?1)4 1))(keV)
600 14.58 6.73 9.74 3.64
800 19.31 8.79 12.97 4.82

1 0 0 0 24.06 10.89 16.21 6 .0 1

1 2 0 0 28.82 13.00 19.45 7.20
1400 33.59 15.13 2 2 .6 8 8.39
1600 38.36 17.25 25.92 9.59
1800 43.14 19.39 29.16 10.78
2 0 0 0 47.92 21.52 32.40 1.1.98

TABLE 3.1: The partial decay width of V -y e+e for both isodoublet and isosinglet KK-quark 
bound states.

function at the origin. A t these high mass scales, one expects single gluon exchange to be 

fairly accurate, and in that approximation the wave function at the origin is given by

|* (0 ) | 2 = 7  > (3-2.2)
7T

where n  is the principle quantum number. Putting these together, we find that

r .  =  My (l -  L  +  .- - - f f i ’ I , (3.23)
2{n i 7i2 \  37t y V (1  -  kz )2 sin 29w

where kz  — m | / M y .  To get Eq. (3.23) we assumed that g\r is negligible and T ‘z k z <C 

(1  — KZ)2M y  , even though we have used the exact expressions for numerical calculations. 

In Table 3 .1 , we have listed the decay width, T ee for a range of KK-quarkonia masses.

We can now determine, using Eq. (3.5), the peak production cross sections for 

isodoublet and isosinglet KK-quarkonia. The results are show in Figs. 3.4 and 3.5. The 

cross sections are substantial, between 1 and 1 0 0  picobarns.

We now turn to the mass splittings between the different KK-quarkonia levels.

3.3.3 Mass Splittings

To observe KK-quark bound states, the mass splitting between adjacent resonances 

must be larger than their typical decay widths. The KK-quark mass scale justifies a non- 

relativistic calculation of the binding energies. We therefore solve the radial Schrodinger
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FIG. 3.4: The resonance production cross section for isodoublet KK-quarkonia states, except 
KK-toponium. as a function of R ~ l for AR  =  5, 20. The solid lines represent down type 
KK-quarkonia states and the dashed ones represent up-type KK-quarkonia states, and the upper 
(lower) lines correspond to XR =  5 (20).

equation,
1 d2u 1 1(1 +  1 ), .. „

+  [V (r ) +  —----- —— ] u =  A E  u , (3.24)
2 /j, dr2 2n  r 2

for a suitable phenomenological potential V(r) .  Here u(r) = rR(r )  and the complete 

wave function is ip(r, 9, <fr) = R(r )Y im(6, <p). The wave function satisfies

u(0) = 0 ,  

uir )  —y 0  , r —> o o . (3.25)

Given a choice for V (r ), Eq.(3.24) is solved numerically to obtain the energy eigenvalues 

A E;  the mass for each bound state is then given by

M n =  2 M k k  +  d±En , (3.26)

where A E n is the energy eigenvalue of the r f i1 level and M KK is the mass of the KK- 

quark. Normalizing the wave function by

\u\ dr — 1 (3.27)
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FIG. 3.5: The same as Fig. 3.4 but for isosinglet KK-quarkonia states. Here the upper (lower) 
lines correspond to Ail =  20 (5).

one may compute R ( 0) =  u'(0).

QCD motivates the following form for the potential:

The first term is Coulomb-like and is generated by one-gluon exchange, while the

energy level splittings in good agreement with the data for the T  and J lib systems. At 

the typical energies of KK-quarkonia production, one would expect the Coulomb-like 

potential to dominate resulting in nearly hydrogen-like energy level splittings. However, 

hydrogen-like wave functions become more spread out at higher energy levels, suggesting 

a more significant contribution from the linear term in these cases. Note, however, that the 

level spacings for a hydrogen-like spectrum decrease roughly as A E n n+1 oc , where

n  is the radial quantum number. Therefore, only the first few energy levels will have 

splittings large enough to permit KK-quark bound states to be distinguished.

For .4 =  1 GeV fm - 1  and a s =  0.1, the radial Schrodinger equation was solved 

numerically for the IS, 2S, and 3S energy levels. The results are listed in Table 3.3.3 for 

KK-quark masses of 300 GeV and 500 GeV, along with the predictions of a hydrogen-like

(3.28)

second is linear and models confinement. For A  ~  1 GeV fm \  this potential predicts
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M k k level A E  (GeV) 4 l2m A E h  (GeV) aZQ2R (0 )H
300 IS -1 .3 1 9 3.096 -1 .3 3 4 3.079
300 2S -0 .2 7 6 1.173 -0 .3 3 3 1.089
300 3S -0 .0 3 0 0.763 -0 .1 4 9 0.593
500 IS -2 .2 1 3 3.085 -2 .2 2 3 3.079
500 2S -0 .521 1 .1 2 2 -0 .5 5 5 1.089
500 3S —0.171 0.670 -0 .2 4 8 0.59-3

TABLE 3.2: Energy shifts and radial wave functions at the origin computed numerical assuming 
the potential in Eq. (3.28). The parameter a0 here is l / ( /z a s), where n — M k k  fa is the 
reduced mass. The last two columns show the result obtained when neglecting the linear term in 
the potential.

potential. As expected, both the energy eigenvalues and R ( 0) are nearly hydrogen-like, 

justifying the use of Eq. (3.10) in the decay rate calculations.

We see that the mass splittings, especially between the IS and 2S states, are substan

tially larger than the width of these states, and thus will be discernible in a collider with 

sufficient energy resolution. We now turn to experimental detection of these states.

3.4 Detection

The production cross section for KK-quarkonia at a linear collider can now be dis

cussed. For definitiveness, we first consider the isosinglet KK-quarks, assuming 1 / R  =  

500 GeV and AR  =  20. The masses of the d ^ } and are then 572.14 GeV, the bp) is 

572.16 GeV, and the and c^ '  are 573.84 GeV. (The mass of the is actually a few 

GeV lighter, but its decay signature, as noted in the last section, is completely different.)

Putting these together, we find the cross section as a function of y 's  given in Fig. 3.6. 

The signature is very dram atic-one expects two monochromatic (in this case, 67 GeV) 

quarks and large missing energy. Clearly, the splitting between the resonances is large 

enough to separate the states. In the case of the top KK-quark, the resulting cross section 

looks identical to those of the up and charm KK-quark, but now the signature would be a 

fermion-antifermion pair, each with an energy of 570 GeV.
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FIG. 3.6: The cross section for KK-quarkonia formed by isosinglet KK-quarks as a function of 
for 1 /U  =  500 GeV and AR — 20. The labels V D refer to the bound states of isosinglet 

KK-down, KK-strange and KK-bottom quarks, while V u refers to the bound states of isosinglet 
KK-up and KK-charm quarks.

The masses of the isodoublet KK-quarks, except for the top, are nearly degenerate 

at 585.7 GeV. The cross section is plotted in Fig. 3.7. Again, the splitting between the 

resonances is large enough to separate the low-lying states. Here, the signatures are also 

dramatic, with two monochromatic quarks (in this case with energies of 46 GeV) and, 

depending on the decay chain, charged leptons, as discussed earlier. The isodoublet top 

KK-quark has a similar cross section, but is approximately 12 GeV heavier.

These center-of-mass energies are rather high. However, the lower bound on the size 

of the extra dimensions is approximately 300 GeV. Using this value of 1/R ,  we find the 

results in Figs 3.8 and 3.9, which are similar to the 1 / R  =  500 GeV case. Note that one 

can discern the fact that the KK-bottom quark is slightly heavier than the KK-down and 

KK-strange quarks, leading to some substructure in the resonances. O f course, in all of 

these cases, the n  =  2 modes will be out of reach of a TeV scale linear collider.

O f course, it will still not be possible to detect these structures if the beam resolu

tion is too large. At a muon collider, this will not be a problem, since mass resolution of
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FIG. 3.7: The cross section for KK-quarkonia formed by isodoublet KK-quarks as a function of 
yfs for 1/R  = -500 GeV and AR  = 20. The label V® refers to all of the isodoublet KK-quarks, 
except for the KK-top.

a few MeV is possible after deconvolution of the beamstrahlung and initial state radia

tion [87, 8 8 ]. Resolution is a potential problem for electron-positron colliders, however, 

since one expects the average energy loss at s fs  =  500 GeV to be approximately 1.5% 

[89]. This energy loss comes from initial state radiation and beamstrahlung. However, 

the spectrum for each is well known and it is expected [89, 90] that the resulting mass 

resolution after deconvolution will be better than 10“ 4, possibly a few times 1CT5, or 50 

MeV for a i / s  =  1000 GeV. Such a mass resolution would easily allow the states to be 

detected (although precise width measurements would require better resolution). Clearly, 

a dedicated simulation would be needed to determine the capabilities of a linear collider 

(such a simulation would also be relevant for long-lived fourth generation quarkonia, and 

other s-channel resonances) for detection of KK-quarkonia states.
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FIG. 3.8: The cross section for KK-quarkonia formed by isosinglet KK-quarks as a function of 
y/s for 1/R  — 300 GeV and AR  — 20. The labels are the same as in the previous figures.

3.5 Conclusions

If the simple model of Universal Extra Dimensions that we have considered is re

alized in nature, the mass splittings between the n  — 1 KK-quarks and the lightest KK 

particle will be substantially smaller than the splitting between the top and bottom quarks. 

As a consequence, KK-quarks can be sufficiently long lived to form bound states, that we 

call KK-quarkonia, for a wide range of model parameters. With boundary mass correc

tions renormalized to vanish at an O(TeV) cutoff scale A, we show that the KK-quark 

decay widths are in the 10-100 MeV range. We find that the peak cross sections for the 

IS KK-quarkonia states are of the order of a few picobams, and that the production cross 

sections near threshold show very clear and distinctive IS, 2S and 3S resonant peaks. 

The decay signatures are very dramatic and nearly background-free: each isosinglet KK- 

quark (except the top) will decay into missing energy and a monochromatic quark (whose 

energy is determined solely by the KK-quark masses), and each isodoublet KK-quark 

will decay into missing energy, a monochromatic quark, and one or more leptons arising
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FIG. 3.9: The cross section for KK-quarkonia formed by isodoublet KK-quarks as a function of 
vT  for 1/R  =  300 GeV and AR  '= 20. The labels are the same as in the previous figures.

from subsequent two-body decays. The key issue for experimental detection is achiev

ing sufficient energy resolution. This will not be a difficulty for a muon collider, and 

not impossible for an electron-positron machine. However, determining the resolution in 

the later case will require simulations to deconvolve the beamstrahlung and initial state 

radiation energy loss mechanisms.

3.6 Decay Width Formulae

In this appendix, we give the partial decay width expressions for the decays of n  — 1 

KK-quarks by retaining all fermion masses and the mixing angle 9X. For the decays of 

isosinglet KK-quarks, the partial decay widths can be expressed as
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CHAPTER 4 

Higgsless GUT Breaking and 

Trinification

4.1 Introduction

Extra spatial dimensions allow for the possibility of gauge symmetry breaking by 

the appropriate choice of boundary conditions on the fields. The relevance of this point 

to model building was first realized by Kawamura [91, 92, 93], in the context of SU(5) 

grand unified theories (GUTS), and was developed substantially afterwards by a number 

of authors [94, 95, 96, 97, 98]. In the simplest case of an S x jZ-i orbifold, the matrix 

representing the action of the Z 2 symmetry in field space may not commute with all the 

generators o f the gauge symmetry. Boundary conditions may be chosen so that different 

components of the gauge multiplet have different parities, leaving only some with zero 

modes after the theory is dimensionally reduced. The fact that the zero-mode spectrum 

includes incomplete multiplets of the gauge group indicates that the symmetry has been 

broken. Although no Higgs fields are involved, longitudinal gauge boson scattering am

plitudes are well behaved at high energies [99]. The same approach may be employed to

54
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project away the zero-modes [100] of the color-triplet Higgs in SU(5) GUTS, naturally 

resolving the doublet-triplet splitting problem [91, 92, 93, 94, 95, 96, 97, 98],

In the simplest orbifold constructions, the orbifold parity commutes with the diag

onal generators of the original gauge symmetry, so that the unbroken subgroup has the 

same rank. For symmetry breakings like SU(5)—>-SU(3)c;xSU(2)vy x U (l)y , [91, 92, 93, 

94, 95, 96, 97, 98] or SU(3)vy -©SU(2)w x U (l)y [101, 102], the breaking by orbifold 

boundary conditions provides an economical approach for constructing models. How

ever, larger groups, like E(} or E 8 can only be broken directly to the standard model gauge 

group and, at best, a product of additional U (l) factors [103]. One must then rely on the 

conventional Higgs mechanism to complete the breaking o f the residual GUT symmetry. 

In this chapter, we will consider the use of more general boundary conditions to break 

such unified symmetries directly to the standard model gauge group, and hence, to re

duce the rank of the original group. This approach has been discussed in the context of 

Higgsless electroweak symmetry breaking [99, 104, 105, 106, 107, 108, 109, 110]; here 

we will employ the same technique at a high scale, while retaining the ordinary Higgs 

mechanism for the breaking of electroweak symmetry. This choice allows us to eliminate 

the often complicated and problematic GUT-breaking Higgs sector, while allowing for 

the easy generation o f light fermion masses.

The unified theory we consider is based on the ‘tonified’ gauge group G r  — S U (3)e x 

SU (S ) l x SU (3 ) r k Z 3 [1 1 1 , 1 1 2 , 113, 114, 115, 116, 117, 118]. Thesem idirectproduct 

(indicated by the symbol ix) provides for a symmetry that cyclically permutes the gauge 

group labels C, L,  and R.  Hence, the SU(3) 3 representation (rep) (1 , 3, 3) is part of the 

trinified rep

27 =  (1, 3, 3) © (3 ,1 , 3) 0  (3, 3 ,1 )  . (4.1)

Moreover, the Z 3 symmetry assures the equality of the three SU(3) gauge couplings at 

the GUT scale. As originally pointed out in Ref. [111], an appropriate embedding of
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U (l)y  in  SUCSir.xSUG)^ yields the familiar GUT-scale prediction sin2 6 — 3 /8 . We 

review this construction in Section 4.2. We will work with a supersymmetric trinified 

theory in which the GT gauge multiplet may propagate in a single extra dimensional in

terval. We first consider the simplest case in which all the matter and Higgs fields are 

confined to a brane on which G t  is broken. Working in an effective theory of gauge- 

symmetry-breaking ‘spurions’ on this brane, we establish the boundary conditions neces

sary to break the bulk gauge group to that of the standard model, G t  -*  GSm - We also 

include the couplings of these spurions to the matter multiplets of the theory. In the limit 

in which the symmetry breaking parameters are taken to infinity, we obtain the Higgs- 

less lim it of the GUT-breaking sector. In particular, the mass scale for the heavy gauge 

multiplets becomes determined by the compactification radius, and all exotic matter fields 

are decoupled from the theory. The low-energy theory is simply that of the minimal su

persymmetric standard model (MSSM), with a set of massive gauge multiplets at a scale 

lower than that of conventional supersymmetric unification, 2 x 1016 GeV. We show that 

unification is nonetheless preserved. Above the compactification scale, the differential 

gauge running {i.e., for i A j ) is logarithmic, a feature that has been

noted before in the case of SU(5) GUTS broken on a boundary [119]. We then show that 

viable alternative theories exist in which the Higgs and/or matter multiplets are allowed 

to propagate in the bulk space, and we discuss the boundary conditions on these fields. In 

this case, the exotic matter fields remain part of the theory, but with large masses set by 

the compactification radius.

This chapter is organized as follows. In Section 4.2, we review the symmetry break

ing in conventional trinification models, and describe some of the main phenomenological 

features of these theories. In Section 4.3, we give the extra-dimensional construction of 

supersymmetric SU(3)3, determine the boundary conditions necessary to break the gauge 

group down to that of the standard model, and study the Higgsless limit o f the GUT- 

breaking sector. In Section 4.4, we study gauge unification in our minimal model, while

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5 7

in Section 4.5 we discuss the possibility of allowing chiral multiplets in the bulk. In 

Section 4.6, we summarize our conclusions.

4.2 Framework

Trinification [111, 112, 113, 114, 115, 116, 117, 118] is based on the gauge group 

G t  = S U (3 )<7 xSU (3 )/,xSU (3 )j? x Z%, where x indicates a semidirect product. The Z% 

symmetry cyclically permutes the gauge group labels C , L  and R,  ensuring a single uni

fied coupling at the GUT scale. G t  reps consist of the sum of cyclically permuted SU(3) 3 

reps. For example, the gauge fields are in the 24-dimensional rep

Here, A q represent the eight gluon fields of the standard model, while only some of the 

A 1 and above correspond to electroweak gauge bosons. The SU(2)T.V- gauge group of 

the standard model is contained entirely in SU(3)+, writing A  =  A aT a, then the SU(2)w 

gauge bosons W a correspond to /I f  for a =  1 . . .  3. On the other hand, the hypercharge 

gauge boson is a linear combination of A \  , A \  and A \ .  The choice

yields the standard GUT-scale prediction sin2 0W = 3 /8 .  The pattern of gauge symmetry 

breaking is achieved via one or more Higgs fields in the 27-dimensional rep,

Only the first SU(3) 3 factor in this rep allows for color-singlet vacuum expectation values 

(vevs) that may break S U (3) 3 down to S U (3)c  x S U (2 )l x U(l)y :

A £ ( 24) =  A%{8 , 1 , 1 ) +  A lL{l,  8 , 1 ) +  A ^ i  1 , 1 , 8 ). (4.2)

(4.3)

<j>(27) =  0 (1 , 3, 3) +  0(3, 3 , 1 ) +  0 (3 ,1 , 3) . (4.4)

 ̂ 0  0  0  ^

0(1 , 3, 3 ) =  0 0 0 (4.5)

0  0  v2 Vi
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Here, represent the GUT-scale vevs, while hatted entries denote components capable 

of eventually breaking the electroweak gauge group. Spontaneous symmetry breaking 

renders twelve of the original gauge bosons with masses of order the GUT scale. Interest

ingly, these massive gauge bosons are integrally charged and cannot generate dimension- 

six operators that contribute to proton decay. Depending on the number of Higgs multi

plets and their couplings to the matter fields, proton decay may still occur via color-triplet 

Higgs exchange.

Standard model fermions are embedded economically in the 27-dimensional repre

sentation, In SU(5) language, the 27  decomposes as

2 7 =  [10 ©5] © 5 ©  5 ®  1 0  1 (4.6)

The reps in brackets correspond to a full standard model generation, while the remaining 

reps are exotic. Thus the exotic fields include left- and right-handed fermions with the 

quantum numbers of a charge —1/3  weak singlet quark (B ), a hypercharge —1/2 weak 

doublet lepton (E°, E ~ )  and an electroweak singlet (N).  Using the notation

^(27) =  U ( l , 3 , 3 ) +  p>(3, l ,3)+ y((3,3,l)  

=  IpC + Wl +  i ’R ,

(4.7)

(4.8)

we may choose an SU(2)W,- basis in which the fermion reps take the matrix form

/  WU. „  \

Wc

\

E 0c E  e 

- E c E°  is 

ec N c N

(  r r r ^u cf Ucs ul

\

dc dc d-f  ug ub

t  . r  ^Ur U,r JDr

V>R= Ug dg B g

Ufy dfr Bfo

(4.9)

/

where all entries are left-handed. In supersymmetric trinification, these matrices are com

posed of left-handed chiral superfields, with each entry indicating the fermionic compo

nent. Yukawa couplings necessarily involve invariants formed by taking the product of 

three 2 7 ’s. These come in two types,

(4.10)
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(4.11)

We use the symbol Z3 to represent the cyclic permutation of R, L  and C,  e.g.

Zz[(pR'ipL<Pc] =  '4}RlpL<t>C +  4 }CW r 4>L +  '<RX:c OH. (4.12)

The index on the field <pc takes into account the possibility that there may be more than 

one 27-plet Higgs field. If there is only one Higgs 27, then both the up- and down- 

type quark Yukawa couplings for a given generation originate from a single GV-invariant 

interaction, of the form shown in Eq. (4.10). This implies the incorrect GUT-scale mass 

relation [1 1 1 ]
77?,... 7T),„

(4.13)
m t
m b

m u _  m c 
rnd m.s

Therefore, at least two Higgs 2 7 ’s must couple to the quarks via Eq. (4.10). Generally, 

the same set of Higgs fields will couple to the leptons via Eq. (4.11) and proton decay 

may proceed via color-triplet Higgs exchange. If a third Higgs 27-plet is introduced that 

couples to the leptons only, then proton decay can be prevented by imposing a global 

symmetry on the Higgs sector thatprevents mixing between the third Higgs and the other 

two. This, however, leads to a symmetry-breaking sector that seems somewhat contrived. 

It is conventionally assumed that the vevs v } and v-2 arise in separate Higgs 27-plets:

 ̂ 0  0  0  ^
</>(!, 3, 3) 0 0 0 

y 0  0  Vj

, x ( l ,3 ,3 ) 0 0 0 

0 Vo 0

(4.14)

/

The superpotential terms responsible for quark and lepton masses can now be determined 

from the invariants Eq.(4.10) and Eq.(4.11),

\VL =

(4.15)

(4.16)
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These may be expanded, yielding

W  = g2v2 dcB  +  g iV iBcB  +  vih i  r7-.; 7 . -  v2h2eijLĉ L j  , (4.17)

where the lepton doublets are defined by L H =  (E°, E ) , L  = (is, e), and L cn  == ( - E c. E c0). 

Clearly, one linear combination of B c and dc, and of L ji and L,  remain unaffected by GUT 

symmetry breaking1, and should be identified with the physical right-handed down quark 

and lepton doublet superfields:

dphys = { - 9 2 V2 B c +  gxvi dc) / ^ J g \ v l  +  g\v \

L phys = (h2v2 L ff +  h i v x L ) / y J h \ v \  +  h\v l  . (4.18)

The masses of the heavy quark and lepton states remaining in Eq. (4.17) are given by

m B,B<phys = {g\v\ E g l v l f B ,  (4.19)

m rsH,LH,Phys = (h \v f  +  ^ 2^2 ) 1/2 • (4-20)

For this minimal choice of symmetry breaking, the singlets N c and N  remain massless. 

However, as we discuss in the next section, vevs in other Higgs field representations can 

give masses to these states as well.

We will not discuss the structure of the Higgs sector in conventional trinified theories 

since our goal is to dispense with this sector entirely. We henceforth consider supersym

metric trinified theories embedded in 4 +  1 spacetime dimensions. As in Ref. [99], we 

assume that the extra spatial dimension is compact, and runs over the interval y  =  0  to 

y  =  siR. We will always assume that the G t  gauge multiplet propagates in the bulk, and 

we will consider consistent boundary conditions that allow us to break this gauge group 

directly to that of the standard model upon compactification. The radius of compactifica

tion is a free parameter that we will determine based on the condition that supersymmetric

’Ref. [112] states that no light lepton eigenstate will remain if  h2 ^  0. This is not correct, since 
unbroken electroweak symmetry assures that a massless eigenstate must remain.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



6 1

gauge unification is preserved. We first consider the simplest case in which all matter and 

Higgs fields are placed on the y = n R  brane, and afterwards discuss the possibility of 

placing chiral multiplets in the bulk.

In all cases, we will treat the symmetry breaking on the -nR brane in an effective the

ory approach. We will introduce G t  breaking spurions {$,}  on this brane and consider 

both their couplings to brane-localized fields, as well as their effect on the 5D wave func

tion of fields in the bulk. Historically, the term “spurion” refers to a symmetry-breaking 

param eter that is taken to transform as a spurious field, so that it may be included consis

tently in an effective Lagrangian. In the present case, one may think of the spurions as 

a collection of brane Higgs vevs, that can plausibly arise in some ultraviolet completion. 

Since we will focus on the limit in which these vevs are taken to infinity, we will not 

defend any particular ultraviolet theory. Partial examples will be given only to justify the 

consistency of the boundary conditions that we assume. In a few instances, we will re

quire higher-dimension operators involving the spurions, which necessarily involve some 

cut off A. In the decoupling limit, we will take both $  and A to infinity in fixed ratio. In 

other words, we do not assign A to some physical scale, but use this limiting procedure to 

obtain a consistent Higgsless low-energy effective theory that could otherwise be defined 

ab initio.

4.3 Symmetry Breaking

We choose to break the trinified gauge group at the y  =  n R  brane. For a generic 

gauge field A*1, the boundary conditions

0) =  0 and d5A ^ ( x \  irR) =  V A ^ x ,  ttR) (4.21)

lead to a mode expansion of the form

fk(y )  = N k cos(Mky) , (4.22)
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where M k is given by the transcendental equation

Mk tan(Mfc7ri?) =  — V (4.23)

and where the normalization

sin(Mfc7ri?)

assures that f * R f 2 =  1 [99]. Note that the symmetry breaking parameter V  has d i

mensions o f mass. The nontrivial boundary condition in Eq. (4.21) can be realized in an 

ultraviolet completion of the theory in which a brane localized Higgs field a  is responsible 

for the symmetry breaking. The brane equations of motion for the field A l‘ includes terms 

localized at y  = n R  from the start, as well as surface terms obtained from integrating the 

bulk action by parts. In particular, the kinetic terms

Variation of this portion of the action with respect to A 11 yields a constraint at y  = nR ,

Since the 5D gauge coupling g$ has mass dimension —1/2, one finds that V  has dim en

sions of mass, as before.

Csaki, Grojean, Murayama, Pilo, and Terning [99], have demonstrated that the bound

ary conditions given in Eq. (4.21) require a brane-localized Higgs field to cancel contribu

tions to scattering amplitudes that grow with energy as E 2. However, a remarkable feature 

of brane-localized breaking o f gauge symmetries is that one can decouple the Higgs field

dy [ - - F ^ F 5" + D ^ D „ a  5(y -  nR))  (4.25)

include

D /  d4xI I
dy { - d 5A ud5A» +  gl { a ) \ a ) M A , 6 ( y  -  yrf?)] . (4.26)

(4.27)

which corresponds to the desired boundary condition if one identifies V  = g2(<jy(a)/2.
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without decoupling the massive gauge multiplets as well. In the limit that {a), and hence 

V,  are taken to infinity, one finds from Eq. (4.23) that the K.K mass spectrum becomes

M n ~  —— (2n +  1)(1 3— — +  • • ■) , (4.28)
Z 7T V

where M c is the compactification scale 1 /R .  Thus, the low-energy theory has no Higgs 

fields, and the KK tower for the gauge fields is shifted by + M c/ 2  relative to the tower 

one would obtain if V  were set to zero.

In the case of Gt , the first SU(3) factor corresponds to the unbroken color group, so 

we may immediately write down the boundary conditions on the gluon fields A£,

d s A & x ,  0) =  dsA g (x ,  t t R )  =  0 . (4.29)

Similarly, an SU(2) subgroup of the second SU(3) factor remains unbroken, so that

d5A (l ( x ,  0) =  d sA aL(x, t t R )  =  0 for a =  1 . . .  3 (4.30)

Since the only remaining unbroken group is a U (l) factor, all gauge fields corresponding 

to off-diagonal generators must become massive. Thus, we require that

d5A l { x ,  0) =  0 , d5A cl ( x ,  TiR] =  VLA aL {x, t t R )  for a =  4 . . .  7 , (4.31)

d5A°n (x, 0) =  0 , d5A aR(x,  trR)  =  VRA%(x, t t R )  for a =  1, 2 , 4 . . .  7 . (4.32)

The remaining U (l) factors are more interesting. As we showed in the previous sec

tion, the embedding of hypercharge within SCJ(3)£.xSU(3)tj that leads to the prediction 

sin2 6 = 3 /8  requires that the hypercharge gauge boson be identified with the linear com

bination

A y  — — t={A\  +  V3 A ^  + A%Yl (4.33)
V5

Thinking in terms of an ultraviolet completion, suitable Higgs fields must generate a

brane gauge boson mass matrix with a zero eigenvalue corresponding to the eigenvector

(—l / y /b ,  — \ /3 / \ /5 ,  —1/y/E).  The only other necessary constraint on this matrix is that
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the remaining eigenvalues must be non-vanishing. Restricting ourselves to real entries, 

for the sake of simplicity, we may parameterize the remaining boundary conditions as 

follows:

Finally, we consider the A 5 components. In a nonsupersymmetric theory, we could 

impose the boundary conditions A 5 (.'r,0) =  A 5(x , ttR)  =  0 on all the gauge fields so 

that no additional light scalar states remain in the 4D theory. In the supersymmetric 

case, A 1-1 and A 5 live within a vector V  and chiral superfield, respectively. Since 

supersymmetry is unbroken, the fermionic components of V and <fy (say, A and A) must 

form Dirac spinors with the same mass spectrum as the gauge fields [119]. Since these 

masses originate from terms of the form d5Xip, the 5D wave function of $ y  must be 

proportional to sin Alky, with M k given as before.

If one were to assume an ultraviolet completion involving only the minimal Higgs 

content of conventional 4D trinified theories (localized on the ttR  brane) one would find 

that

The more general values of the parameters V] may be thought of as arising in some ar

bitrarily complicated GUT-breaking Higgs sector, which decouples as one takes VL, VR 

and Vi —> oo. However, we will not wed ourselves to any particular interpretation of the 

physics responsible for generating the symmetry-breaking parameters on the boundary.

A \ ( x , n R )  

nR)  

A \ { x , n R)

(4.34)

(4.35)

v i = ^ ( v i + v2 ) d  

Vs = ~ { 2 v l - A v 22)gl (4.36)
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We will proceed with an effective field theory analysis of the possible symmetry 

breaking on the irR brane. We will introduce the symmetry breaking systematically in 

terms of constant spurion fields that we may treat as transforming in irreducible reps of 

SU(3)3. When we obtain operators that are nonrenormalizable, we will introduce powers 

of a cutoff, A to obtain the proper mass dimension, as discussed at the end of Section 4.2.

A given spurion representation may contribute to the symmetry breaking param e

terized by Eq. (4.35) provided that it contains standard model singlet components, with 

hypercharge defined as in Eq. (4.33), that develop vevs. We know immediately of one 

possibility from the minimal 4D trinified theory, namely a 27 with vevs in the (1, 3, 3) 

component,

$ ( 1 ,3 ,3 ) 0 0 0

y 0  v2 vi j

(4.37)

As described in Section 4.2, these vevs give mass to the heavy fields B,  B c, L n and L'j, 

while contributing to the boundary condition on the gauge fields via Eq. (4.36). This rep, 

however, does not contribute to the mass of the new singlet leptons, N c and N .  Since 

we wish to retain only the particle content of the MSSM at the electroweak scale, we 

will be more general. The set of SU(3) 3 representations that appear in the product of 

two 27’s and that are color singlet are (1, 3, 3), (1, 6 ,3 ) ,  (1 ,3 , 6 ), and ( 1 ,6 , 6 ). For 

each, we may isolate the components that are SU(2)W'X U (l)y  singlets. The results are 

shown in Table 4.1. While the reps (1, 6 , 3) and (1, 3 , 6 ) contain standard model singlet 

components, it turns out that these do not split the 27 matter multiplets. For example, the 

coupling of the (1, 6 , 3) to two 27 matter superfields may be written

W  =  (4.38)

which vanishes for a =  b =  3 and 7  =  1, because of the antisymmetry of the SU(3)# 

epsilon tensor. Of the three new spurion reps in Table 4.1, only the (1 ,6 ,6 )  gives us
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TABLE 4.1: SU(3)3 reps in the product of two trinified 27-plets containing Standard Model 
singlet components, with hypercharge defined as in Eq. (4.33). Parentheses delimit indices that 
are symmetric.

SU(3 ) 3 rep SU(3)l x SU(3)r tensor SM singlet components
(1 ,3 ,3 ) a a =  3, a  =  2, 3
(1 ,6 ,3 ) $(ab)a a = b =  3, ft =  1
(1 ,3 ,6 ) a  =  3, (ap)  =  (12), (13)
(1 , 6 , 6 ) (ab) (ab) =  (33), (ap)  =  (22), (23), (33)

something new,

w  =

= A +  2l.'23iVftjV/. +  N[  . (4.39)

Here Wy corresponds to vevs for the standard model singlet components of the ( 1 ,6 , 6 ) 

spurion, as given in Table 4.1. Hence, we arrive at Majorana and Dirac masses for the 

exotic neutral leptons, which may be decoupled from the theory if the vn are taken to 

infinity. Thus we reach the following conclusion:

Gauge symmetry breaking spurions localized at the rcR brane in the 27 and 108 

irreducible reps of the trinification group, and with nonvanishing standard model singlet 

entries in their (1 ,3 ,3 )  and (1 ,6 ,6 )  components, respectively, break the trinification 

gauge group down to the standard model, and yield the MSSM matter content at low 

energies. In the limit that all the symmetry breaking parameters are taken to infinity, we 

obtain Higgsless trinification breaking with an incomplete matter multiplet located at the 

n R  brane.

This picture is pleasing since any physics on the brane associated with an ultraviolet 

completion that might lead to proton decay has been decoupled away. The only issue we 

have not taken into account is the mechanism for breaking electroweak symmetry and the 

generation of light fermion masses. We may easily incorporate the standard Higgs m ech
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anism for electro weak symmetry breaking by introducing 27 and 27 Higgs superfields 

on the 7xR  brane, H/jr and '1>#, respectively. (These are distinguished from matter super

fields by unbroken matter or R-parity, which we assume throughout.) We identify H  (H ) 

as the doublet Higgs field with hypercharge 1/2 (—1/2) living inside the multiplet T // 

(\k#). We also introduce another spurion rep, the 192, which includes the color singlet 

rep Q ~  (1 ,8 , 8 ). Assuming that the nonvanishing, standard model singlet components 

of H are given by

naJ  =  va T“tT %  (4 .40)

then the couplings

W = HZQi6$Si + h C 0 8 £  (4 .41)

will provide high-scale p  terms for all members of the Higgs multiplet, except for the 

weak doublets H  and H ,  providing that /./ =  —4 \/3  h va- Thus, in this approach, we sim

ply impose a fine-tuning of the parameters to arrange for a doublet-triplet splitting2. How

ever, since we ultimately take the limit in which i>n —> oo, as with the other symmetry- 

breaking spurions, there is no sign of this fine-tuning in the low-energy theory. From 

a low-energy perspective, it is completely consistent to assign two electroweak Higgs 

doublets to the brane in the GUT-Higgsless limit.

One feature of this solution that needs clarification is the coupling of these Higgs 

doublets to the matter fields. While the up-quark Higgs fields H  lives in a 27 and couples 

to the matter fields via the conventional cubic interactions of 4D trinified theories, the 

down-type Higgs fields H  lies in a 27  and does not couple directly. Nonetheless,we may 

arrange for a suitable down quark Yukawa matrix by introducing a 27 spurion with the 

same nonvanishing components as the 27 spurion that we have already considered. Then 

the down quark Yukawa matrix will originate via a higher-dimension operator

j Z 3[$( 1 , 3 , 3 )H (1 ,  3, 3 ) ( 3 , 1 , 3 ) t f  (3 , 3 , 1 ) ]  . (4.42)

2Higher order combinations of the other spurions may generate a (1 ,8 ,8 );  we assume a fine tuning of 
the sum of all such contributions.
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We may generate the down quark Yukawa couplings by fixing the ratio of the spurion vev 

to A, and taking both to infinity in the Higgsless limit.

4.4 Gauge Unification

By breaking the GUT gauge group through boundary conditions, the heavy vector 

superfields that have GUT-scale masses in 4D trinified theories instead have zero-modes 

with mass M c/2  in the exact Higgsless limit. The SU(3)c xSU (2)w xU(l)y- quantum 

numbers of these states are given by

VH ~  (1 , 2 ,1 /2 )  © (1 ,1 ,1 )  © (1 ,1 ,1 )  © (1 ,1 , 0) © (1 ,1 , 0) , (4.43)

where the hypercharges are shown here with their standard, rather than their GUT, nor

malization. KK modes of the ordinary MSSM vector superfields begin at M c. The two 

towers o f massive states are thus uniformly shifted with respect to each other by M cf  2 . 

Each KK level in these towers consists of an N  =  2 supersymmetric multiplet, which 

includes both a vector and a chiral superfield. The beta function contributions from these 

towers are indicated in Table 4.2. Notice that the sum of all the KK gauge multiplet contri

butions to the beta functions is (—6 , —6 , —6 ); if the two massive towers were degenerate 

level by level, they would affect gauge coupling running universally and have no effect 

on the quality of unification. However, the M J 2  splitting separates these states into two 

subsets, each contributing nonuniverally to the beta functions. The shifted towers there

fore provide a large number of threshold corrections to the differential gauge coupling 

running 1 (/r) — ct/ 1 (/x). There is no reason a priori to assume that these corrections 

will preserve gauge unification, ha our trinified theory, we will see that they do.

While the individual a / 1 experience power-law running above M c/ 2, a remarkable 

feature of this tower of threshold corrections is that the a ~ l {p) — o j ] (ji) evolve loga

rithmically. This behavior was pointed out by Nomura, Smith and Weiner [119] in the
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6 3 ) (6 j , b-2 , 6 3 )
(V, $ )  321 (0,-6,-9) (0,-4,-6 )

(V, §)heavy - (-6 ,-2 ,0 )
H , H ( f , U0 ) -

Matter (6 ,6 ,6 ) -
Total ( f , l , - 3 ) (-6 ,-6 ,-6 )

TABLE 4.2: Contributions to the beta function coefficients from the zero modes (i>») and the KK 
levels (£>,) in our minimal scenario. Here $  represents a chiral multiplet in the adjoint rep.

context of a supersymmetric SU(5) GUT broken on a brane. Thus, theories of this type

unify logarithmically, in contrast to the first examples of higher-dimensional gauge unifi

cation discussed in Refs. [75, 120, 121]. For our analysis, we follow the conventions of 

Ref. [119]: We first define gauge coupling differences with respect to a]]1,

=  a i if1) ~~ a i (aO- (4.44)

Unification occurs when S2 = S3 =  0. Above M cf 2 , Eq.(4.44) can be written as

6i(fi) = Si(Me/2) -  ~ ~ (/t) (4.45)
Ztt

where Rj ip)  represents the differential logarithmic running between all the thresholds 

from Mc/2 up the the renormalization scale //,. For trinified gauge multiplets in the bulk 

only, we find

M v )  5  l o s ( M / 2 )  4 ] C  ^ ) + 4  E  I o g ( [T l + i / 2] M j ’ ( 4 4 6 )
c/ Q<'aMc <fj, c 0< (n+ 1/2)MC <p. 1 ' J 6

^W = -T1og(jĵ 5)-6E Io6(̂ )+6 E ' ° g ( j ^ i / 2 )M,.>- (4-47)
t /  Q<nMc<i-L Q<(n+\/2)Mc<ii  1 7 J

If the two towers of massive modes were degenerate, the last two terms in each of the

equations above would have exactly canceled, and the R j ’s would be the same as in the 

MSSM. The overall effect of the threshold corrections is to delay unification, as shown in 

Fig. 4.1.
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FIG. 4.1: Gauge unification for M c =  4 x 1015 GeV.

The shallower slopes above M J 2 in Fig. 4.1, can be understood by rewriting Eq. (4.45) 

in the form.

F
n M c/2

(4.48)

where we have used the fact that the difference in KK gauge multiplet beta functions 

A 632i =  —A bhcavy The first and second terms are negative and positive, respectively, 

and cancel in the MSSM at the unification point. The new term has positive coefficient 

— T-A 6321. However, one may estimate the sum via integration, and one finds it is well 

approximated by — (1 +  log(/x/Afc))/2 . Thus, the new threshold corrections serve to 

reduce the effect o f the second term (the MSSM differential logarithmic running) so that 

unification is delayed.

In the Higgsless limit, there are two significant physical scales in the theory: the 

compactification scale 1/R,  which determines the masses o f the super-heavy states in 

the theory, and the 5D Planck scale, M j h D ) ,  which determines where gravity becomes 

important. In Fig. 4.2, we show both the unification scale M gut> defined as the point 

at which o f 1 =  and M »(5D), as a function of the compactification scale M c. 

These scales are identical when M c ~  2  x  1015 GeV. For larger M c, the 5D Planck
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FIG. 4.2: Unification and 5D Planck scales as functions of Mc. For definitions of scales, see the 
text.

scale is higher; in this case, one could introduce other, purely gravitational extra dimen

sions that again bring the higher-dimensional Planck scale in coincidence with M g u t -  

For M c2 x 1015 GeV, M r(oD) is lower than M g u t and a field theoretic calculation of 

gauge coupling unification can no longer be trusted. For all values o f M c larger than 

2 x 1015 GeV, the unification scale is increased relative to that of the 4D MSSM, i.e., 

2 x 1016 GeV. At its maximum value, 1.4 x 1017 GeV, the accuracy o f gauge unification 

is ~  1%. This estimate assumes that brane-localized, higher-dimension kinetic energy 

operators have a negligible effect on the equality of the gauge couplings at the unification 

scale. Such an assumption is reasonable since these effects are volume suppressed by a 

factor o f ~  t t M - J J j D ) / M c [119], which is generally large. O f course, the precise values 

of the operator coefficients are unknown, and one cannot rule out the possibility that such 

operators are simply not present in the theory.

4.5 Other Possibilities

In the previous sections, we have allowed all exotic chiral superfields to be perfectly 

decoupled in the Higgsless limit. This was accomplished by restricting matter and Higgs
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multiplets to the y — itR  brane, and including the most general set of couplings to the 

symmetry breaking parameters. In this section, we discuss the alternative possibility that 

some (or all) of the 2 7 ’s propagate in the bulk, along with the gauge multiplets. Assuming 

the same set of symmetry-breaking parameters on the n R  brane, exotic fields now acquire 

masses of order the compactification scale, leaving the MSSM at low energies.

In general, a bulk matter field consists of an N  =  2 hypermultiplet T  =  (y). -0 C), 

where A and y f  are each left-handed, 4D N  =  1 chiral superfields; in our case, these 

fields transform as a 27 and a 27, respectively. We wish to argue that it is consistent 

within our framework to apply the following simple boundary conditions to elements of 

the 27  (and conjugate elements in the 27) that we require to become massive:

^ 5 ^  ly=0 — ^  |j/=0 — $  — ^5^* \y—v R  — 0 . (4.49)

Here, <p and <pc represented the scalar components of T  and 'kc, respectively. These 

boundary conditions are satisfied for

<t> = ^ N kcos(Mky) <j)[k)
&

<j>c = J 2 N k s m ( M ky ) ^  , (4.50)
k

where N k =  (txR / 2 ) ~ 1̂ 2, and M k =  (k +  1 /2) M c, for integer k. O f course, Eq. (4.50) 

solve the bulk equations of motion d u d M4> =  0 provided that the KK modes satisfy the 

on-sbell re la tio n ^  =  M k . Since supersymmetry is unbroken, the same conditions apply 

to the fermionic components as well.

To show that these boundary conditions are consistent, let us consider one possible 

ultraviolet completion. First, let us generalize our boundary conditions to

1̂—0 ^ i ^ 0

(— s in rj(f)c +  cos r](j?) =  0 , d5(cosr](j)c + sinrj(j>)\y=7TR = 0 (4.51)

which are satisfied by Eq. (4.50), if

tan(Mfc7ri?) =  cot 77 . (4.52)
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Notice that one linear combination of the fields in Eq. (4.51) satisfies Dirichlet boundary 

conditions at y — itR,  while the orthogonal satisfies has Neumann boundary conditions. 

The precise linear combination is determined by the mixing angle rj, which is a free 

parameter. Our desired boundary conditions are obtained from Eq. (4.51) in the limit that

rj —y 0 .

Now consider the following 5D Lagrangian, with a brane-localized //.-term

C5 =  J  d4 6[dJ'tb +  wc^ibc] +  j  d2d ['dfd^ib +  ^  cot r] ip2S(y — ttR)] (4.53)

Here we have displayed the effective N  = 1 supersymmetric Lagrangian, following the 

construction described in Ref. [122]. Extracting the purely scalar components, one finds

C5 =  F ^ F  + d ^ d ^ c p  + F ^ F t  + d ^ d v f

+  [ (pcd$F  +  F cd5(f) +  cot rj d>F 8{y — ttR)  +  h.c.] (4.54)

Aside from the bulk equations of motion for the auxiliary fields F  =  d5qF and P c = 

—dr,(F, one finds from the nonvanishing surface terms the boundary condition

(j)c6F\y—Q +  (<f>c +  cot 77 <j>)8F\y=irR =  0 (4.55)

which is clearly satisfied by the boundary conditions in Eq (4.51). Substituting out the 

auxiliary fields, one is left with the Lagrangian

C = d$4c*ds(]>c -  dl(j)cA(i>c + ())\dl(f)c + d p,(j>c]d̂ {j>c

+  dfl$ d 11 <f) — d5^ d 5(/) — cot r] 8{y — i r R ) +  <jJd5(j)c) . (4.56)

Variation of the action with respect to 6  leads to the further brane constraint

Ck$H\y=b  +  35( - ^  +  COt T1 H\y=nR =  0 (4.57)

which is satisfied by the remaining boundary conditions in Eq (4.51). 7'hus, our more 

general set of boundary conditions are consistent with this explicit brane Lagrangian. In
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particular, the simpler boundary conditions in Eq. (4.49) arise in the limit that the coupling 

cot 77 is allowed to become nonperturbatively large.

In the context of our previous discussion, the dimensionless brane coupling propor

tional to cot 9 arises at some order in the symmetry breaking spurions T. Generically,

W  =  —-A(<3>/A) wifi 6(y — 7tR )  , (4.58)
/j

where, A is a dimensionless coupling, and cot 77 is identified with A $/A . Any exotic field 

that decoupled in our earlier construction, will receive a brane coupling proportional to 

cot 77 in the present one. Thus, in the 7 7 - 0 0  limit, we recover the boundary conditions of 

Eq. (4.49) applied to that particular field, whose zero mode obtains a mass of M cj 2.

If we take this completion literally, then we would want to restrict cot rj by the con

dition that the coupling A remain perturbative. However, we are not wedding ourselves 

to any particular origin for the boundary conditions. We will take the example just dis

cussed as motivation for the consistency of Eq. (4.49), and work in the exact 77 =  0 limit. 

The reader who disagrees with this approach may simply consider our results an approx

imation to the explicit ultraviolet completion discussed above when cot 77 is taken to be 

somewhat strongly coupled.

In the case where the bulk 2 7 ’s are the three standard model generations, the exotic 

N ,  E  and B  fields will become massive given our choice of brane spurions. Our results 

for gauge unification will not be affected since these fields form the complete SU(5) reps 

5© 5© 1© 1. Another possibility is to place the 27 and 27  Higgs multiplets in the bulk. In 

this case, we have a tower of KK modes beginning at M c /2  for the massive components, 

and a tower beginning at M c  for those components with massless zero modes. This 

leads to an additional threshold correction of the type discussed in Section IV. We find 

that this tends to spoil unification for values of 1 / R  that are significantly smaller than the 

conventional supersymmetric unification scale, M u =  2 x  1016 GeV. Thus, this possibility 

may be realized if 1 /i?  and M u are within a factor of a few of each other so that unification
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4.6 Conclusions

The breaking of gauge symmetries through the choice of consistent boundary con

ditions on an extra dimensional interval provides a powerful new tool for model building. 

Unlike the orb if old case, a more general choice of boundary conditions allows one to 

reduce the rank of the bulk gauge group. Aside from the breaking of electroweak sym

metry [99, 104, 105, 106, 107, 108, 109, 110], this approach is naturally of interest in 

the breaking of grand unified and other gauge extensions of the standard model that have 

gauge groups with rank greater than four. We have demonstrated this explicitly in the case 

of gauge trinification. We obtained boundary conditions necessary to break the trinified 

gauge group directly down to that of the standard model, while preserving the GUT-scale 

relation sin2 6w =  3 /8 . Symmetry breaking was introduced consistently in terms of spu

rions localized on the ttR  brane. In the Higgsless limit, in which these spurions are taken 

to infinity, the massive gauge multiplets have zero-modes at M cj 2, where M c is the com

pactification scale. In the same limit, all exotic matter and Higgs fields are decoupled 

from the theory, and Higgs-mediated proton decay is avoided. We retain the light Higgs 

doublets of the MSSM, so that light fermion masses may be easily obtained. By placing 

the gauge multiplets in the bulk, there is power law running due to the KK modes. As 

in other 5D unified theories with gauge symmetries broken on a boundary [119], we find 

that the running of the differences a " 1 — a j 1 remains logarithmic. For the massive gauge 

fields in our trinified theory, we find that unification is preserved, and that the scale at 

which the couplings unify is increased. For M c ~  2 x  1015 GeV, the gauge couplings 

unify at the 5D Planck mass 1.4 x 1017 GeV, with a percent accuracy at the one-loop 

level.
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CHAPTER 5

Improved Trinification in 5D

5.1 Introduction

Extra dimensions provide a variety of new tools for building realistic Grand Unified 

Theories (GUTs). In orbifold compactifications, for example, different components of a 

GUT multiplet may be assigned different parities under reflections about the orbifold fixed 

points. Judicious choices can yield a particle spectrum in which all unwanted states (for 

example, color-triplet Higgs fields) appear at or near the compactification scale l / R .  A  

related technique that has received some attention in the context o f electroweak symmetry 

breaking is the Higgsless mechanism [99, 123,124, 125]. In this approach, a more general 

set of boundary conditions are employed, allowing for the reduction in the rank of the 

gauge group. These boundary conditions can be thought of as arising from a boundary 

Higgs sector that has been decoupled from the theory. Interestingly, in this decoupling 

limit, the spectrum of massive gauge fields is determined by 1 / R  rather than the boundary 

vacuum expectation values (vevs) [119]. While electroweak symmetry breaking clearly 

necessitates the reduction in rank of the gauge group, the same is true of GUTs with rank 

greater than four. This was the motivation for the study of boundary breaking in trinified

76
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theories [126], one of the simplest unified theories of rank six. Other recent work on 

trinified theories in extra dimensions appears in Ref. [127, 128, 129, 115, 130],

While Ref. [126] explored the usefulness of generalized boundary conditions in 

breaking a simple unified theory of rank greater than four, the models presented there 

had a number of shortcomings: electroweak symmetry breaking was still accomplished 

by introducing chiral Higgs multiplets and a fine-tuning was required to keep these fields 

in the low-energy spectrum. In this chapter, we present simpler models that avoid these 

problems. Electroweak Higgs doublets will be identified as components of gauge fields, 

an economical approach known as gauge-Higgs unification in the literature [31, 32, 33, 

34, 35], and these Higgs fields will remain light down to the weak scale due to an R- 

symmetry [131]. In addition, we present one construction in which an additional gauge 

group factor provides both for a unified boundary condition on the standard model gauge 

couplings and also serves as an origin for the electroweak Higgs fields. This yields a 

trinified theory without the cumbersome (though entirely conventional) cyclic symme

try whose only purpose is to maintain the equality of GUT-scale gauge couplings. The 

two models we present are consistent with the constraints from proton decay and gauge 

coupling unification.

5.2 S U { 3 f  k Z3

Conventional trinification is based on the gauge group G t  =  S U (S )c  x S U (S ) l x 

SU(3)n  ix Z'A. The discrete symmetry cyclically permutes the group labels C,L, and R, 

which maintains a single gauge coupling g at the unification scale. Gauge and matter 

fields transform under the 24- and 27-dimensional representations, respectively, with

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7 8

decompositions

24 = (8,1,1) ©(1,8,1)0(1,1,8) ,
27 = (1,3, 3) 0(3,1,3) 0(3, 3,1) , (5.1)

under the C, L, R gauge factors. In the usual Gell-Mann basis, weak SU(2) is generated by 

T / for a =  1 . . .  3, while hypercharge, in its standard model normalization, is generated 

by

>' = -4 (n 8 + V3T’+T|) . (5.2)

With the hypercharge gauge coupling identified as ^Jzfhg,  the choices above yield the 

standard GUT-scale prediction sin2 dw  = 3 / 8 .  This is phenomenologically acceptable 

in the present context, given the new boundary corrections to unification [119] that we 

expect generically in extra-dimensional models.

We first consider a model in five dimensions (5D) with G t  chosen as the bulk gauge 

symmetry. We compactify the extra dimension on an S l [{Z2 x  Z'2) orbifold, labelled by 

the coordinate y. Defining y' = y + n R / 2 ,  points related by the translation y  -*  y  +  27tR  

and by the reflections y  —>• - y  and y' -»  —y', are identified. The physical region in y  is

thus reduced to the interval [0,7ri?/2]. In addition, we assume A 1' =  1 supersymmetry in

5D. Bulk gauge fields thus form J\f =  2 4D hypermultiplets consisting of A f  =  1 vector 

V (AT, A) and chiral <3>(<7+i45, A7) multiplets at each Kaluza-Klein (KK) level. All matter 

fields are placed on the irR/2  brane for simplicity.

We now show that the electroweak Higgs doublets of the minimal supersymmetric 

standard model (MSSM) can be identified with some of the A 5 components of the gauge 

multiplets. Under the two orbifold parities, we assume the bulk fields transform as fol

lows:

U(.rA - y )  =  P  V(x» ,  y) P ~l , U(.H \ - y ' )  = P> V ( x ^  y') P '~ l

H x ^ - y )  =  - P $ { 2 f , y ) p - \  $ ( ^ , - y ,) =  - P , $ ( ^ , y ,) P ' - 1 - (5.3)
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Here P  and P'  are 3 x 3 matrices that act in gauge group space and have eigenvalues of ±  1. 

Noting that the supersymmetric bulk action requires the terms <S5d  D f  d46 ^ T r ( \ / 2 d - 1 + 

& ) e ~ v ( - V 2 d 5 + $ ) e v  [122], one sees that d$V  and should have the same transfor

mation properties under the orbifold parities. Therefore, although components within a 

gauge multiplet can transform differently under the parity operations, the relative sign 

of the vector and chiral multiplets is uniquely determined. With the notation (P, P')  =  

(Pc  © P c © P r , P'c © P ' l®  Pr)  we choose

Pc = diag( 1 ,1 ,1 ), i

P'c = diag(  1 ,1 ,1 ), j

Parity assignments for the compon

1 (+ .+ ) (+ , + ) (+ ,+ )

VC : (+ , + ) (+> + ) (+ ,+ )

^ (+ , + ) (+ , + ) (+ , + )

1 ( + .+ ) (+ , + ) (—, —)

VL : (+ , + ) (+ , + ) (— > ~ )

K - ) ( + ,+ )

'  ( + ,+ ) (+ , + ) (—, + )

VR : ( +  , + ) (+ , + ) ( - , + )

^ ( -> + ) ( - ,  + ) (+ , + )

R

(5.4)

4 V : •'

$ L ■

/

V
/

$ n -

\

( - , - )

I J  )

V  5 /

K - ) \ 5 ) 

(+,+)

(+,+)

(+,+) (+,+) (—, —)

( - , - )  ( - , - ) ( + , - )

( - , - ) (+>-)

( + , - )  (+ ,“ ) ( - ,  - )

(5.5)

(5.6)

(5.7)

As we will see shortly, fields that are odd under P  have vanishing wave functions at y  =  0, 

while those that are odd under P '  vanish at y = irR/2.  It follows that the gauge symmetry 

that is operative at the t tR /2  fixed point is S U  (3)<? x S U  (2) t x [ /  (1)L x  S U  (3)#, a fact 

that we will use later. Only fields that are even under both P  and P ' have massless zero 

modes, from which we conclude that the total effect of the orbifold projection is to reduce 

the bulk gauge symmetry to SU {3)c  x  S U ( 2)/„ x U(1) l  x  SU (2 )r  x  t / ( l ) # .  Crucially,
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two SU(2)£ doublets in the chiral multiplet retain massless zero modes, and it follows

immediately from Eq. (5.2) that these have hypercharges Y  =  ± | .  We identify these

superfields with the MSSM Higgs doublets.

We break the remaining gauge symmetry down to that of the MSSM using gener

alized boundary conditions. To illustrate this approach consider a gauge field A ll: that is 

even under reflections about y =  0. This implies that the 5D wave function for the k th 

mode has the form

A v ( x v,y)  ~  cos(Mk y)A W {x ' / ) , (5.8)

for y  in the interval 0 <  y < ttR /2 .  Imposing the boundary condition

d5A»(y  = t tR/2 )  =  V A *{y  = n R / 2 ) , (5.9)

one obtains the following transcendental equation for M k

M k tan (M kn R / 2 )  =  —V  . (5.10)

In the large V limit the KK spectrum is well approximated by

M fc^ M c(2fc2+ 1 ) (l +  ^  +  - - - ) ,  k = 0,1,  ■ ■ ■ , (5.11)

where we define the compactification scale M c = 2 /R .  Thus, in the limit V  —$■ oo, 

the spectrum reduces to a tower whose low lying states are M cf 2, 3M c/2 , 5Mc/2 , etc. 

This is shifted by M J 2 relative to the tower one would obtain if V  were set to zero. 

The symmetry breaking parameter V has dimensions of mass and can be associated with 

products of the form g2v 2, where g is a five-dimensional gauge coupling and v a boundary 

vev. Since v generically sets the scale of the physical states in the boundary symmetry- 

breaking sector, the limit V  -»  oo corresponds to the decoupling of the boundary Higgs 

fields from the theory. It is worth noting that in the supersymmetric case, the spectrum of 

the additional scalar and fermionic components of $  and V  are the same as in Eq. (5.11), 

as a consequence o f gauge invariance and unbroken supersymmetry [119].
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In the present context, we could introduce two 27 boundary Higgs fields, whose 

(1 ,3 , 3) components have appropriate vevs to break SU(3)3 down to the standard model 

gauge group. However, we have already noted that the orbifold projection has reduced 

the gauge symmetry to S U (3 )c  x S U (2)/„ x U (l)/„ x SU (3 ) r  at the n R / 2  brane. This 

allows us to choose much simpler Higgs representations at this boundary to implement 

the symmetry breaking:

Xi = Xi  =  (0 0 to) X2 = X2 =  (0 v2 v3) . (5.12)

Here the field x  is an SU(3)/j triplet with U (1)l charge + l / \ / 3 ,  and x  has conjugate 

quantum numbers. Both Xi and Xi are singlets under color and S U (2)L, and are together 

anomaly free. They represent the one relevant row of the (1 ,3 , 3) representation used 

to break the unified symmetry in conventional trinified models. The real vevs shown in 

Xi and Xi  are completely general choices, while we assume the same vevs for the barred 

fields. (The latter choice is consistent with D-flatness.) These vevs are sufficient to break 

the remaining gauge symmetry down to that of the standard model. Note, however, that a 

realistic potential may require additional fields.

How do these boundary vevs affect the spectra of fields transforming as ( + ,+ ) ,  

(—,+ ) ,  and (+ , —) under our orbifold reflections? First, the fields rff(:r'y. y) 

whose wave functions are odd at the y — ttR / 2  brane (corresponding to parities (± , —)), 

vanish at that endpoint. Therefore, these KK towers are unaffected by the boundary vevs, 

and are given by M n( - ,  - )  =  (n +  l ) M c and M n(+,  - )  =  ( n + 1 /2 )M C, for n =  0 , 1 , . .  .. 

As discussed above, the ( + , + )  fields acquire a massive tower Afn ( + , + , F  —>■ oo) =  

(n +  1 /2 )M C. Finally, consider the (—,.+) fields. Since these wave functions are odd at 

the y  =  0 brane they have the general form

^ ( x \ y )  ~  s m ( M k y ) A P ( x v) . (5.13)
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Imposing the boundary condition in Eq. (5.9) yields the transcendental equation

M k co t (M kn R / 2 ) = V  , (5.14)

which implies a KK tower

l  +  ^  +  ' - O ,  k =  1 , 2 , . . . ,  (5.15)
7rV

in the large V limit.

In the present case, the boundary conditions following from the existence of the x  

and x  vacuum expectation values may be written

a 54 ( x " ,  ttR / 2 )  = V i j A ^ ,  ttR / 2 )  , (5.16)

where V7. i s  a matrix in the space of the SU(3)£,xSU (3)fi gauge fields. The entries of

this matrix were considered explicitly in Ref. [126], and have the form JA  AW A , where 

the Vi are defined in Eq. (5.12) and the c% are numerical coefficients. The precise form 

of Vij and the values of the a  are irrelevant for the present analysis since we will always 

take the g2vf  to be large compared to M c. In this limit, the spectra of KK modes become 

independent of these details, and we obtain one of six possible towers already discussed: 

(+ , —), (—, —), (+ , + , V  =  0), (+ , + , V  — oo), (—, + ,  V  =  0), and (—, + , V —r oo).

As noted earlier, matter fields are located at the ttR / 2  fixed point. Although the

SU(3)3 27s decompose into a direct sum of representations under the unbroken gauge 

symmetry at ttA /2 , all of these components must be retained in order to have an anomaly- 

free theory that reproduces complete M SSM  generations in the low-energy theory. We 

now show that the exotic matter content o f the 27s become massive via couplings to the 

boundary Higgs fields x  an^ x, and decouple from the theory as the vevs are taken 

large. We first decompose the 27 under the unbroken SU(3)C x SU(2) i  xU ( l  )L x  SU(3)# 

symmetry at y = irR/2,

27 -  1/(1, 2, 3 ), T  ec( l ,  1, 3 )_2g +  qc{3 ,1 , 3 )0 +  Q(3, 2 , 1)_ , +  B(3 ,1 , l ) 2q , (5.17)
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where the U (l)j, charge q =  l / (2 \ /3 ) -  The notation serves as a reminder of the embed

ding of standard model fields. In addition, the L  multiplet contains a vector-like pair of 

exotic lepton doublets, (E ° , E~)  and ( E +, E 0c), ec contains a pair of exotic singlets, N e 

and N ,  while qc contains the right-handed partners of the exotic left-handed, charge —1/3 

quarks that make up the multiplet B  in its entirety. GUT scale mass terms arise via the 

superpotential couplings

w =  ■ (5J»)

Expanding Eq.(5.18) produces the low-energy matter content of minimal trinified theo

ries. The right-handed d and B  quarks mix leaving one linear combination massless to 

be identified with the physical d r quark. Similarly, only one linear combination of the 

left-handed lepton doublets receives a mass from the first term in Eq. (5.18). Thus, the 

low-energy spectrum consists of the particle content of the MSSM, as well as the singlets 

N  and N c. These can be made massive as well by including higher-dimension operators 

in the superpotential of the form, ( ecX i ) 2/ K  where A is the cutoff of the effective the

ory. Thus, unlike the model in Ref. [126], no additional fields need to be included at the 

boundary to rid the low-energy theory of the singlets.

Having recovered the MSSM particle content, we now consider how to obtain Yukawa 

couplings involving the electroweak Higgs doublets. Since we have identified the Higgs 

doublets with components of the bulk adjoint chiral superfield h , which transforms non- 

linearly under a gauge transformation (i.e.. $  —> eA(h  — v /2d5')e~A.), no local Yukawa 

couplings are possible. However, the solution to this problem is well known in the lit

erature on 5D gauge-Higgs unification models: one may couple the Higgs doublets to 

the matter fields at the fixed point via Wilson loop operators [35, 131]. The Wilson line 

operator TL =  V e x p ( J ^ f where V  represents the path ordered product, is a non

local object that transforms linearly under the 5D gauge transformation at points yr and yj ,  

%  -> eA\yj'He~A \yr Choosing yt ~  yq =- t tR / 2 and a path that wraps around the extra di-
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mension, one obtains a Wilson loop operator that transforms linearly at the orbifold fixed 

point where our m atter fields are located: %  —> eAH e ~ h , with A =  AfxA y =  ttR /2 ) .  

We focus on the doublet components of R ,  which we call H  ( 1 , 2 , 1)3<? and 17(1, 2 . 1)_39, 

using the notation of Eq. (5.17). Yukawa couplings originate at the ttR / 2  brane via the 

interactions

TT -  j x L e cH  +  j x Q q cH  + ± X i X i Q f K  , (5.19)

after the % and x  fields develop vevs. Here A is a cutoff of the effective theory. Note that 

in the decoupling limit i \  —> A -e  oo, none of the terms in Eq. (5.19) are suppressed; 

this is an indication that the low-energy theory is restricted only by standard model gauge 

symmetry at y =  n R j 2 .

We resolve the q  problem in our model by using the U(1)r symmetry of the bulk ac

tion. Under this symmetry, the superspace coordinate 9 transforms with charge -El, while 

V  and $  are neutral. An H H  term is not allowed since the superpotential must have R-  

charge —2. We may induce a small q  parameter by coupling the Higgs fields to a singlet X  

with /^-charge - 2 ,  via the superpotential coupling X H H .  The q  parameter is generated 

if the X  field develops a vev, which can happen naturally due to supersymmetry-breaking 

effects, as in the next-to-minimal supersymmetric standard model. Note that this mech

anism works assuming we impose only a discrete subgroup of U(1)R, which avoids any 

unwanted K-axions. Assuming the x  and y have R-charge zero and each matter field 

— 1, then the Yukawa couplings in Eq. (5.19) are allowed and a Y4 subgroup of U(1)k is 

sufficient.

Finally, we consider the issue of gauge coupling unification. The possible towers 

of KK modes are described by either (n +  1 /2 )M c >  0 or n M c > 0, for n  an integer. 

The supersymmetric beta functions for the fields charged under the standard model gauge 

groups are shown in Table 5.1. Note that only two exotic (V) T) multiplets, with charges 

(1 ,1 ,1 )  and (1 ,1 , —1), respectively, under SU(3)cX S U (2 )^ x U (l)y  have KK towers
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{ h M M ) Q>3 > 2̂ j bi)
(V ,$ )321 (-9,-6,0) (-6,-4,0)

(^> $)(1,2,±1/2) (0,1,f) (0,-2,-1)
(V ,$ )(i,i1±i) - 1o

'
o

Matter (6,6,6) -
Total (-3,1,ip) (-6,-6,-6)

TABLE 5.1: Contributions to the beta function coefficients from the zero modes (6*) and the KK 
levels (bi). Here the $  represent chiral multiplets in the adjoint representation. Results in the 
second and third lines represent sums over all fields with the stated quantum numbers.

that are shifted down by M c/2  due to the boundary Higgs vevs. Notice that if all the 

KK towers were aligned, they would contribute universally to the gauge running. As first 

pointed out in Ref. [119], the shifted spectra contribute as a tower of threshold corrections; 

while the power-law running is still universal, the running of the differences a j 1 —a j 1 is 

logarithmic. With the notation <5̂ (/x) =  (/i) — a,-1 (yx), for i =  2 or 3, the differential

running above the first KK threshold is given by

Siiv) = 8i(Mc/2) -  ± R i ( n )  , (5.20)

where

28 . f j ,  . 12 v f l  12 r  jJL

: £  logW  + T £  l c ~
0<nMc<fi c 0<(n+ l /2 )Mc<fiQ<nMc c 0<(n+ l /2 )Mc<n

(5.21)

0 <n Mc<[i 0<(n+l /2 )Mc<fi / J -

(5.22)

Note that the last two terms in each equation above would cancel if the KK-towers were 

aligned, and one would obtain the differential running of the MSSM. Numerical study 

of these equations reveal that unification is preserved, but that the scale o f unification 

M u  is delayed. For example, for M e  =  4 x lO34 GeV we find M v  se 8 x 1016 GeV, 

which is approximately the 5D Planck scale. For M e  =  2 x  1016 GeV we find M u — 

2.8 x 1016 GeV, which simply demonstrates that there is a limit in which most of the KK
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towers do not contribute and MSSM unification is recovered. For 4 x 1014 GeV< M v- < 

2 x 1016 GeV we find that the a -1 unify at well below the 1% level, ignoring possible 

boundary effects. Thus, our extra-dimensional construction does not lead to any problems 

with successful gauge unification. Discussion of other possible corrections to unification 

may be found in Ref. [126] and will not be discussed further here.

Finally, we note that there is no proton decay in this model. In ordinary trinification, 

proton decay is mediated by colored Higgses that are part o f a 27. In our model, the 

smaller gauge symmetry at the n R / 2  fixed point allowed us to include symmetry breaking 

fields in much smaller representations, without dangerous colored components. Since 

there is no proton decay from the gauge sector of trinified theories, our model is safe 

from these effects.

5.3 SU(9) x  SU (3)3

Before concluding, we wish briefly to present an alternative starting point that can 

provide a common origin for the GUT-scale equality of gauge couplings (without the Z 3 

symmetry) and the existence of the electroweak Higgs doublets. We consider an S U (9) x 

S U { 3)3 bulk gauge theory on a S 1/ { Z 2 x  Z'2) orbifold. The SU(3)c xSU (3)Lx SU(S)R 

symmetry of our previous model is identified with the diagonal subgroup of an SU(3)3 

living within SU(9) and the other SU(3)3 factor, so that

~2------- =  ~2----------1— 2----------• (5.23)
9{c ,i ,r ) 9 s u (9) 9( c ,l ' ,R')

Here C ' M ,  and R'  refer to the three SU(3) factors present before symmetry breaking. 

If these SU(3) gauge groups are somewhat strongly coupled, then Eq. (5.23) leads to an 

approximate unified boundary condition for the diagonal subgroup. This is precisely the 

idea of “unification without unification” described in Ref. [132]. Note that the bulk gauge 

symmetry can be thought of as a two-site deconstructed sixth dimension, with, symmetry
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broken at a boundary. Generalizations to replicated SU(9) factors are also interesting, 

since the primed gauge couplings do not have to be made particularly large. In any case, 

the SU(9) vector multiplet decomposes under the diagonal SU(3)3 subgroup as

(  (8,1,1) (3,3,1) (3,1,3)

^9 : (3,3,1) (1,8,1) (1,3,3)

 ̂ (3,1,3) (1,3,3) (1,1,8)

(5.24)

We know from ordinary trinification that fields with the quantum numbers of Higgs dou

blets live in the (1, 3 ,3 )  representation and its conjugate. We therefore wish to find parity 

assignments that preserve these elements of the chiral adjoint <f> as well. With parity 

transformations defined as in Eq. (5.3), we choose

Psu(9) — diag( 1 , 1 ,1 ,1 ,1 ,1 ,1 ,  —1,1), P'su{9) =  diag( l ,  1,1, —1, —1,1 ,1 ,1 ,1 )  ,

Pc  = diag(  1 ,1,1) ,  PL =  diag(l ,  1 , - 1 ) ,  PR =  diag(l ,  1 , - 1 ) ,

P'c  =  diag(l ,  1,1), P'r. =  ^ ( 1 , 1 , 1 ) ,  P'R =  diag(l ,  1,1). (5.25)

One finds, for example, that the (1 ,3 ,3 )  components of the SU(9) chiral adjoint <h9 has 

parities

^ ( - , + )  (+>+)  ( ~ , + )  ^

$ 9(1, 3, 3) (5.26)( ~ , + )  ( +  >+) (—, + )

 ̂ (_) ~) (+> ~) (~, ~) J
which indicates the location of one of the Higgs doublets. Aside from the corresponding 

(+ , + ) entries in the ( 1 ,3 , 3 ) block, all other components of $ 9  have no zero modes.

The orbifold parities in Eq. (5.25) break the SU(9) symmetry to 577(8) x U (l)  at 

the y — 0 fixed point, 5 (7 (7) x  577(2) x U(  1) at y — ttR / 2  and to 5(7(6) x 5(7(2) x 

(7(1) x (7(1)' overall. The S U (3 ) 3 factors are broken to 5 (7 (3 )c  x SU (2 )L x  5(7(2)# x 

U(1) l  x  U( 1)r  overall, but are unbroken at y  =  ttR / 2 .  Thus, the most natural way to 

include matter fields is by introducing complete 2 7 ’s at the n R / 2  fixed point.
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The breaking of the remaining gauge symmetry down to that of the MSSM can be 

done with a boundary Higgs sector, as in our previous model. To determine the necessary 

representations, we may pretend the SU(3)3 factor is embedded in another SU(9), and use 

the fact that a Higgs E  ~  (9, 9) with diagonal vevs will leave a diagonal SU(9) unbroken. 

A straightforward decomposition of E  in terms o f the actual gauge symmetry at jtR / 2 ,  

SU (7 )xS U (2 )xU (l)xS U (3 )3, gives the desired representations. These break the remain

ing symmetry down to the diagonal subgroup S U ^ c x S U ^ ^ x U Q k r x S L T i y ^ x U C l ) ^ .  

We may recover the standard model gauge group by including SU(9) singlet, (1, 3, 3) 

and (1, 3 ,3 )  boundary Higgs fields, with the same pattern of vevs found in conventional 

trinified theories. Yukawa couplings can arise via higher dimension operators involv

ing the boundary Higgs fields, and are unsuppressed in the Higgsless limit, as shown in 

the previous model; the decoupling of exotic matter fields also works in the same way. 

Color-triplet components of $ 9 exist, so that proton decay is not absent, but doublet-triplet 

spliting is explained naturally via the orbifold projection.

5.4 Conclusions

We have presented improved models of 5D trinification. In the first model, unified 

symmetry was broken by a combination of orbifold projections and a boundary Higgs 

sector that could be decoupled from the theory. Electroweak Higgs fields appeared eco

nomically as the fifth components of gauge fields. The model demonstrated the existence 

o f a consistent low-energy theory in which no chiral Higgs fields needed to be added to 

the theory in an ad hoc way. This model is free of proton decay and consistent with gauge 

unification. In the second model, we showed that an additional SU(9) gauge factor could 

provide a common origin for the unified boundary condition on the standard model gauge 

couplings, and the origin of the electroweak Higgs, via gauge-Higgs unification. Both 

models provide new and explicit realizations of 5D trinified GUTs, and demonstrate a
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Higgsless approach that can be applied to other unified theories with rank greater than 

four.
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