
SINGLE π+ ELECTROPRODUCTION IN THE FIRST AND

SECOND RESONANCE REGIONS USING CLAS

A Dissertation

Presented to

The Faculty of the Department of Physics

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Hovanes Egiyan

2001



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Hovanes Egiyan

Approved, September 2001

Keith A. Griffioen, Advisor

Volker D. Burkert, Co-advisor
Jefferson Lab

J. Dirk Walecka

David S. Armstrong

Stepan Stepanyan
Old Dominion University

ii



This work is dedicated to my parents, my relatives and my friends.

iii



CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Existing Experimental Data on Single π+ Electroproduction . . . 19

2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Continuous Electron Beam Accelerator Facility . . . . . . . . . . . 21

2.2 General Description of the CLAS Detector . . . . . . . . . . . . . 21

2.3 Multiwire Drift Chambers . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Forward Electromagnetic Shower Calorimeter . . . . . . . . . . . 26

2.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Attenuation Lengths of the Scintillators . . . . . . . . . . . 29
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ABSTRACT

The study of single pion electroproduction can provide valuable information

on the structure of the nucleon and its excited states. Although these reactions

have been studied for decades, never has the nπ+ channel been measured over the

complete phase space of the reaction. The CEBAF Large Acceptance Spectrometer

(CLAS) located in Hall B of Jefferson Lab is well-suited for conducting these mea-

surements. The CLAS data were taken using a 1.515 GeV electron beam incident on

a liquid H2 target. The cross sections have been extracted, and their φ-dependence

has been fit to obtain the σTT , σTL and the σT + ǫσL linear combination of the

structure functions. An analysis program based on the Mainz unitary isobar model

was used to analyze the experimental data from the π+ channel only. The resonant

amplitudes for P33(1232), S11(1535) and D13(1520) were obtained from the fit.

xiii



SINGLE π+ ELECTROPRODUCTION IN THE FIRST AND SECOND

RESONANCE REGIONS USING CLAS



CHAPTER 1

Introduction

The structure of the nucleon and its excited states has been one of the most

extensively investigated subjects in nuclear and particle physics for many years, be-

cause it allows us to understand important aspects of the underlying theory of the

strong interactions. Many different reactions can be used to study the properties of

the nucleon and its excited states. One can study the ground state nucleon using

elastic scattering of electrons off protons and neutrons in order to obtain the elec-

tric and magnetic charge distributions. However, one can study the excited states

only via the transitions from the ground states into the nucleon resonances, because

lifetimes of the excited states are too short to make a target of excited nucleons

technically feasible. The inclusive electron scattering spectrum clearly indicates

four resonance regions above the elastic peak, but it does not allow us to separate

different resonances which make up the second and higher resonance peaks. Even in

the first resonant region there is a considerable non-resonant background under the

dominant ∆(1232) peak. Therefore, exclusive measurements with a large angular

coverage in the hadronic center of mass are necessary to separate the background

from contributions from different overlapping resonances. A fit of the angular dis-

tributions will allow us to determine relative strengths for different resonances.

The excited states of the nucleon are unstable, rapidly decaying into meson-

nucleon states. Due to the small mass of the pion, the single pion-nucleon decay

is the favorite channel for many resonances, and not surprisingly, single pion elec-

troproduction is being extensively exploited to understand the structure of nucleon.

2
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Figure 1.1: Kinematics of single π+ electroproduction. Both θ and φ angles are defined
in the rest frame of the final hadronic system with the z-axis pointing in the direction of
the virtual photon 3-momentum.

In this experiment we study the transition amplitudes from protons into the higher

mass resonances by observing the nπ+ final state. This experiment was performed

at the Thomas Jefferson National Accelerator Facility in the spring of 1999. These

data will provide us with valuable information to better understand the structure

of the ∆(1232) resonance, usually studied in pπ0 channel, and more importantly for

the three dominant isospin I = 1/2 resonances in the second resonance region, for

which the nπ+ decay is preferred over the pπ0 channel.

In this chapter, the physics motivation for the experiment is presented, along

with a review of the existing experimental data. Chapter 2 describes the CEBAF

Large Acceptance Spectrometer (CLAS) used to make these measurements. Chapter

3 contains the details of the charged particle identification calibrations for CLAS,

while Chapter 4 presents the analysis procedure of the experiment. The results of

the measurements are discussed in Chapter 5.

1.1 Formalism

A process of electron scattering from a nucleon target which produces an out-

going nucleon and one pion is called a single pion electroproduction. The kinematic
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diagram of the single π+ electroproduction is shown in Fig. 1.1. The virtual photon

from the electron scattering can be characterized by two Lorentz invariants: Q2, the

four-momentum transfer squared, and ν:

Q2 ≡ −(ki − kf)
2 = 4EiEf sin2 θe

2

ν ≡ pi · pγ

M
= Ei − Ef , (1.1)

where ki and kf are the initial and final four momenta of the scattered electron, pγ

and pi are the virtual photon and the target four momenta. Ei and Ef are the initial

and final electron energies in the laboratory frame, θe is the electron scattering angle,

and M is the proton mass. Very often the quantity ν is replaced by the invariant

mass W of the virtual photon plus target:

W 2 ≡ (pγ + pi)
2 = M2 + 2Mν − Q2. (1.2)

In this thesis the set (Q2, W ) will be used to describe the virtual photon. The

ep → eπ+X missing mass MX is defined as:

M2
X ≡ ((ki + pi) − (kf + qπ))2, (1.3)

where qπ is the four momentum of the detected π+. For single π+ production there

is a constraint on the missing mass MX = Mn. The two angles of the pion in the

center of mass frame of the hadronic system are defined in Fig. 1.1 . The angle

between the virtual photon three-momentum direction and the direction of the pion

is denoted as θ. The φ angle is defined so that the electron scattering plane lies in

the φ = 0 half-plane with the z-axis pointing along the virtual photon momentum.

The set of five variables (φe, Q2, W , θ, φ) completely determines the kinematics of

single pion electroproduction. In fact, the knowledge of only four of these quantities

in our case is already adequate, because the cross section does not depend on the

φe azimuthal angle of the electron in the laboratory frame in the absence of any

transverse polarization of the target or the beam.
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The unpolarized cross sections of the single π+ electroproduction in one photon

exchange approximation can be written [1] as:

∂5σ

∂Ef∂Ωe∂Ω∗
π

= Γ · dσ

dΩ∗
π

,

Γ =
α

2π2Q2

(W 2 − M2)Ef

MEi

1

1 − ǫ
,

ǫ =

[

1 + 2

(

1 +
ν2

Q2

)

tan2 θe

2

]−1

,

dσ

dΩ∗
π

= σT + ǫσL + ǫσTT cos 2φ +
√

2ǫ(1 + ǫ)σTL cosφ, (1.4)

where ǫ is the virtual photon polarization parameter, Γ is the virtual photon flux,

and dσ
dΩ∗

π
is the photoabsorption cross section. The σT , σL, σTT and σTL are the

structure functions1, that depend on Q2, W and θ. σT is the photoabsorption cross

section of the unpolarized transverse virtual photons, while σL is the cross section

for unpolarized longitudinal photons. The σTT term arises due to the interference

between the two transverse linear photon polarizations, while σTL is due to the

interference between transverse and longitudinal polarizations of the virtual photons.

These structure functions can be written in terms of six helicity amplitudes [2] as:

σT =
1

2
F (|H1|2 + |H2|2 + |H3|2 + |H4|2)

σL = F (|H5|2 + |H6|2)

σTT = FRe(H3H
∗
2 − H4H

∗
1 )

σTL =
1√
2
FRe[H∗

5 (H4 − H1) − H∗
6 (H3 + H2)]

F =
2W |~q∗π|

W 2 − M2
, (1.5)

where ~q∗π is the pion momentum in the hadronic center of mass frame, and the Hi

are the six helicity amplitudes describing the transitions between eigenstates of the

1In some literature instead of σT , σL, σTT and σTL more proper notation is used for the structure
functions, like dσT

dΩπ

, dσL

dΩπ

, dσT T

dΩπ

and dσT L

dΩπ

. This notation is more accurate since it emphasizes that
there is no integration over angles implied, as in the case with structure functions for inclusive
electron scattering or the GDH sum rules.
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helicities of the nucleon and photon [3]. The helicity amplitudes can be decomposed

in terms of partial wave helicity amplitudes [4]:

H1 =
1

2

√
2 sin θ cos

θ

2

∞
∑

l=1

(Bl+ − Bl+1,−)(P ′′
l − P ′′

l+1)

H2 =
√

2 cos
θ

2

∞
∑

l=0

(Al+ − Al+1,−)(P ′
l − P ′

l+1)

H3 =
1

2

√
2 sin θ sin

θ

2

∞
∑

l=1

(Bl+ + Bl+1,−)(P ′′
l + P ′′

l+1)

H4 =
√

2 sin
θ

2

∞
∑

l=0

(Al+ + Al+1,−)(P ′
l + P ′

l+1)

H5 =
√

2 cos
θ

2

∞
∑

l=0

(Cl+ − Cl+1,−)(P ′
l − P ′

l+1)

H6 =
√

2 sin
θ

2

∞
∑

l=0

(Cl+ + Cl+1,−)(P ′
l + P ′

l+1), (1.6)

where θ is the center of mass angle and Pl are Legendre polynomials, which are

functions of cos θ. Al± describe the transitions with transverse photons with total

helicity of the γN system h = ±1
2
, Bl± describe transitions with total helicity

h = ±3
2
, while the Coulomb-type transitions with h = ±1

2
are described by Cl±

helicity elements2. The partial wave helicity amplitudes can be related to the helicity

photocoupling amplitudes for individual resonances with total angular momentum

j and mass WR by [4]:

Al± = ∓CI
πNfA1/2

Bl± = ±CI
πNf

√

16

(2j − 1)(2j + 3)
A3/2

Cl± = ∓CI
πNf

√

Q2

~Q∗2
S1/2

f =

√

KWMΓπ

(2j + 1)π | ~qπ | WRΓ2

KW =
W 2 − M2

2W
, (1.7)

2The signs of the helicities and the signs in the Al±, Bl±, Cl± are not correlated.
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where CI
πN are the isospin coefficients [1], ~Q∗ and ~qπ are the photon and pion mo-

menta in the center of mass frame.

In the literature a different set of amplitudes is also used, according to the

following decomposition of the current operator for the transition between the initial

and the final states [5] :

J =
4πW

M

(

iσ̃F1 + (σ · k̂)[σ × q̂]F2 + ik̃(σ · q̂)F3

+ ik̃(σ · k̂)F4 + iq̂(σ · q̂)F5 + iq̂(σ · k̂)F6

)

(1.8)

ρ =
4πW

M

(

i(σ · k̂)F7 + i(σ · q̂)F8

)

, (1.9)

where k̂ and q̂ are the unit vectors in the direction of the pion and photon momenta

in the center-of-mass frame, respectively, σ is the spin operator, and ṽ ≡ v − (v · q̂)q̂

is defined for any vector v. The F1, F2, F3 and F4 amplitudes describe the transverse

current, while the longitudinal component is given by F5 and F6. The other two

amplitudes can be expressed in terms of the first six due to the current conservation.

The Fi amplitudes can be decomposed in terms of the multipole amplitudes [5] :

F1 =
∞
∑

l=0

{(lMl+ + El+)P ′
l+1 + [(l + 1)Ml− + El−]P ′

l−1}

F2 =
∞
∑

l=1

[(l + 1)Ml+ + lMl−]P ′
l

F3 =
∞
∑

l=1

[(El+ − Ml+)P ′′
l+1 + (El− + Ml−)P ′′

l−1]

F4 =
∞
∑

l=2

(Ml+ − El+ − Ml− − El−)P ′′
l

F5 =
∞
∑

l=0

[(l + 1)Sl+P ′
l+1 − lSl−P ′

l−1]

F6 =
∞
∑

l=1

[lSl− − (l + 1)Sl+]P ′
l . (1.10)

The Legendre polynomials are functions of cos θ and the El±, Ml± and Sl± multi-

pole amplitudes depend on Q2 and W only. The connection between the helicity
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amplitudes and the Fi amplitudes is given by [2] :

H1 = − cos
θ

2
sin θ(F3 + F4)/

√
2

H2 = −
√

2 cos
θ

2

[

F1 − F2 − sin2 θ

2
(F3 − F4)

]

H3 = sin
θ

2
sin θ(F3 − F4)/

√
2

H4 =
√

2 sin
θ

2

[

F1 + F2 + cos2 θ

2
(F3 + F4)

]

H5 = −
√

Q2

~Q∗2
cos

θ

2
(F5 + F6)

H6 =

√

Q2

~Q∗2
sin

θ

2
(F5 − F6), (1.11)

where ~Q∗ is the photon 3-momentum in the hadronic center of mass frame, and θ is

the pion angle in that frame. Then the partial wave helicity amplitudes in Eqs. (1.6)

and the multipoles from Eqs. (1.10) are related through the following expressions

[4]:

Ml+ =
1

2(l + 1)
(2Al+ − (l + 2)Bl+)

El+ =
1

2(l + 1)
(2Al+ + lBl+)

Ml+1,− =
1

2(l + 1)
(2Al+1,− + lBl+1,−)

El+1,− =
1

2(l + 1)
(−2Al+1,− + (l + 2)Bl+1,−)

Sl+ =

√
2

l + 1

√

~Q∗2

Q2
Cl+

Sl+1,− = −
√

2

l + 1

√

~Q∗2

Q2
Cl+1,−. (1.12)

For photo- and electroproduction processes the photon is assigned either isospin

Iγ = 0 or Iγ = 1. Then the total isospin of the photon-nucleon system is either I =

1/2 for an isoscalar photon or I = 1/2 or I = 3/2 for an isovector photon. However,

the experimentally observed state of a nucleon and a pion is not an eigenstate of



9

the isospin operator, and the amplitudes for a πN final state should be expressed

in terms of definite isospin amplitudes [5]:

A(γ∗ + p → p + π0) = A(1/2)
p +

2

3
A(3/2)

A(γ∗ + n → n + π0) = −A(1/2)
n +

2

3
A(3/2)

A(γ∗ + p → n + π+) =
√

2[A(1/2)
p − 1

3
A(3/2)]

A(γ∗ + n → p + π−) =
√

2[A(1/2)
n +

1

3
A(3/2)]

A(1/2)
p = A(0) +

1

3
A(1/2)

A(1/2)
n = A(0) − 1

3
A(1/2), (1.13)

where A(3/2) is the amplitude for the total isospin I = 3/2, while A(1/2)
p and A(1/2)

n are

the proton and neutron isospin amplitudes. The last two are linear combinations of

two different I = 1/2 isospin amplitudes arising due to the fact that the photon has

isoscalar and isovector components. In order to isolate the I = 1/2 isospin amplitude

for the proton one needs to measure both pπ0 and nπ+ production channels.

1.2 Motivation

The underlying theory of the strong interaction is believed to be Quantum

Chromodynamics (QCD). But unlike the theory of the electroweak interactions, it

does not allow for perturbative solutions at the distances comparable with the size

of the nucleon. The theoretical tools for calculating the properties of the nucleon

and its excited states are limited to numerical calculations using Lattice QCD and

effective theories which use degrees of freedom different from the current quarks

and gluons, but which still have the fundamental symmetries of QCD. Although

effective theories can not be considered as fundamental, they are extremely useful

in explaining the properties of the bound states, which are expected from QCD. An

obvious way to test these theories is to compare their predictions of the properties
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of the baryons with experimentally observable quantities. These include the masses

and the widths of the excited states, the nucleon form factors, and the transition

amplitudes from the ground state into nucleon resonances. Although elastic scatter-

ing experiments allow us to determine the electric and magnetic charge distributions

of the ground state, the study of transitions from the nucleon to higher mass reso-

nances can provide more detailed information on the structure of the nucleon and

its excited states.

The main advantage of studying nucleon structure in electroproduction is that

the electromagnetic vertex is well described by Quantum Electrodynamics (QED).

Therefore, the contribution of the strong interaction is the only unknown in these

processes. For pion electroproduction at low Q2, perturbative QCD (pQCD) is not

applicable; therefore, models have to be used to understand pion electroproduction

processes and to extract the transition form-factors. There are many different mod-

els for describing the electroexcitation of resonances via pion production which can

be classified as:

• Quark models

• Models based on the Effective-Lagrangian approach

• Isobar models

• Dynamical models

• Models based on dispersion relations.

The basic feature of QCD-inspired quark models [6, 73, 77, 34, 76] is that

baryons are made up of three constituent quarks, each having approximately one

third of the total baryon mass. The motion of these quarks is described by intro-

ducing an effective Hamiltonian, which has main QCD features such as confinement
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and single gluon exchange terms. Different levels of excitation in this system corre-

spond to different resonances. The first such model, the Constituent Quark Model

(CQM) [6], was already very successful in describing the masses of the low lying

baryon states with the radial excitation numbers N = 0 and N = 1. Quark models

describe the excitation of nucleon resonances as a transition from the ground state

to an excited state. However, the amplitudes for these processes correspond only

to the “undressed” excitation vertex. Resonances can also be excited in the meson-

nucleon system as a result of the final-state interactions. One would like to have

a model to describe the Q2 dependence of the “bare” transition form-factor, com-

bined with a model describing the interactions in the pion-nucleon system. The full

resonant amplitudes, including the direct photoexcitation process and the meson-

nucleon resonant rescattering, should be compared with other models and with the

experimental data.

One of the widely used methods for analysis of resonance electroproduction

data is the Effective-Lagrangian approach [17]. One builds the total interaction

Lagrangian as a sum of a set of Lagrangians describing different types of interactions:

Ltot = LγNN∗ + LπNN∗ + LγNN + Lγππ + LV NN + LV γπ, (1.14)

where LγNN∗ and LπNN∗ terms describe the s-channel resonance production vertex,

plus the u-channel N∗ exchange. The other terms describe t-channel pion and vector

meson exchanges, as well as the nucleon-pole Feynman diagrams. Only trivial tree-

level diagrams are used in the calculations of the transition amplitudes. However,

some of these models use unitarization procedures [16] to account for higher order

Feynman diagrams.

The isobar models describe pion electroproduction in the resonance region by

calculating the total amplitude as a coherent sum of many nucleon resonance pro-

duction diagrams and a non-resonant background. One of the first such models was
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developed by R.L. Walker [11] to analyze pion photoproduction data. This model

assumed a Breit-Wigner form for the resonant amplitudes and included nucleon pole

and pion exchange diagrams as a background. Later a similar model was used to

analyze electroproduction data [12]. In addition to the Born terms, this model used

a background parameterization with a correct | ~qπ |l threshold behavior and with

a dipole-like form factor falloff with pion momentum squared ~q2
π. One of the best

isobar models, successfully describing charged and neutral pion electroproduction

data, is the Unitary Isobar Model (UIM)3 , developed at University of Mainz [71].

It uses effective Lagrangian methods to calculate the Born background, including ω

and ρ meson exchange process. The background amplitudes are unitarized with a

(1 + ifπN
l± ) factor, where fπN

l± are the pion-nucleon scattering amplitudes. Another

possibility of including the πN final-state interactions is to use a dynamical model

in combination with Breit-Wigner parameterization of resonant amplitudes [10].

The common feature of the dynamical models is that they are trying to account

for pion-nucleon scattering effects explicitly. In one of the first dynamical models [13]

the authors, using the optical theorem, modeled the electroproduction amplitudes

using the form:

a(W, Q2) ∼=
−1

2
(Γγ∗Γπ)1/2

W − WR + 1
2
iΓ

1

2
Γγ∗ =

[aBA(WR, Q2)]2

qRN(WR)[−Re′D(WR)]

1

2
Γπ =

N(WR)

−Re′D(WR)
qR

1

2
Γ =

N(WR)

−Re′D(WR)
qR

σtot(WR)

σel(WR)
, (1.15)

where qR is the pion momentum at the resonance position in the center of mass

frame; σtot(WR) is the total pion-nucleon scattering cross cross section at the res-

onance position; σel(WR) is the elastic pion-nucleon cross section; Γ, Γγ∗ and Γπ

3In this thesis we also will refer to the Mainz model as MAID.
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are the full, electromagnetic and pion decay widths, respectively; aBA(WR, Q2) is

the amplitude corresponding to a gauge invariant set of exchange graphs that are

believed to play an important role in the excitation mechanism. This set includes

nucleon pole diagrams as well as pion and ω vector meson exchange terms. Later

models have more elaborate schemes to describe the background processes. A recent

model by Sato and Lee [72] obtains an effective Hamiltonian from the interaction

Lagrangian using the method of unitary transformations. The original interaction

Lagrangian LI includes:

LI = LγNN + Lγππ + LγπNN + Lγρπ + Lγωπ + LγN∆

+LπNN + LπN∆ + LρNN + Lρππ. (1.16)

This particular model includes only the P33(1232) resonance, and therefore, does

not describe the experimental cross section above the first resonance region.

Based on the very general principle of causality one can write dispersion rela-

tions for the electroproduction amplitudes, relating the real and imaginary parts of

the amplitude [1]:

ReHi = Ri

(

1

M2 − s
+

ηi

M2 − u

)

+
P

π

∞
∫

s0

ImHi(s
′)

(

1

s′ − s
+

ηi

s′ − u

)

ds′, (1.17)

where s and u are the Mandelstam invariants, ηi are the crossing symmetry factors.

The imaginary parts of the amplitudes are saturated with the resonance contribu-

tions, while the Ri terms are the residues from the Born terms. This method has

been successfully used in many analyses of pion electroproduction [14].

Despite these large theoretical efforts, resulting in numerous models for pion

electroproduction, currently there is not a framework allowing for an extraction of

the resonant parameters at the γNN∗ vertex in a model-independent way. In this



14

 Q2 ,  GeV2 
0 0.5 1 1.5 2 2.5 3 3.5 4

 E
1+

 / 
M

1+
 , 

( %
 ) 

 

-15

-10

-5

0

5

10

15
BEC99
BLA97
MER99
FRO99

MIS69
GAL72
HEL71
ALB70

ALD72
BAT74
LAT79
LAT81

SID71

 Q2 , GeV2 
0 0.5 1 1.5 2 2.5 3 3.5 4

 S
1+

 / 
M

1+
 , 

( %
 ) 

 

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

KAL98

SCH99

MER99

FRO99

POS00

HEL71

ALB70

ALD72

BAT74

LAT79

LAT81

SID71

Figure 1.2: Existing experimental data on E1+

M1+
(top) and S1+

M1+
(bottom) ratios for ∆(1232).

Almost all the data come from single π0 production analyses: BEC99 [18], BLA97 [19],
MER99 [20], FRO99 [21], POS00 [22], KAL98 [23], SCH99 [24], MIS69 [25], GAL72 [26],
HEL71 [27], ALB70 [28], ALD71 [29], BAT74 [30], LAT79 [31], LAT81 [32], SID71 [33].

thesis the MAID unitary isobar model [71] is utilized as a physics analysis framework

to obtain the physical quantities of interest.

The main purpose of this study is to improve significantly the data from which

the structure and the properties of the nucleon resonances in the first and the sec-

ond resonance regions are extracted. It is well known that the first resonant region

is dominated by the ∆(1232) resonance. In this thesis an alternate notation for

resonant states will also be used. Each resonance can be characterized by its isospin

I, total angular momentum J , parity P , and mass MR. Since most of the nucleon

resonances have been observed in pion-nucleon scattering, the orbital angular mo-

mentum of the pion-nucleon system often is used instead of the parity. A resonance

state with isospin I and angular momentum J , producing a pion-nucleon system

with the orbital angular momentum L is denoted as L(2I)(2J)(MR). In this nota-

tion ∆(1232) is P33(1232). The second resonance region is dominated by P11(1440),
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S11(1535) and D13(1520) resonances.

For the P33(1232) resonance the quantities of greatest interest are the ratios of

the electric and scalar quadrupole amplitudes to that of the magnetic dipole: REM ≡
E1+

M1+
, RSM ≡ S1+

M1+
. The Constituent Quark Model (CQM), which is considered valid

for large distances, predicts very small values for these ratios. In the static case,

when no orbital excitations are allowed, the transition from nucleon to ∆(1232)

state occurs when the virtual photon interacts with one of the constituent quarks

and “flips” the spin of that quark. The resulting three quark state has a total spin

of S = 3
2

with no orbital excitation. From the momentum and parity conservation

it follows that such a transition can be induced only by the M1 multipole. If the

effects of single gluon exchange, such as color hyperfine interaction, are included in

the model as perturbations, then the ground states obtain some admixture of L = 2

excited states of the unperturbed Hamiltonian. This leads to small contributions

from electric and scalar quadrupoles to the N∆ transition amplitude.

On the other hand, at very small distances corresponding to large momentum

transfers, using helicity conservation arguments, perturbative QCD predicts that the

ratio REM should be equal to 1 [8]. Hence, a transition from REM ≈ 0 to REM = 1 is

expected at some intermediate values of the momentum transfer. The corresponding

transition in terms of the transverse photon asymmetry A1 ≡ |A1/2|
2−|A3/2|

2

|A1/2|2+|A3/2|2
is from

A1 = −1/2 at Q2 = 0 to A1 = +1 as Q2 → ∞. The value of Q2 at which this

transition occurs will help determine at which distances perturbative QCD begins

to work. At this time this ratio has been measured up to Q2 = 4 GeV2 and it is

still very close to zero [21]. The RSM ratio is predicted by pQCD to be constant at

very high Q2 [8].

The existing data for REM and RSM are shown in Fig. 1.2. Almost all ex-

perimental data on this plot are from the pπ0 channel; measurements of positively

charged pion electroproduction will allow us to separate the I = 3/2 isospin com-
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Figure 1.3: Existing data [4] on transverse photocoupling amplitudes of the proton for the
D13(1520) resonance. Red dashed curves from [74], green solid curves from [80], dashed
blue curves from [81].

ponent of the amplitude. The top plot in Fig. 1.2 shows that REM has not reached

the asymptotic value of 1 at Q2 = 4 GeV2.

Similar to the P33(1232) resonance, the D13(1520) transverse photon asymmetry

is expected to go through a transition from A1 = −1 at Q2 = 0 to A1 = +1 at

very high values of Q2. It is well known that at Q2 = 0 the photoproduction of

D13(1520) is predominantly A3/2 [1]. At higher values of Q2 A1/2 is predicted to

become dominant by both quark models and pQCD [4]. The existing experimental

data, unlike for the ∆(1232) resonance, support these predictions already at Q2 ≈

0.5 GeV2. A compilation of existing data [4] for the A1/2 and A3/2 amplitudes is

shown in Fig. 1.3. The present experiment will allow us to investigate the behavior

of these amplitudes near the Q2 point where the photon transverse asymmetry A1

crosses zero.

Another subject of debate is the structure of the P11(1440) “Roper” resonance.

In the constituent quark model [6] it is identified as a radially-excited three quark

state with the radial excitation number N = 2. But in order to get the mass

consistent with the experimental value, a large perturbation is introduced, which
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Figure 1.4: Existing data on the photocoupling amplitudes of the proton for the P11(1440)
resonance. Data are from [37, 4, 38]5. Red solid curve - hybrid model [9], blue dashed
curve - three quark state [34].

makes the application of perturbation theory unjustified. On the other hand, QCD-

inspired models predict the existence of so-called hybrid states, where in addition to

the constituent quarks there is at least one constituent gluon. For instance, in the

flux tube model [7] this kind of state can be created by exciting the flux tube between

two quarks in a nucleon. One of the possible explanations of the Roper resonance

is that it is actually a hybrid state. It would have the same quantum numbers, but

the internal structure would be entirely different from the corresponding three quark

state. It was shown [9] that the Q2 dependence of the photocoupling amplitudes

A1/2 and S1/2 is quite different depending on what kind of state P11(1440) is (see

Fig. 1.4). The current experimental data do not allow us to distinguish between the

two models for the Roper resonance. Because of the isospin (I = 1
2
, Iz = 1

2
) nature of

the P+
11(1440) resonance, the nπ+ channel adds much sensitivity to the photocoupling

amplitude. Nevertheless, the presence of the ∆(1232) resonance and the large width

of the P11(1440) state may cause difficulty in extracting the amplitudes for Roper

resonance excitation.

5The error bars for the electroproduction points were not estimated in the original analysis
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The S11(1535) resonance is usually studied through η meson production. This

is due to the large branching ratio to the ηN channel and to very little non-resonant

background. The absence of any significant physical background is because of the

proximity of the resonance mass to the η production threshold. On the other hand,

the threshold effects complicate the amplitude extraction procedure. The S11(1535)

resonance is known to decay via pion channels about 40% of the time [83]. The study

of the electroexcitation of S11(1535) can provide an independent measurement of

the A1/2 and S1/2 helicity amplitudes. It can also help to understand the threshold

effects in the η electroproduction channel.

The main Feynman diagrams, representing the single π+ production, are shown

in Fig. 1.5. The process of our interest is one shown in Fig. 1.5 a, where the

virtual photon excites a resonance state which then decays into a neutron and a

π+. The other diagrams, also called Born terms, are considered as background

in this experiment, with the strongest contribution coming from the t-channel pion

exchange process, Fig. 1.5 c. Note that this diagram is absent in the pπ0 channel due

to charge-parity conservation at the γ∗ππ vertex. One of the main challenges of the

physics analysis of this reaction is to calculate the background terms correctly and

to obtain the resonant part of the amplitudes by fitting the angular distributions.

Therefore, it is essential to have a large angular coverage in the center-of-mass

frame. In order to cover 4π solid angle in the center-of-mass frame, it is necessary

to have a nearly 4π coverage in the laboratory frame for the π+ due to the fact that

pions are much lighter than neutrons. Therefore, the main advantage of doing this

experiment with CLAS is that it allows us to detect both the electron and the π+

simultaneously, covering nearly the full phase space of the reaction.

paper by Gerhardt [38].
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Figure 1.5: Some of the diagrams contributing into single π+ electroproduction. a) s-
channel resonance production; b) s-channel nucleon exchange; c) and d) t-channel pion
and ρ-meson exchange diagrams.

1.3 Existing Experimental Data on Single π+ Electroproduction

Most of the existing single pion electroproduction data on proton targets are

from the neutral pion channel. All of the existing single π+ electroproduction data

have very limited coverage, while all of the analysis techniques require nearly full

angular coverage in the center-of-mass frame.

One of the first experiments to study charged pion electroproduction in the

resonance region was conducted at the Daresbury Nuclear Physics Laboratory in the

early 1970s [46]. The detector consisted of two spectrometers with approximately

2 msr angular acceptance each. The Q2 range was from 0.36 GeV2 to 0.46 GeV2,

while the W range was 1.40 GeV ≤ W ≤ 1.86 GeV and was correlated with Q2.

The angular coverage in the center-of-mass frame in θ was up to 75o.

Another cross section measurement with forward angular coverage was con-

ducted at Bonn University [47] at Q2 = 0.15 GeV2 and 0.3 GeV2 in the first reso-

nance region. This experiment used a two-arm detector as well, and the Q2 values

were correlated with W . The angular range in the center of mass of the hadronic

system was up to θ = 400, with 1.14 GeV ≤ W ≤ 1.28 GeV. Note that the P-
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wave decay for the ∆(1232) resonance is largest at θ = 900, and therefore, this

experiment had little sensitivity to ∆(1232) resonance amplitudes due to the large

background contributions in the charged pion production channel. A few years later

the Bonn group conducted another experiment [48] to study the charged pion elec-

troproduction in the second and third resonance regions using essentially the same

detectors. Measurements were done in the forward 1 ≥ cos θ ≥ 0.97 and backward

−1 ≤ cos θ ≤ −0.97 regions at Q2 = 0.3 GeV2. The advantage of measuring in the

backward direction is that the t-channel background is much smaller at large angles.

Nevertheless, these data still had very little sensitivity to the resonance parameters

due to the lack of angular coverage.

The main problem of the previously conducted experiments for the nπ+ channel

is that two-arm detectors cannot provide an adequate angular coverage, if one wants

to detect both the electron and the pion.6 The CLAS detector provides us with a

unique opportunity to measure single π+ electroproduction cross sections for the

first time, covering nearly the full angular range in the center-of-mass frame.

6It is possible to study nπ+ electroproduction using a two arm detector with the hadron arm
detecting the neutron. Then one has to deal with the systematic uncertainties due to difficulties
of detecting neutrons.



CHAPTER 2

Experimental Apparatus

2.1 Continuous Electron Beam Accelerator Facility

The experiment has been carried out using the electron beam provided by the

Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Lab. This

accelerator produces a continuous polarized electron beam which is delivered to the

three end stations (Hall A, B, C) where the experimental detectors are housed.

Figure 2.1 shows a schematic diagram of the machine. The two linear accelerators,

based on superconducting RF cavities, provide approximately 1 GeV energy for each

pass. The beam is recirculated up to five times into the linacs through five bending

arcs connecting these linacs, so the maximum energy that can be achieved at these

gradients is ≈ 5 GeV with a resolution of < 0.01% and a beam spot size at the target

of < 0.5 mm. The 1.4971 GHz RF structure of the accelerator allows simultaneous

delivery of polarized beams into each experimental hall with the electrons grouped

into bunches separated by 2.0039 ns.

2.2 General Description of the CLAS Detector

The main experimental setup of the Hall B in Jefferson Laboratory is the CE-

BAF Large Acceptance Spectrometer (CLAS), shown in Fig. 2.2. CLAS is a nearly

4π acceptance detector which is capable of detecting charged particles from 8◦ to

140◦ and neutral particles from 8◦ to 75◦. The continuous beam provided by CEBAF

is well suited for carrying out experiments which require two and more particles in

coincidence in the final state with a very small accidental background to signal ratio

21
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Figure 2.1: CEBAF configuration. In the upper left corner one can see a blowup of the
north linac showing one of the cryomodules. A vertical cross section of a cryomodule is
shown in the lower right corner of the diagram. In the upper right corner a cross section of
the five recirculating arcs is shown. The two linear accelerators and the bending arcs are
shown in the center of the picture. The electron beam starts at the injector and terminates
at the experimental halls (Hall A, B, C).
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Figure 2.2: Three dimensional view of CLAS with a portion of the system cut away.

of < 10−3 over a large angular range in the laboratory frame at luminosities up to

1034 cm−2sec−1.

The main magnetic field of the spectrometer is provided by six superconducting

coils which produce a toroidal field primarily in the azimuthal direction, with the

maximum intensity of 2 Tesla in the forward region. The advantage of the toroidal

magnetic field is that it is nearly constant with the azimuthal angle φ and it only

bends the trajectories of charged particles in the θ direction. The cryostats with

the coils, shown in Fig. 2.3, are located symmetrically around the beam axis at 60◦

intervals1 . The six gaps between the cryostats are filled with six detector packages

which can function as six independent spectrometers or work together as one large

multiparticle spectrometer. As shown in Fig. 2.2, each sector of the detector is

instrumented with 3 regions of Drift Chambers (DC) to determine the trajectories

1In addition to the CLAS main torus, a smaller toroidal magnet (minitorus) was used during
the e1c run period. The magnetic field of the minitorus near the target prevents the electrons from
Moller scattering from flying into the detectors, thus reducing the occupancy in the drift chambers.
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Figure 2.3: The six coils of the CLAS superconducting toroidal magnet.

of charged particles, Čerenkov Counters (CC) for electron identification, Scintillator

Counters (SC) for charged particle identification using the Time-Of-Flight (TOF)

method, and an Electromagnetic Calorimeter (EC) used for electron identification

and detection of neutral particles. The target is located inside the detector on the

beam axis. A Faraday cup, located at the very end of the Hall-B beam line, is used

to determine the integrated charge passing through the target.

2.3 Multiwire Drift Chambers

Determination of the trajectories of the charged particles in CLAS is done

using the multiwire drift chambers [49], which are designed to track particles with

momentum greater than 200 MeV, covering from 8◦ to 140◦ in polar angle with

80% coverage of the azimuth. Each of the six sectors of the drift chambers consist

of three separate regions R1, R2, R3, as shown in Fig. 2.2. The first region is the

innermost and the smallest section of the drift chambers and is located in a nearly

field-free volume around the target. The second region is located inside the magnetic

field and is actually mounted onto the cryostats containing the coils of the magnet.
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Figure 2.4: Layout of superlayers in Region 3. The sense wires are located in the center of
each cell, while the field wires are located in the vertices of the hexagons. The shadowed
hexagons represent the cells containing the sense wires which produced a signal for a
representative track.

The third region is the biggest section and is located outside of the volume with

magnetic field.

Each region of the drift chambers consists of two superlayers of wires: one

axial superlayer, where all the wires are strung parallel to the directions of the

magnetic field, and one stereo superlayer, in which the wires are strung at a 6◦

angle with respect to the axial wires. These two different directions of wires allow

us to determine the azimuthal angle φ of the particle. Each superlayer is made up

of 6 layers of sense wires, with the exceptions of the stereo superlayer in R1, which

has only 4 layers. Each sense wire is surrounded by six field wires making up a cell

of hexagonal shape, as illustrated in Fig 2.4. In addition, there is a layer of guard

wires surrounding the perimeter of each superlayer to reproduce the electric-field

configuration of an infinite grid of hexagonal cells. All three regions of the drift

chambers are filled with a 90% argon, 10% CO2 non-flammable gas mixture. This

provides a drift velocity of at least 4 cm/µsec and an operating voltage plateau of

several hundreds volts before breakdown. The average layer efficiency is > 98% [49].
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Figure 2.5: Exploded view of one of the six CLAS electromagnetic calorimeter modules.

Most of the inefficiency comes from tracks passing very close to the sense wire which

give rise to signals with low pulse height and long durations.

The tracking, that is the reconstruction of the momentum and angles of the

tracks, is done in two stages. First, the hits in a superlayer are combined to form

a “track segment”. Then the found “track segments” from different superlayers are

linked to form a track. At this point the reconstructed momentum is within 3%

to 5% of the true value of the momentum of the particle. In the second stage the

start time information from the scintillator counters is used to obtain the drift time

and then to convert it into distance from the center of the cell. In overall average

the tracking efficiency remains > 95% for chamber hit occupancy up to 4% with a

momentum resolution better than 0.4% [49].

2.4 Forward Electromagnetic Shower Calorimeter

2.4.1 Design

The forward regions (8◦ < θ < 45◦) of all six sectors of the CLAS are equipped

with a 16 radiation length thick electromagnetic calorimeter (EC) [51]. The main
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Figure 2.6: Schematic vertical cut of the EC light readout system. PMT - Photomultiplier,
LG - Light Guide, FOBIN - Fiber Optic Bundle Inner, FOBOU - Fiber Optic Bundle
Outer, SC - Scintillators, Pb - 2.2 mm Lead Sheets, IP - Inner Plate (Composite: two
1.905 mm Stainless Steel Face Sheets and 72.2 mm Foam Core Plate)

functions of the EC are:

• detection of electrons at energies above 0.5 GeV,

• detection of photons at energies above 0.2 GeV to allow for π0 and η

reconstruction,

• detection of neutrons and their separation from photons using the time-of-flight

measurements.

The calorimeter is made of alternating layers of scintillator strips and lead

sheets with the lead:scintillator thickness ratio 0.21, resulting in 39 cm of scintillator

and 8.4 cm of lead per module. With this ratio, approximately 1/3 of the energy

in an electromagnetic shower is deposited in the scintillator. For a good position

resolution the transverse granularity has to be smaller than the transverse size of

the shower. In order to achieve a compromise between the cost of PMTs and the

position resolution a scintillator width of 10 cm was chosen.
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In order to match the hexagonal geometry of the CLAS, the lead-scintillator

sandwich is contained within a volume having the shape of an approximately equi-

lateral triangle. There are 39 layers in the sandwich, each consisting of a 10 mm

thick BC412 scintillator followed by a 2.2 mm thick lead sheet. The calorimeter

utilizes a projective geometry, in which the area of each successive layer increases.

This minimizes shower leakage at the edges of the active volume and simplifies the

reconstruction of multiple neutral showers, such as from π0 → γγ decays.

For the purposes of readout, each scintillator layer is made of 36 strips parallel

to one side of the triangle, with the orientation of the strips rotated by approxi-

mately 120◦ in each successive layer, as shown in Fig. 2.5. Thus there are three

orientations or views (labeled U, V and W), each containing 13 layers, which pro-

vide stereo information on the location of energy deposition. Each view is further

subdivided into an inner (5 layers) and outer (8 layers) stack, to provide longitudi-

nal sampling of the shower for improved hadron identification. Each module thus

requires 36(strips)×3(views)×2(stacks) = 216 photomultipliers. Altogether there

are 1296 PMTs and 8424 scintillator strips in the six EC modules used in CLAS.

A fiber-optic light readout system was used to transmit the scintillator light to

the PMTs. Fig. 2.6 displays a schematic side view and vertical cut of the fiber-optic

readout unit for a single inner and outer stack of the calorimeter module. These

fibers were bent in a controlled way to form semi-rigid bundles originating at the

ends of the scintillator strips and terminating at a plastic mixing light-guide adapter

coupled to a phototube. Because of the compound angles involved, each fiber bundle

in a given detector module has unique dimensions.

The PMT and the light guide adapter are optically coupled using optical grease,

while the light guide adapter is glued to the fiber readout bundle with a UV curing

epoxy. The contact between the end of the scintillator and the fiber bundle, however,

is made mechanically without optical coupling material at the joint. A special
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Figure 2.7: PMT anode current dependence versus 60Co source position along a 4 m long
BC412 scintillator strip. (a) - Measured response. For x > 400 cm only PMT dark current
contributes. (b) - Same as (a) with dark current subtracted. Fitted parameters from (2.1)
are L1=40 cm; L2=250 cm and A2

A1
=0.22.

spring loaded expansion assembly is used to push the end locator, in which the

fibers are glued, against the end of the scintillator. This coupling allows flexibility

in positioning the scintillators in the containment box during assembly, and also

prevents possible damage of the scintillator strips from thermal expansion.

2.4.2 Attenuation Lengths of the Scintillators

Each scintillator strip of the EC is 10 mm thick, approximately 100 mm wide

and is 0.15-4.2 m long. One end of the strip was cut at an angle to match the edge

of the triangle and coated with a non-reflecting black material to minimize the effect

of reflections on the timing resolution. The read-out end was diamond milled at 90◦

to the axis of the strip. Before installation, each scintillator strip was measured to

insure that the scintillation and optical properties as well as dimensional accuracy

were within specifications. The results of the measurements were put in a database

and subsequently were used to improve the simulation and reconstruction software.

In order to simulate the correct response of the calorimeter one has to know the
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attenuation lengths of the scintillators. The measurements were done by exciting

scintillations at various points along the length of each strip, while a PMT mea-

sured the response at the scintillator read-out end [50]. To test the large number

(≈ 8,500) of scintillator strips in a reasonable time, several test setups were devel-

oped and operated in parallel. Scintillator strips shorter than 3.0 m were measured

at University of Virginia using a 250 kW UV (λ=337.1 nm) pulsed nitrogen laser in

an arrangement that permitted six strips to be tested simultaneously. Scintillator

strips longer than 3.0 m were measured at the JLab using a 60Co radioactive source,

attached to a cart that moved along a track parallel to the scintillator strip. Al-

though this method was slower, the use of a single, local source provided an absolute

measurement.

Typical dependence of the readout PMT anode current on the source position

for a 4 m long scintillator strip is shown in Fig. 2.7. A collimated 0.5 mR 60Co γ

source was used to excite the scintillator. The PMT was in optical contact with

a lightguide placed at the readout end of the scintillator strip. There was a few

millimeter wide air gap between the scintillator and the lightguide, similar to the

design of the actual calorimeter readout system. The current is seen to abruptly

drop to PMT dark current levels when the source reaches the far end of scintillator.

This background, which is almost 13 % of the scintillation signal at this point, was

subtracted from all measurements prior to fitting. The overall RMS uncertainty in

the current measurement was 1.5 %.

A sum of two exponentials was sufficient to describe the scintillator attenuation

response:

A = A1 · e−x/L1 + A2 · e−x/L2 (2.1)

where L1 and L2 are the attenuation lengths of the two observed components. After

measurements of about 100 strips it was found [51] that 〈L1〉 ≤ 50 cm, 〈L2〉 ≥ 250 cm
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Figure 2.8: Top: Attenuation length of strips for all six sectors for scintillators having
length x≥ 300 cm. Bottom: < Lo > for each sector. Open and dark circles for strips with
x≥ 300 cm and x= 150-300 cm, respectively.

and the ratio A1

A2
≤ 0.5. Thus, the influence of the first component at the distance

of x ≈ 50 cm was no more than 20% and for x ≥ 50 cm the response could be fitted

with a single exponential:

A = Ao · e−x/Lo (2.2)

The fits of data for 100 strips using both Eq. (2.1) and Eq. (2.2) showed that

L0

L2
=0.98± 0.03. The results for all the calorimeter scintillators are shown in Fig. 2.8.

The preliminary calibrations and the analysis of the subsequent production

runs showed that the calorimeter performed well, having an energy resolution σ
E
≤

0.1√
E(GeV )

, a position resolution δr ≈ 2 cm at 1 GeV, a mass resolution for 2-photon

decays δm
m

≤ 0.15, neutron detection efficiency > 50% for En > 0.5 GeV and a

timing resolution ≈ 400 ps [51].
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2.5 Čerenkov Counters

In order to be able to separate electrons from hadrons at the trigger level,

the CLAS detector was instrumented with threshold Čerenkov detectors [58] in the

forward region of every sector out to an angle θe = 45◦. The Čerenkov counters of

each sector consist of 36 optical modules, as illustrated in Fig. 2.9, divided into 18

pairs with the mid-plane of the sector as a symmetry plane between them. Each

module has three mirrors - elliptical, hyperbolic and cylindrical - to direct the light

into the light collection cone with a PMT attached at the end (see Fig. 2.10). All 316

PMTs are located in the region obscured by the torus so that they do not increase

the material in the path of the particles passing through the CLAS. The mirrors

and the other components of the Čerenkov counter are mounted on a triangular

shaped aluminum frame and covered with two 0.08 mm sheets of Tedlar PVF film

sandwiched around a sheet of mylar. The whole detector is filled with C4F10 radiator

gas which was chosen for its high index of refraction (n = 1.00153) and excellent

light transmission properties. The efficiency of the Čerenkov counters as determined

from the measured photoelectron yield is > 98% in the fiducial region [58]. Outside

the fiducial regions the efficiency has very strong variation, and therefore events with

the electrons in these regions are usually excluded from the analyzed data sample.

2.6 Time-of-Flight System

In order to determine masses of the charged particles passing through the de-

tector, in addition to the momentum from the tracking one also needs to know the

velocity of the particle. In CLAS this is done using the scintillator counters of the

time-of-flight (TOF) system [54] located behind the Region 3 of the drift chambers.

Besides, the start time from the TOF system is also used for the time-based-tracking.

The resolution of the drift time determination in the DC is σDT > 1 ns, while the

particle identification requires a time resolution better than 300 ps to be able to
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Figure 2.9: Arrangement of the CC optical modules of one sector.

Figure 2.10: One optical module of CLAS Čerenkov counter, showing the detector com-
ponents and the hypothetical light paths from electrons. Čerenkov light from electrons
reflected twice from the mirrors into the Winston Cone (WC), surrounded by the mag-
netic shield (MS). The Winston cones are used to collect the light onto the surface of the
Photomultipliers (PMT).
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Beam

Figure 2.11: The four panels of TOF scintillators for a single sector. The length, the width
and the readout configuration are different for different scintillators.

separate positive pions from protons up to 2.5 GeV momentum.

Each sector of the time-of-flight system consists of 57 Bicron BC-408 scintillator

strips arranged into four panels, as shown in Fig. 2.11. The length of the scintillator

paddles varies from 30 cm to 450 cm. The widths of the first 23 and the last four

strips is 15 cm, while the remaining strips are 22 cm wide. The widths of the

scintillators were chosen to optimize the timing resolution of a single counter and to

have sufficient granularity for triggering purposes. The signal readout is done using

light guides attached to both ends of each paddle. The photomultiplier is glued

to the light guides. The last 18 scintillators in each sector are grouped in pairs,

thus resulting in only 9 logical counters connected to a single time-digital converters

(TDC) or amplitude-digital converter (ADC) channels. The timing resolution for

a single counter varies with the length and the width of the strip, with a better

resolution of 130 ps for the forward counters, and 300 ps for angles above 90◦

[54]. These timing characteristics allow for a reliable pion-proton separation up to

momentum of 2.5 GeV.



35

Figure 2.12: GSIM and engineering drawings of the CLAS cryogenic target cell for the
e1c run period. On the left plot (GSIM image of the target) the aluminum walls are
drawn in red, while polystyrene insulation is drawn in green. Hydrogen filled areas within
the aluminum walls are drawn in blue. The beam line is the symmetry axis of the blue
cylinder. The engineering drawing of the target (right) has aluminum walls in red (inner)
and blue (outer). The pipes for hydrogen circulation are drawn in green.

2.7 Hydrogen Target

For the experiments with electrons scattering on unpolarized protons the obvi-

ous choice for the target is liquid hydrogen. In this experiment a cryogenic hydrogen

target was used at an average temperature of 20.5 K. The specifications of the target

are shown in Table 2.1. The target cell, shown in Fig. 2.12, was made of aluminum

with 5 mm wide and 15 µm thick input and output windows [52]. The total contri-

bution of the target cells for single π+ rate was estimated to be ≈ 2% using runs with

empty target cells, as described in the next chapter. The target parameters, such

as temperature and pressure, were continuously monitored during the data taking

and written to a data base. Due to problems in the cryogenic system the density of

the liquid hydrogen occasionally dropped down rapidly and then recovered within a

few seconds. This behavior potentially can cause normalization problems and thus

necessitates a careful selection of the events within the time intervals with stable

target density.
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Item Value

Length 5.0 cm
Radius 0.486 cm

Temperature 20.5 K◦

Density 0.0695 g/cm3

Table 2.1: Specifications of the cryogenic hydrogen target.

ECtotal ECinner CC

80 mV 48 mV 20 mV
220 MeV 130 MeV 0.2 pe

Table 2.2: Trigger thresholds in the pretrigger discriminators and the corresponding ap-
proximate momentum of electrons [59] and the approximate number of photoelectrons in
CC [62].

2.8 Event Trigger and Data Acquisition

During this experiment the CLAS detector had two trigger levels. The first level

(Level-1) is designed to form a fast signal to enable the read-out of the information.

It uses information from the pretrigger boards of the EC, CC and TOF scintillators

(during this experiment the TOF was not used in the trigger) to form a coincidence

signal to be sent to the Read-Out-Controller (ROCs). The Level-2 trigger uses

information from the drift chambers to decide whether or not there were enough

track segments to initiate an event read-out. During this experiment the Level-2

trigger was used in the Late-Fail mode when it actually does not affect the decision

made by the Trigger Supervisor (TS) board, but it is recorded on the tape. This

provided the information to understand the efficiency and effectiveness of the Level-

2 trigger without causing any loss of events due to problems in the new Level-2

hardware.

Since the e1 running group includes many experiments, the only requirement

imposed on the recorded events is that they contain an electron. In order to achieve
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Figure 2.13: Schematic diagram for the CLAS data acquisition system. The signals from
the detector go to the ROCs and the pretriggers. The pretriggers initiate the readout from
the particular detector system as well as provide an input for the Level-1 trigger. In case
there is a trigger the data signals are read out, digitized and transferred to a process called
Event Builder (EB) running on the main computer clon10 and are temporarily stored in
the Data Distribution (DD) ring in a shared memory. A process called Event Recorder
(ER) writes the data onto disks from where they are transferred to the tape silo. Some
of the events from the DD ring on clon10 are transferred to a different computer clon00
to be used as an input stream in the monitoring programs. (This diagram is provided by
Konstantin Lukashin.)
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this goal it was decided to use a coincidence between EC and CC signals in the same

sector as a trigger. The thresholds for ECinner, ECtotal and CC are presented in Ta-

ble 2.2. The threshold on the total deposited energy ECtotal was chosen to reduce

the background due to low energy electrons and photons. The ECinner threshold was

set above the minimum ionizing peak, which is at E
(MIP )
inner ≈ 31 MeV in deposited

energy, corresponding to a threshold voltage of V (MIP ) ≈ 38 mV in the discrimi-

nators. Electrons, due to their showering properties, contribute significantly more

energy in the forward part of the calorimeter than the minimum ionizing particles.

Therefore, this additional trigger requirement only reduces the background rate due

to minimum ionizing particles and does not affect the energy threshold for electrons

determined by ECtotal threshold (see Table 2.2). The CC threshold was selected to

be well below the single photoelectron peak. With the above mentioned thresholds

about 40% of recorded triggers contained an electron. The rest were due to the

accidental background: they either did not have any reconstructible tracks, or none

of the tracks passed the software electron identification cuts.

The CLAS Data Acquisition (DAQ) system consists of 17 Read-Out-Controllers

(ROCs) communicating with the Trigger Supervisor board which makes the decision

whether the event should be read or not. Fig. 2.13 shows the data acquisition logic.

In case there is a trigger the data signals are read out, digitized and transferred to

a process called Event Builder (EB) running on the main computer clon10 and are

temporarily stored in the Data Distribution (DD) ring in a shared memory. From

there the Event Recorder (ER) process writes the data to RAIDs (Redundant Array

of Inexpensive Disks). Later the files are transferred from RAIDs to the tape silo in

the computer center for permanent storage.

In order to monitor the quality of the data and to spot problems quickly a small

subsets of events in the DD ring are continuously transferred to another computer,

where online monitoring processes run. The status of the detector components and
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their functionality are continuously monitored during the runs. The most important

run information are saved in the data base to facilitate the off-line analysis process.



CHAPTER 3

Charged Particle Identification

One of the essential features of the CLAS is its ability to distinguish between

different types of charged particles using information from tracking and the scintil-

lator counters. This is crucial for studying multi-particle final states involving pro-

tons, pions, kaons and deuterons. The quality of the particle identification (PID) is

determined primarily by the accuracy of the time-of-flight (TOF) system, therefore

considerable efforts were devoted to the development of TOF calibration procedures.

In this chapter the main calibration procedures of the CLAS time-of-flight system

are described. More details on this subject can be found in [54, 55, 56] and references

therein.

3.1 Calibration of Individual Channels

As discussed in Chapter 2, the time-of-flight system of CLAS consists of 6×48 =

288 scintillator counters. Each of them has to be properly calibrated to provide

the off-line analysis program with correct timing and energy information with the

highest achievable resolutions. This involves calibrations of the amplitude-to-digital

converters (ADCs) and the time-to-digital converters (TDCs). In addition, the

dependence of the time delay on the signal amplitude, arising from the leading-edge

discriminators generating the logical signals, must be taken into account. This is

referred to as a “time walk correction”. Only after these calibrations for individual

channels are completed one can proceed with the adjustment of the time delays for

different scintillator counters with respect to each other.

40
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3.1.1 ADC Pedestals and TDC Calibrations

In order to determine the ADC pedestal values, special runs with a random

trigger were taken [56]. The data were analyzed online and the results were loaded

into a calibration database. An additional sparsification threshold of 40 ADC chan-

nels was added to the pedestals and loaded into the 1881M FASTBUS ADC. This

helped to avoid reading low voltage noise in the ADC.

A special DAQ configuration was used to take the TDC calibration data [56].

All TDC channels in all crates were pulsed and the response of the TDC for different

delays between the start and stop signals were analyzed. A quadratic equation was

used to convert the TDC channel number T to time units (ns) :

t = c0 + c1T + c2T
2. (3.1)

The constant terms c0 were constrained so that the average of the 64 channels of

each FASTBUS card was zero. The value of the c0 parameters are not significant,

because more calibrations are performed afterwards to equalize the left-right timing

offsets for every single counter and then to determine the relative offsets between

different time-of-flight counters.

3.1.2 Energy Calibrations

For a high quality timing calibration of the CLAS time-of-flight system, it

is important to be able to separate pions from protons without using any timing

information from the scintillator counters. One of the ways of doing this is to use

the dependence of the energy deposited by hadrons on the momentum. In order

to find the deposited energy, ADC pulse heights first are corrected for the pedestal

value P. Then the energy is found by calculating the geometrical mean of the signals

from the left and right ADCs [57]:

Āg ≡
√

AL · AR =
α

2
Ed exp

(

−L

4

λr + λl

λrλl

)

exp

(

y

2

λr − λl

λrλl

)

, (3.2)
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Figure 3.1: Energy deposited by hadrons in the TOF scintillators versus momentum from
tracking after the MIP calibration is done. Proton and pion bands are clearly distinguish-
able. A faint band corresponding to deuterons is visible as well.

where AL and AR are the pulse heights from the left and right ADCs, Ed is the

deposited energy, L is the scintillator length, y is the hit position along the scintil-

lator, λl and λr are the attenuation lengths in two directions, and α is a conversion

constant from MeV units to ADC channels. The product α
2

exp (−L
4

λr+λl

λrλl
) can be

found using normally-incident minimum ionizing particles (MIPs) [54]. A plot of

the deposited energy in the counters versus the particle momentum after the energy

calibrations is shown on Fig. 3.1. At low momentum, pions and protons can easily

be separated, while at momentum above 800 MeV protons become minimum ioniz-

ing, and the bands in Fig. 3.1 corresponding to pions and protons start to merge.

Note, that this method of pion identification is not suitable for data analysis and it

is only used to provide a reasonably clean sample of pions for further calibrations.

3.1.3 Time Walk Corrections

The time walk corrections were obtained using a laser system which delivered

a light pulse to the center of each scintillator counter [56]. The intensity of the
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light was varied using a neutral density filter, and the pulse heights and the times

were measured at the both ends of the counter. The time, corrected for amplitude

dependent delays, is determined using the formula:

tw = t − fw

(

A − P

Th

)

+ fw

(

600

Th

)

,

fw =
w2

xw3
, if x < w0,

fw =
w2

ww3

0

(1 + w3) −
w2w3

ww3+1
0

x, if x > w0, (3.3)

where t is the measured uncorrected time, A is the pedestal unsubtracted ADC

channel number, P is the position of the pedestal, Th is the channel corresponding to

the leading-edge discriminator threshold of 20 mV, fw(x) is the time-walk correction

function, obtained from fitting laser calibration data. The three variables in Eq. (3.3)

w0, w2, w3 are the calibrations parameters obtained from the fit.

3.2 Paddle-to-paddle Calibrations

After all individual scintillator counters have been calibrated, one has to ensure

that their signals are delayed in software by the same amount with respect to a

single reference time. This delay for each counter is represented by a single number,

because the time of a TOF hit is calculated as the average of the times from the

two ends of the fired scintillator [57]:

Thit =
Tleft + Tright

2
− y

vr − vl

2vrvl
, (3.4)

where Tleft and Tright are the times measured by the two TDCs, and vr (vl) is the

the speed of light propagation toward the right (left) tube.

The RF-signal from the accelerator was used as the reference timing signal

for the CLAS particle identification [55]. This signal is generated for every electron

bunch with frequency of νacc = 1.4971 GHz at the CEBAF injector and is sent to the

three experimental halls with a prescale factor of 40. Each real event in the CLAS



44

∆τ , nsec  
140 160 180 200 220 240 260

0

100

200

300

400

500

a)

∆τ , nsec
140 160 180 200 220 240 260

0

100

200

300

400

500

b)

R , nsec
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45
Chi2 / ndf = 16.21 / 18

αR   = 31.97 +- 2.631 

< R >    = -0.02642 +- 0.008107 

σR   = 0.1291 +- 0.007054 

Chi2 / ndf = 16.21 / 18

αR   = 31.97 +- 2.631 

< R >    = -0.02642 +- 0.008107 

σR   = 0.1291 +- 0.007054 

c)

Figure 3.2: Illustration of the beam RF-structure: a) ∆τ distribution with properly cali-
brated TDCs, b) ∆τ distribution when the c1 parameter of the TDC of the RF-signal is
miscalibrated by less than 1%, c) R-distribution for a single scintillator channel, fit to a
Gaussian.

detector is caused by an electron from one of these bunches. Ideally, one would like

to be able to identify the bunch containing the electron which caused a particular

event. But this is impossible to do, because only one out of forty RF-signals is

sent to the experimental halls. Nevertheless, for the TOF calibration purposes, it

is adequate to be able to align the timing of all scintillator counters to the same

RF bunch, because all electron bunches delivered into Hall B are separated by a

constant time interval. The sections below describe this procedure in detail.

3.2.1 Fine Tuning

As mentioned above, the CEBAF beam is delivered to Hall-B in bunches, sep-

arated by time intervals:

∆T =
3

νacc
=

3

1.4971 GHz
≈ 2.0039 ns, (3.5)

where νacc is the RF frequency of the accelerator, and the factor of 3 is present

because the beam from the injector is shared among the three experimental halls.
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For every Hall-B beam bunch an RF-signal is generated and is sent to the experi-

mental hall with a prescale factor of 40. In the first step of the counter-to-counter

calibration all scintillator strips are aligned to one of the RF-signals coming to the

experimental hall. One can calculate the difference between the event start time,

using the signal from the hit scintillator counter, and the RF time as:

∆τ = Tsc − Tflight − Trf , (3.6)

where Tsc is the time in nanoseconds measured by the scintillator, Tflight is the flight

time of the particle from the vertex to the scintillator, Trf is the time when RF-

signals arrives to the TDC in Hall B. All these times are measured with respect to

the CLAS trigger signal. The distribution of the number of events versus ∆τ for a

single channel is shown in Fig. 3.2 a . The multiple peaks on this plot arise because

only one out of forty RF-signals is sent to Hall-B, while the observed event can be

caused by an electron from any of the forty electron bunches. The peaks must be

separated by exactly 2.0039 ns if the TOF TDCs and the TDC of the RF-signal

are calibrated correctly. In fact, this plot is a sensitive test with respect to the

TDC calibrations [55], since in case of miscalibrated TDCs one can see a pattern

similar to one shown in Fig. 3.2 b . Extra corrections may be needed to the c1 TDC

calibration parameter, defined in Eq. (3.1), if this kind of pattern appears in the

plot in Fig. 3.2.

For each scintillator counter the time offset, defined as [55]:

R = mod

(

Tsc − Tflight − Trf + 100 · ∆T

∆T

)

− ∆T

2
, (3.7)

determines how much the time measured by the scintillator counter Tsc should be

delayed to be aligned with the RF-signal. In Eq. (3.7) ∆T is the RF time interval

defined in Eq. (3.5). The distribution of events versus R for a single time-of-flight

channel is shown in Fig. 3.2 c. The position of the peak defines the time offset
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Figure 3.3: Two dimensional plot showing dependence of R versus Trf for a) uncalibrated
RF-signal, b) calibrated RF-signal.

to be subtracted from the Tsc, when calculating the mass of the particle using the

time-of-flight information. The width of the distribution depends on the timing

characteristics of the scintillator, the quality of the calibration for that particular

channel, and the TDC calibration of the RF-signal. If the RF-signal TDC is mis-

calibrated, then the dependence of R on Trf will have a slope. In addition, the

hardware in Hall B causes additional distortion of that plot, as shown in Fig. 3.3

a. A procedure, described in [56], was developed to address the calibration of the

RF-signal. After a proper calibration the R versus Trf distribution must look like a

horizontal band, as illustrated in Fig. 3.3 b. Then one can vary the slope parameter

of the scintillator TDC calibration to find the value which produces the most narrow

width for the R-distribution, shown in Fig. 3.2.

Once the RF and the time-of-flight TDCs are calibrated to produce satisfactory

plots, shown in Figs. 3.2 a, c and Fig. 3.3 b, one can start fitting the R-distributions

for every counter with a Gaussian to determine the peak positions. The obtained

values are called “fine tuning constants”. Since the electrons are predominantly

produced in the forward direction, pions must be used to determine the fine tuning
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constants for the backward strips. The disadvantage of using pions is that, unlike

for electrons, their speed can be significantly slower than the speed of light, and

therefore one has to use the pion momentum from tracking to determine their veloc-

ity. The use of protons is even less desirable, because they have significant energy

losses on their way to the scintillators. Because of the reasons mentioned above,

the fine tuning of the forward scintillators from #1 to #20 is done using electrons,

while the remaining channels are calibrated using pions, identified by analyzing the

energy deposition dependence on the track momentum, shown in Fig. 3.1.

Most of the channels give R-distributions consistent with a Gaussian, while the

channels from #40 and up may produce double peaks, caused by the fact that two

actual scintillator strips are connected to a single electronic channel [54]. For the

low energies, the timing resolution of σt ≈ 2 ns is enough to reliably separate pions

and protons at such large angles, because these tracks typically have momentum

less than 1 GeV.

3.2.2 Crude Tuning

After the fine tuning has been done, all scintillator counters are aligned with

the RF-signals. But there still can be an offset between different paddles, because

their timing might be aligned with RF-signals corresponding to different electron

bunches. Therefore, any time offset between any two channels must be a multiple

of 2.0039 ns. A procedure was developed [55] to resolve this ambiguity in selection

of the reference timing signal using the events containing an electron and at least

one pion. The following subsections describe the three stages of the procedure, also

known as “crude tuning”.
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Alignment of the Forward Channels in Each Sector.

In the first step of crude tuning, the time delays for the first ten channels in

each sector are equalized. Events containing an electron with a signal in the first

ten channels of a sector, and a pion, hitting a reference scintillator counter in one of

the other sectors, are selected. The reference channel usually used is counter #28

in the sector next to the opposite to the sector, containing the electron. The reason

why the opposite sector itself is not chosen, is that there are many hits coming

from the elastic protons, which create a significant background for the pion events.

The reference channel can be changed in cases when channel #28 in one of the

sectors is malfunctioning. The difference between the vertex times calculated from

the electron and the pion, defined as:

δtvtx ≡ (T e
sc − T e

flight − T e
ft − Re) − (T π

sc − T π
flight − T π

ft − Rπ), (3.8)

is a multiple of 2.0039 ns, and therefore, a few events for a pair of channels are enough

to determine the number of bunches separating the two channels. In Eq. (3.8) the

T e
sc, T π

sc and T e
flight, T π

flight are the TDC times and the flight times for the electron

and the pion, respectively. T e
ft and T π

ft are the fine tuning offsets for the counters hit

by the electron and the pion, respectively. Re and Rπ are the moduli for the electron

and pion channels, defined in Eq. (3.7). Sample distributions of the number of events

versus δtvtx are shown in Fig. 3.4. Only bins with δtvtx values multiple of 2.0039 ns

are occupied. The tallest occupied bin determines the required time offset. For

instance, the counter represented in Fig. 3.4 a needs an extra 2.0039 ns offset, while

the counter in Fig. 3.4 b does not need any additional timing adjustment. From the

definition in Eq. (3.8) it follows that the δtvtx delay should also be subtracted from

the time measured by the scintillator containing the signal from the electron.
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Figure 3.4: Distribution of number of events versus δtvtx, defined in Eq. (3.8), for two
different counters. a) the maximum number of events is detected with δtvtx = 2.0039 ns;
b) the maximum number of events is detected with δtvtx = 0 ns.

Alignment of All Sectors.

Once the timing for the first ten channels of all sectors are aligned, one has to

find the relative delays between different sectors, which again can only be multiple

of 2.0039 ns. To find these timing offsets, we use events with an electron in one of

the ten forward scintillator counters of the sector being calibrated, while the pion is

required to be detected in the first ten counters of Sector 1. Thus Sector 1 is used

as a reference. The difference between vertex times calculated with the electron and

with the pion, defined as:

δtvtx ≡ (T e
sc − T e

flight − T e
ft − T e

f10 − Re) −

(T π
sc − T π

flight − T π
ft − T π

f10 − Rπ), (3.9)

indicates the number of bunches which separates Sector 1 from the other five sectors.

By definition, this number is zero for Sector 1. In Eq. (3.9) T e
f10 and T π

f10 are the

constants obtained in the previous subsection. As before, the δtvtx delay for different

sectors should be subtracted from the measured time.



50

Alignment of the Backward Scintillators.

The final step in the paddle-to-paddle calibration procedure is the alignment

of the time delays for the channels from #11 to #48. For these purposes events

containing an electron and at least one pion are used. The electron is required to be

detected in any counter from #1 to #10 in any sector, while the pion should have

a signal in the scintillator being calibrated. The vertex time difference

δtvtx ≡ (T e
sc − T e

flight − T e
ft − T e

f10 − T e
sec − Re) −

(T π
sc − T π

flight − T π
ft − T π

f10 − T π
sec − Rπ) (3.10)

defines the time delay for the scintillator hit by the pion. Here, T e
sec and T π

sec are the

time delays for sectors, determined in the previous subsection. This step concludes

the crude tuning procedure. The fine tuning and crude tuning constants for each

counter are added into a single time offset to be subtracted from the measured time.

3.3 Alignment of the TOF System to the RF-signal.

In order to determine the hadron mass using its flight time, one has to know

the start time of the event. For the electron runs the natural choice would be using

the electron timing to determine the start time of the event at the vertex. Then the

flight time of the hadron and the corresponding resolution are given by:

Tflight = T π
sc −

(

T e
sc −

Le
track

vel

)

, (3.11)

δTflight =

√

δT π
sc

2 + δT e
sc

2 +

(

δLe
track

vel

)2

, (3.12)

where Le
track is the length of the electron track from the vertex to the scintilla-

tors, vel is the speed of the electron, approximately equal to the speed of light. In

Eq. (3.12) the uncertainty of the electron speed determination is neglected. The

electron timing resolution δT e
sc makes a significant contribution into the uncertainty
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of the determination of the flight time. One of the ways of eliminating the contri-

bution from the electron timing errors and improving the resolution of the hadron

flight time is to use the RF-signal to determine the event start time. In fact, after

the paddle-to-paddle calibration procedure is complete, the timing of all scintillator

counters are adjusted to the same RF bunch. Therefore, the RF-corrected flight

time, defined as:

Tflight = T π
sc −

(

T e
sc −

Le
track

vel

− Re

)

, (3.13)

δTflight =

√

δT π
sc

2 +

(

δLe
track

vel

)2

, (3.14)

can be used to calculate the velocity of hadrons. Equation (3.14) is valid as long as

all time-of-flight counters are adjusted with respect to the RF-signal. But because

the tuning of the beam can change the path length of the electrons from the injector

to the target, and because the signal propagation speed in the cables can vary with

time, this alignment should be done for each run. In addition, one may need to use

an additional correction for the z-position of the vertex for runs with an extended

target (Ltgt ≥ 10 cm) [56].

3.4 Results of the Calibration

The purpose of the procedures described above is to allow the CLAS off-line

analysis software to reliably distinguish between different types of hadrons and to

use the missing mass technique to select different multi-particle final states. The

timing resolution, determined by the time-of-flight calibrations, directly affects the

level of non-physical background for different final states with two or more detected

particles. The quality of the PID calibration procedures can be monitored using

different histograms. The dependence of β of the charged particle on its momentum,

for all scintillator counters combined, is shown in Fig. 3.5. The data sample for this

plot includes a loose kaon cut, which leads to enhancement of the kaon band relative
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Figure 3.5: Velocity of positive hadrons versus momentum. The kaon band was artificially
enhanced by preselecting events in the data sample with a loose kaon cut.

to the other particle types. The pion and proton bands are reliably separable up to

a momentum of 2.5 GeV.

Knowing the velocity and the momentum of the hadron one can calculate its

mass. The mass spectrum from an empty target run at 4 GeV electron beam

energy is shown in Fig. 3.6. During this run the electrons scattered mostly from

the aluminum walls of the target cell. In addition to the proton, pion and the small

kaon peaks, one can see enhancements due to deuterons and tritons as well. The

dependence of the hadron mass squared, determined using the scintillator counters

and tracking, versus TOF strip number for all six sectors is shown in Fig. 3.7. The

two clearly identifiable horizontal bands correspond to protons and pions. Using this

plot one can determine if a particular channel is malfunctioning or is not properly

calibrated.

At very low momentum the resolution of the TOF system is adequate for sep-

aration of positrons, pions and muons from pion decays, as illustrated in Fig. 3.8.

The selected charged particles are required to have momentum P < 0.25 GeV and
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Figure 3.6: Mass spectrum of hadrons from an empty target run at Eb = 4 GeV. Clearly
visible are the peaks corresponding to pions, kaons, proton, deuterons and tritons.
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Figure 3.7: Mass squared of hadrons versus TOF channel number for all six sectors of
CLAS at electron beam energy Eb = 1.515 GeV and torus current It = 1500 Amps.
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Figure 3.8: Mass squared for backward flying particles with momentum P < 0.25 GeV: a)
without any sector cut; b) electron and the other particle are required to be in the same
sector.

have a signal in the scintillator counters above #20. In Fig. 3.8 b only events with

the electron and the other charged particle in the same sector are selected in order

to enhance the positron peak. The feasibility for separation of these three types of

particles is strongly momentum dependent, because at higher momentum the mass

resolution deteriorates and these peaks merge. For this reason the default CLAS

particle identification procedure always presumes all these particle to be pions.

The particle identification in the CLAS off-line software is done in the Sim-

ple Event Builder (SEB) package [59]. This package is responsible for the default

electron identification, determination of the start time for the time-based-tracking,

matching hits in different detector components into a single particle, and the particle

identification. The start time for the particle identification and time-based-tracking1

for electron runs is found using the formula:

tstart ≡ T e
sc − T e

flight − Re, (3.15)

where T e
sc is the fully corrected time from the counter hit by the electron, T e

flight is the

1The T e
flight used to calculate the start time for time-based-tracking is based on the path length

from hit-based-tracking, while T e
flight for particle identification is based on path length from time-

based-tracking, whenever available.
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time of flight of the electron from the vertex to the scintillator plane, and Re is the

modulus defined in Eq. (3.7). In order to identify the type of the particle, the SEB

package calculates the velocity βmeas of the detected particle and compares it with

the expected βcand corresponding to the measured momentum for different possible

types of particles. The type of the particle is chosen based on the minimum difference

between the measured βmeas and expected βcand. The full set of the possible particle

types in the SEB package consists of electrons, pions, kaons, protons, deuterons,

3H, neutrons and photons. The last two neutrals are identified using the timing

information from the electromagnetic calorimeter. Depending on the run conditions

and the experimental goals the set of the candidate particles can be reduced in order

to avoid losses of events due to possible particle misidentifications.



CHAPTER 4

Analysis

This thesis is based on the experimental data taken during the 1999 e1c run

period with the electron beam energy of Eb = 1.515 GeV. The main analysis is

performed on ≈ 450 million triggers taken at the It = 1500 Amps torus current

setting, while the data taken with It = 2250 Amps was used to check the consistency

of the results. The e1c run group consists of fifteen different experiments, therefore

the running conditions were chosen to satisfy the requirements of all experiments,

with higher priority given to the experiments with higher scientific ratings from the

Program Advisory Committee. The calibration and data reduction procedures were

done jointly by the entire e1c run group, while the physics analyses were performed

separately by the individual groups associated with each experiment. The analysis

of the data to obtain the single π+ electroproduction cross sections is described in

this chapter.

4.1 Data Reduction and Processing

The raw data from the CLAS detector were recorded on the tapes of the JLab

tape silo in BOS format files [60]. After the calibration of all subsystems was finished,

these files were retrieved from the silo and processed using the off-line analysis

procedure described in [61]. For each raw data file a single job was launched on the

JLab Linux batch farm. In each job a raw data file was analyzed and an output

(“cooked”) BOS file was produced. Then a sequence of filtering programs, selecting

a significantly reduced data sample, were run on the output files to produce filtered

BOS files, which contained the same BOS banks [60] but for far fewer number of

56
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events. The filtering procedure is effective for reactions with relatively small cross

sections, such as processes involving kaon production. In addition, HBOOK files,

containing standard ntuples, were produced from the cooked files. The ntuple files

are relatively smaller in size than the cooked files and contain information from

only the essential BOS banks. This makes them more convenient for a fast analysis,

involving a smaller subset of total events.

The analysis, described in this paper, was done using general cooked files with-

out any prefiltering. A code was developed to scan through the events in a file,

selecting single π+ event candidates, elastic event candidates and events which con-

tain at least one deuteron. These events were written as ntuples into files in ROOT

format, one file per cooked file. In addition to the ntuples for the actual events, the

ROOT files had an ntuple containing information about live-time, elastic and single

π+ rates, as well as the charge corresponding to the events in the file. The output

ROOT files were about a hundred times smaller than the original “cooked” files.

This allowed us to keep all the files corresponding to the 1.515 GeV electron beam

energy on the hard disks at JLab.

A separate program was developed to use the ROOT ntuples to calculate the

cross sections. First, the events accumulated during times of unstable target density

were identified and flagged as “bad”. Then, the program scanned through the

remaining “good” single π+ events to produce the differential cross sections, which

were then written into an ASCII file on the hard disk. Finally, different types of

corrections, described below, were applied to obtain the final cross sections.

4.2 Electron Identification

One of the key issues in the electron scattering experiments is the ability of

the detector to reliably identify electrons. One should be able to recognize as many

scattered electrons as possible without significantly contaminating the data sample.
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Matching Tolerance

TRK ⊗ EC 30 cm
TRK ⊗ CC 5o

EC ⊗ CC 5o

Table 4.1: Cuts for the geometrical matching in the SEB package.
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Figure 4.1: Visible energy deposited in the calorimeter versus momentum of the electrons
for different electron scattering angles for Sector 4. Energy deposition was calculated
by treating the whole sector as one module. The red lines show the cuts which must be
satisfied by at least one of the methods of calculating the total energy in EC. Events outside
the cuts satisfy the conditions with the total EC energy defined as ECtot ≡ ECin +ECout.

CLAS electron identification at the trigger level is done by requiring a minimum

amount of energy in the electromagnetic calorimeter (EC) in coincidence with a

signal in the Čerenkov counter (CC). In the off-line analysis some additional re-

quirements were used to select events with a good electron. First of all, one requires

that the EC and CC hits are geometrically matched with a track reconstructed in

the drift chambers (DC). The values of the geometrical cuts in the SEB software

package are shown in Table 4.1.

Secondly, one has to ensure that the matched hits are caused by an electron

and are not due to accidental background. In order to achieve this, a sampling



59

fraction cut was used in the EC. The total energy deposited in the calorimeter

can be calculated in two ways. Either one treats the inner and outer layers of one

sector of the EC as a single module and calculates the total energy, or one adds

the deposited energies in the inner and outer layers to obtain the total energy. The

two ways give very close numbers for most events, and the differences occur due to

close multiple hits in the calorimeter [59]. In this analysis the electron candidates

satisfying the cuts using at least one of the two definitions of the EC total energy

were considered as electrons. In Fig. 4.1 the cuts and the total deposited energy

calculated by the first method for identified electrons versus their momentum are

shown. As one can see, there are some events that are outside the cuts; for these

events the conditions using the second method were satisfied. To eliminate the

minimum ionizing particles, we also required a 40 MeV threshold on the visible

energy in the inner part of the calorimeter. The loss of events due to the EC

cuts are expected to be reproduced in the GSIM simulation [63] as a part of the

acceptance corrections. The electron identification logic used in the off-line analysis

can be summarized by:

EID = TBT ⊗ CC ⊗ EC ⊗ ECin ⊗ [SF1 ⊕ SF2] , (4.1)

where TBT is the time-based tracking, CC and EC are the Čerenkov counter and

the calorimeter geometrically matched hits, ECin is the cut on the energy in the inner

part of the calorimeter, SF1 and SF2 are the two sampling fraction cuts described

above.

Unfortunately, the simulation of the response of the Čerenkov counter is an

extremely difficult task and is not implemented in GSIM. To overcome this, only

events within fiducial regions, where the CC efficiency is above 92%, were used in the

analysis. The remaining inefficiency was taken into account with a function which

calculates the efficiency of the Čerenkov counters versus position of the electron on
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Figure 4.2: Deviation of the missing mass peak position from the neutron mass (red full
circles) and missing mass resolution (blue empty circles) versus W with (b) and without
(a) momentum corrections for electrons at Q2 = 0.3 GeV2, θ = 82.5◦ and φ = 105◦.

the inner plane of the calorimeter [62]. The shape and the parameters of this func-

tion were calibrated by counting the average number of photoelectrons at different

positions and angles on the EC plane over a long period of time. The connection

between the number of photoelectrons and the efficiency was done using runs with

only the electromagnetic calorimeter in the CLAS trigger [62].

4.3 Momentum Corrections

The trigger during the e1c running period only required coincident hits in the

electromagnetic calorimeter and the Čerenkov counter, which means that any event

containing an electron above thresholds is recorded. One of the advantages of this

is that the elastic scattering events were recorded simultaneously with the other

reactions. For the elastic kinematics the fixed value of missing mass W = 0.938 GeV

allows us to calibrate the momentum of the electron versus φe and θe , so that the W -

peak for elastic events is always positioned at the proton mass. These corrections are

necessary because the missing mass peaks in the elastic and single π+ production

processes are reconstructed a few MeV below the proton and neutron mass (see
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Fig. 4.2 a). These deviations are believed to be due to drift chamber misalignments

and magnetic field uncertainties. A procedure was developed to do this calibration

both for real and GSIM data, which works in the following way. In each sector

of CLAS the solid angle was divided into 60 bins for θe ∈ [15◦, 55◦] and 90 bins

for φe ∈ [−30◦, +30◦] . For every such bin the W -distribution was fitted with a

Gaussian and the relative shift in momentum needed to align the W -peak with the

proton mass was calculated as:

δp

p
= −

W 2 − M2
p

2MpEb

, (4.2)

where p is the momentum of the scattered electron, δp is the required shift in the

electron momentum, W is the measured elastic peak position from the fit, Mp is the

proton mass and Eb is the incident beam energy. Then, this correction was applied

to the electron momentum for inelastic events.

Note, that this method relies on a correct measurement of θe and only corrects

the momentum versus θe and φe of the electrons. Also it assumes that δp
p

is inde-

pendent of W . The deviation of the missing mass peak position from the neutron

mass versus W for events containing an electron and a π+, for uncorrected (a) and

corrected (b) electrons, is shown with full red circles in Fig. 4.2. The blue empty

circles are the widths of the missing mass distributions. One can see a significant

improvement in the alignment of the missing mass peaks with the neutron mass,

after the momentum corrections are applied.

4.4 Identification of π+

Using the information from tracking and the time-of-flight system, one can

determine the mass of a charged particle. For a charged particle in a magnetic field
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Figure 4.3: Mass spectrum for positive hadrons on linear (left) and logarithmic (right)
scales. The left peak corresponds to pions2and the right peak corresponds to protons. A
small peak at Mh ≈ 0.5 GeV visible on the logarithmic scale is due to kaons.

one has:

p =
mβ

√

1 − β2
(4.3)

β =
Lflight

tflight
, (4.4)

and therefore

m = p

√

(

tflight

Lflight

)2

− 1, (4.5)

where m is the mass of the charged particle, β is its velocity, tflight is the time of

flight from the interaction vertex to the scintillator plane and Lflight is the path

along the track from the vertex to the TOF counters. The mass spectrum of the

positive particles from CLAS is plotted in Fig 4.3. Peaks corresponding to positive

pions and protons are clearly separated.

In the off-line software the charged particle identification is done by the SEB

package. It measures the distance from the point (p, β) for a given event to the

2The left peak also contains positrons and muons from pion decays, as shown in Fig. 3.8.
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curves representing pions, kaons, protons, deuterons, and tritons. It then assigns

the track the Particle Data Group (PDG) [83] number of the closest particle type.

At 1.515 GeV beam energies the probability of producing a kaon is very low (see

Fig. 4.3), and all the tracks that SEB identified as kaons were presumed to be pions

for this analysis. In addition to the particle identification done by SEB a few more

condition were imposed on the π+ candidates. They should have passed the time-

based-tracking in the DC, should have a hit in the scintillator counters, and the

mass squared determined by the TOF should be less than M2
h < 0.85 GeV2.

One of the problems in the charged particle identification is the rejection of

positrons. Although pions and positrons with P < 250 MeV can be separated, their

bands merge together at higher momenta P > 400 MeV [59]. For this reason all

positrons were considered as pions, which, in principle, increases the background.

But the missing mass and vertex cuts reduce it to a few percent level (see Fig. 4.20).

This positron background should be considered as a systematic uncertainty.

Some of the channels of the time-of-flight system were dead or malfunctioning,

which was manifest in the rates of pions in these counters compared with the rates

in the neighboring counters. In these cases fiducial cuts were implemented to ignore

the events with pion candidates in the bad scintillators. Another potential problem

with the time-of-flight system was that at the backward angles the last 9 channels

were actually two scintillator strips connected to a single TDC. Because the delays

for these two counters were different, the time signal from these channels had two

peaks, corresponding to the cases in which a particle hit one or the other strip of the

pair (see Fig. 4.4). However, this does not affect the proton-pion separation because

these two bands are far apart for hadrons with momentum Ph < 1 GeV.
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Figure 4.4: Illustration of two worst cases for counters with double bands showing counter
#40 in Sector 1 (right) and Sector 2 (left). The pion bands in β versus p dependence are
split in two. Nevertheless, the proton and pion bands are far apart and reliably separable.

4.5 Fiducial and Kinematic Cuts

There were two kinds of cuts in this analysis applied to both the real data

and the Monte Carlo (MC) simulations. The first kind are the geometrical fiducial

cuts, applied in order to select the regions of the detector which could be reliably

reproduced by the GSIM simulation program. For instance, the Čherenkov counter

efficiency distribution versus θe and φe at the edges of a sector has a very complicated

pattern. Because there is no reliable way to account for these losses, fiducial cuts

were developed to isolate the regions with uniform efficiency distributions. Since

the toroidal magnetic field bends electrons forward, the fiducial cuts in θe and φe

will depend on the momentum of the electron. The Čerenkov counter efficiency for

electrons is shown in Fig. 4.5 as a function of electron angles θe and φe. The different

graphs represent different bins in the electron momentum. The black curves show

the fiducial cuts for the central momentum in that bin. Only events with electrons

lying within these black curves were used in the analysis. In addition, a set of θe

versus pe cuts, shown in Fig. 4.6, were used to eliminate the areas with a depleted

number of events due to bad time-of-flight counters, CC PMTs or broken wires in
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Figure 4.5: CC efficiency versus θe and φe for nine electron momentum bins in Sector 4.
The black curves indicate the fiducial cuts for the central momentum. Only events with
electrons in between the black curves were used.

DC. Events with electrons detected in the areas between pairs of curves of the same

color were excluded from the analysis. Electrons with momentum Pe < 500 MeV

were rejected as well, in order to avoid possible inefficiencies due to non-uniformity

of the EC pre-trigger for deposited energies close to the ECtotal threshold [53].

For pions two sets of fiducial cuts, shown in Fig. 4.7, were applied. The first

one is a set of momentum-dependent curves selecting good regions of CLAS, where

the detector response can be reliably reproduced by the detector simulation pro-

gram. In addition, momentum independent cuts were applied in order to reproduce

the asymmetries seen in the φlab
π+ versus θlab

π+ distributions in the laboratory frame.

These asymmetries are apparently caused by deformations of the mini-torus coils

not accounted for in the detector simulation program. As in the case of the elec-

trons, the missing TOF channels and the bad DC regions were excluded from the

analysis using the software cuts, illustrated in Fig. 4.8. Events with pions detected
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Figure 4.6: Electron angle θe versus momentum pe distribution for the entire data set,
including elastic events. The blue dashed curves show the minimum and maximum angles
for the electron fiducial cuts. Pairs of curves of same color indicate the upper and lower
edges of the cuts for rejecting electrons in bad TOF and CC counters.

between pairs of curves of the same color were not used in the analysis.

The second kind are the kinematic cuts which are imposed on the kinematic

quantities characteristic to a given reaction. In our case, the primary cut is on the

missing mass after detecting an electron and a pion, as shown in Fig. 4.9 a. The

upper boundary of the cut must be far enough from the peak so that the knowledge

of the resolution and the radiative effects has a small effect on the cross sections.

On the other hand, the multi-pion background starts to contribute above the two

pion threshold, thus setting the upper bound of the cut. About 20% of the single

π+ events are lost due to the missing mass cut 0.884 GeV < MX < 0.994 GeV. But,

because the acceptance calculation is based on the MC event generator which has

radiative losses incorporated into it, the true number of events is accounted for by

the acceptance corrections. Another kinematic cut applied in the analysis is on the

z-coordinate of the vertex, shown in Fig. 4.9 b. Since we are looking for an electron
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Figure 4.7: Pion φlab
π versus θlab

π distributions for different momentum ranges in Sector 4.
The black curves are the momentum dependent fiducial cuts, while the red curves show
the momentum independent cuts to eliminate the asymmetry around the φlab

π = 0 axis.
Only events between both red and black curves were used in the analysis.
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Figure 4.8: Pion plab
π versus θlab

π distributions for the six sectors of CLAS. Pairs of curves
of the same color indicate the upper (dashed line) and lower (solid line) edges of cuts,
developed to reject events with pions in the vicinity of the malfunctioning TOF counters.
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Figure 4.9: Cuts in a) Missing mass; and b) Vertex position along the beam direction.
The upper and lower bounds of the cuts are represented by the arrows. In both cases the
width of the cut is more than five times the resolution of the detector.

and a π+ originating from the same vertex, a 2 cm cut was imposed on the difference

between z-coordinates of the single track vertices (i.e. −2 cm < Ze −Zπ+ < +2 cm)

to reduce the number of decaying pions. Studies using GSIM [66] show that this

reduces the number of decayed pions from 8% to 4% while reducing the number of

undecayed pions by less than 1%.

4.6 Binning

For single pion electro-production at a fixed beam energy one needs to specify

five independent kinematical variables to uniquely determine all other kinematical

quantities. But one of these quantities can be chosen to be the electron polar angle

φe in the laboratory frame. In the absence of any transverse polarization of the

target or the beam, the cross section of the pion electro-production is uniform in φe,

therefore averaging over 2π does not introduce any uncertainty, and only increases

the statistics in the bins. The binning in the remaining 4 variables is done as shown

in Table 4.2 and illustrated in Fig. 4.10.
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Variable # of bins Lower limit Upper limit Width

Q2 4 0.25 GeV2 0.65 GeV2 0.10 GeV2

W 25 1.1 GeV 1.6 GeV 20 MeV
θ 12 0◦ 180◦ 15◦

φ 12 0◦ 360◦ 30◦

Table 4.2: The number and the sizes of data bins. Values for the limits indicate the upper
and lower edges of the bins, rather than the bin centers.

The size of the bins was determined by the resolution of the spectrometer, the

sensitivity of the physics analysis procedure to the distributions, and the available

statistics. The finest binning for this reaction is required for W and θ. The fine W

binning is necessary to be able to follow the phase motion in the physics analysis

in order to precisely determine the resonance parameters. The fine θ binning is

important in the forward region, where one needs a better sensitivity to the t-channel

background behavior. Therefore, a uniform binning in θ, rather than in cos θ, is more

suitable for the π+ production channel. With the W resolution determined from the

elastic peak to be about 8 MeV−15 MeV, the bin size of 20 MeV was chosen. The

sizes of the bins in Q2, θ and φ variables are chosen such that the average statistical

error would be 5% − 6%.

4.7 Acceptance

In order to relate the experimental yields to the cross sections, one needs to

calculate the acceptance and the efficiency of the detector. Since CLAS is a very

complicated detector covering almost 4π of solid angle, it is virtually impossible to

separate efficiency calculations from geometrical acceptance calculations. For this

reason in this analysis we refer to acceptance corrections as a combined correction

factor due to the geometry of the detector and the inefficiencies of detection and

reconstruction. Our definition of acceptance is the ratio of the number of recon-
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Figure 4.10: The kinematic coverage of the data and the binning, used in the analysis.
The color indicates the number of events.

structed simulated events in a bin to the total number of simulated events for the

same bin. Since the detector has a finite resolution it is possible that an event pro-

duced in one bin is reconstructed in a different bin, and therefore one would need

a matrix to fully account for such bin migration effects. If the number of events

created in the i-th bin is Ni and the number of reconstructed events in j-th bin is

Rj , then:

Ri =
∑

j

MijNj, (4.6)

Ni =
∑

j

M−1
ij Rj , (4.7)

where Mij is a large Nbin × Nbin square matrix. But in order to be able to use

such a method one would also need a very large number of simulated events, which

is not affordable due to the slow (1.5 event/sec) speed of the detector simulation

program. In addition, the determination of the inverse of such a large square matrix

is known to be a very unstable procedure. But if the event generator produces

realistic distributions, then one does not need the full matrix and our definition of
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the acceptance as a ratio would suffice. However, the remaining model-dependence

of the final results should be estimated as systematic uncertainty (see Sect. 4.11.1).

It is important to note that in our method of calculating acceptance the loss of events

due to the radiative tail, extending beyond the missing mass cut, is considered as

an acceptance correction. Additional radiative correction are applied to the cross

sections afterwards.

The acceptance corrections were applied on an event-by-event basis. Each event

was weighed by a factor determined from an acceptance look-up table. This factor is

defined as the ratio of number of events reconstructed in a given bin to the number

of generated events:

A =
Nrec

Nsim

. (4.8)

The look-up table contains 8×30×24×48 bins in Q2, W , θ and φ, respectively, and

has smaller bins than the data table. In each data bin the cross section is calculated

as:

σ =
∑

events

C

Aevt
=
∑

bin

C · Nbin

Abin
, (4.9)

where C is a constant for all events, Aevt is the acceptance factor for an event

determined from the acceptance table. The second sum is over all acceptance bins

which are contained in or overlap with that data bin. Abin and Nbin are the values

of the acceptance in the particular bin of the acceptance table and the number of

detected events in that bin. Both the number of events in each bin and the value of

the acceptance have statistical errors; therefore the relative statistical error for the

cross section in each data bin can be written as:

(

δσ

σ

)2

=

∑

events
1

A2
evt

+
∑

bins
N2

binδA2
bin

A4
bin

(
∑

events
1

Aevt
)2

, (4.10)

where δAbin is the statistical error for the value of the acceptance. In the trivial
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Figure 4.11: a) Missing mass distribution from the data; b) Missing mass distribution from
the MC; c) Hadron mass from TOF for the data; d) Hadron mass from TOF for the MC.
One can see that the GSIM data very well resembles the actual data, with the exception
of the small positron peak in the hadron mass from the real data. The positrons are due
to π0 → γe+e−, a process not included in the simulation.

limit of a single acceptance bin within a data bin Eq. 4.10 simply yields:

(

δσ

σ

)2

=
1

N
+

δA2

A2
, (4.11)

where N is the number of events in the data bin, A and δA are the acceptance

and the acceptance error for that bin. In this analysis the statistical error for the

acceptance δAbin is determined using the formula for the binomial distribution:

δAbin =

√

Abin(1 − Abin)

Ngen − 1
, (4.12)

where Ngen is the number of the Monte-Carlo (MC) events generated in the bin.

In order to calculate the acceptance, approximately 200 million ep → eπ+n

events were generated using a MC program, based on the MAID isobar model [71]

and incorporating the radiative effects [69]. The output file, containing “PART”

banks from the event generator, were fed to GSIM [63] - a program which simulates

the response of the CLAS detector. The Čerenkov counter response from GSIM was
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not used, since it has not yet been adequately modeled in the detector simulation

program. Instead, a function for the Čerenkov counter efficiency, depending on the

trajectory of the track, was used to correct for the CC inefficiency. The GSIM ge-

ometry was set using the straight track analysis [65] for the drift chambers and the

survey geometry for the TOF system [64]. In order to eliminate signals from known

dead channels, the GSIM Post Processor (GPP) program was used to remove signals

from dead wires in the drift chambers and bad tubes in the scintillator counters.

It also allows the user to smear the distance-of-closest-approach distribution in the

DC and the TOF signals to match the missing mass distributions and hadron spec-

trum in the real data (see Fig. 4.11). Then the GSIM files were processed with the

RECSIS program to reconstruct the simulated events. The executable of the recon-

struction program was build with the same libraries which were used for processing

the actual data from the e1c running period. In the final stage the output files were

analyzed to produce the acceptance tables. The same cuts used on the experimen-

tal data were also applied to the simulated data to determine the acceptance. The

Fig. 4.12 illustrates the analysis scheme.

Two sample graphs, representing the CLAS acceptance for the ep → eπ+n

reaction, are shown in Fig. 4.13. Six cryostats of the CLAS detector can be clearly

seen in dark blue colors. The holes due to the beam line and bad scintillator counters

can be seen as well. If the virtual photon was produced in the beam direction3, these

six bands would be parallel to each other. The detector provides a wide coverage

in solid angle, but the beam line and the torus cryostats create areas with low

acceptance. In some cases the acceptance is actually zero, which means that we

cannot reconstruct events which fall into these kinematical regions. If the area with

zero acceptance covers more than 15 percent of the data bin size, that bin is dropped.

Most of the losses occur in the backward direction where acceptance is low due to

3This would correspond to scattering angle θe = 180◦.
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Figure 4.12: The analysis scheme. Radiative corrections are obtained using two Monte-
Carlo (MC) generators with and without radiative corrections. The acceptance corrections
are done using the MC generator with radiative effects. The events are processed with
GSIM and the reconstruction code and then used to calculate the acceptance table.
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Figure 4.13: CLAS acceptance for π+ versus CM angles θ and φ for Q2 = 0.4 GeV2 at
W = 1.232 GeV (left) and W = 1.44 GeV (right) bins. Each plot represents a single bin
in Q2 and W . Colors show the acceptance value.
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no coverage by the drift chambers beyond 140◦. The white areas in the forward

direction at φ = 0◦ and φ = 360◦ are due to the beam pipe.

4.8 Empty Target Cell Contributions

In order to achieve high luminosities ≈ 1033 cm−2sec−1 during the experiment,

a cryogenic liquid hydrogen target was used, because it has a higher density than

hydrogen gas. The aluminum walls of the target cell can create background which

has to be subtracted from the measured rates. In addition, the downstream wall of

the target cell can also accumulate ice, which makes the background rate dependent

on time. Therefore, it is necessary to be able to keep track of the thickness of

the nuclear material around the liquid hydrogen. One way to do this is to look

at deuteron events, which can only be produced on a nuclear target. The ratio of

the deuteron rate in runs with a full target cell and an empty target cell allowed

us to estimate how much the target cell contributed to the total counts during a

particular run period.

Let us assume that the rate of pions and deuterons in the runs with the full

target cell are:

Fπ+ = Hπ+ + Cπ+ (4.13)

Fd = Cd, (4.14)

where Hπ+ is the pion rate from hydrogen, Cπ+ is the pion rate coming from the

target walls, and the Cd is the deuteron rate from the cell walls. Defining quantities

αfull ≡
Fd

Fπ+

, αempty ≡ Ed

Eπ+

, (4.15)

where Ed and Eπ+ are deuteron and pion rates from the runs with empty target,

and assuming

Ed

Eπ+

≈ Cd

Cπ+

, (4.16)
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Figure 4.14: Distribution of the number of events versus z-coordinate of the electron vertex
from full and empty target runs for single π+ and deuteron events. a) - π+ events from
full target, b) - deuterons events from full target, c) - π+ events from empty target cell,
d) - deuterons events from empty target cell.

yields:

Hπ+ ≈ Fπ+(1 − αfull

αempty
). (4.17)

The assumption in Eq. 4.16 states that almost all events in the empty target

run come from the target cell walls, shown to be true for the deuteron events in

Fig. 4.14 d. But about 35% of the single π+ events in the empty target runs (see

Fig. 4.14 c), comes from the remaining hydrogen gas and needs to be subtracted

from Eπ+ for Eq. 4.16 to hold. The ratio
αfull

αempty
determines the amount by which the

measured single π+ rate Fπ+ should be decreased to obtain the π+ rate only coming

from the liquid hydrogen.

Figure 4.14 displays the distributions of the events from full and empty target

runs. Almost all of the deuteron events, even from the full target runs, come from

the entrance and exit windows of the target cell. In the analysis a 2σ cut around

the center of the peaks in the electron z-vertex distributions was used for counting

the deuteron rate. The background under these peaks, which contains events with
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protons misidentified as deuterons, was subtracted using the rate in the center of

the target. The amount of empty target cell corrections for single π+ production

was found to be 1.5% ± 0.5%.

4.9 Radiative Corrections

In the electroproduction processes there is a finite probability that in the pres-

ence of the electromagnetic field of the atoms of the target the electron will emit

one or more photons before or after interacting with the nucleus of the target, in

this case a proton. This process is called external radiation. The probability of

emitting a real photon of a particular energy is proportional to the path length of

the electron in the target material and the radiative correction to the cross sections

is of the form [68]:

dσ

dΩedΩπdE′

∣

∣

∣

∣

Meas

/

dσ

dΩedΩπdE′

∣

∣

∣

∣

Born

=

exp (−{[bwtiw +
1

2
bT ] ln

(

E1

∆E

)

+ [bwtfw +
1

2
bT ] ln

(

E3

∆E

)

}), (4.18)

where T , tiw, tfw are the thickness of the target, and the initial and the final windows,

respectively, in units of radiation lengths. The coefficients b and bw are numbers very

close to 4/3. In this experiment the target windows contained much less material

than the hydrogen inside the target, and their contributions to the radiative effects

are negligible. In Eq. 4.18 dσ
dΩedΩπdE′

∣

∣

∣

Born
is the unradiated Born cross section.

In addition, there are radiative processes represented by Feynman diagrams

similar to the original single photon exchange diagrams, but with an additional

photon leg, that also contribute to the cross sections (internal radiation). In fact,

it can be shown that the probability corresponding to the process of the original

diagram without emitting a real photon is zero, because it is equal to the probability

of emitting a photon with energy exactly Eγ = 0.



78

The radiative cross section for an exclusive process can be written as [67] :

dσr =
(4πα)3dQ2dW 2dΩh

2(4π)7S2W 2

∫

dΩkdv
v
√

λW

f 2
WQ4

L(r)
µν Wµν , (4.19)

where S ≡ 2EiMp, dΩh is the differential solid angle of the π+, v ≡ M2
X − M2

n, L
(r)
µν

and Wµν are the leptonic and the hadronic tensors, and

λW ≡ (W 2 − m2
π+ − M2

miss)
2 − 4m2

π+W 2 (4.20)

fW ≡ W − Eπ + pπ(cos θπ cos θk

+ sin θπ sin θk cos (φπ − φk)). (4.21)

Here, θπ, φπ, θk and φk are the pion and radiated photon’s angles in the hadronic

center of mass reference frame. The full integration in Eq. 4.19, which involves

all four structure functions, has only been done recently, and has not been tested

extensively.

In the present analysis a hybrid approach is adopted [69]. It incorporates the

inclusive electroproduction radiative correction formalism, involving only two struc-

ture functions, and an ansatz used to model the radiative effects due to σTL and

σTT terms in the exclusive electroproduction cross section formula. This involves a

replacement of the integrand in Eq. 4.19 by:

L(r)
µν Wµν −→ L̃(r)

µν Wµν

×
(

1 +

√

ǫ(1 + ǫ)/2 cosφσTL + ǫ cos 2φσTT

σT + ǫσL

)

, (4.22)

where L̃
(r)
µν is the leptonic tensor for inclusive scattering obtained using the Mo and

Tsai formalism [68].

The cross sections are corrected using a multiplicative factor for each bin. This

factor is defined as:

αRC ≡ σnorad

σrad
, (4.23)
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where σnorad and σrad are non-radiated and radiated cross sections, calculated using

two programs AAO NORAD and AAO RAD, which are based on the MAID isobar

model. The first one, AAO NORAD, calculates the Born cross sections and sim-

ulates events distributed according to unradiated cross sections. The AAO RAD

program is similar to AAO NORAD, but it also incorporates the radiative effects

both due to the external radiation (or straggling) and the internal radiation coming

from the Feynman diagrams with one extra photon line. Both programs create an

output event file in BOS format and a summary file, containing the value of the

integrated luminosity which would produce the number of generated events. Using

these events and the integrated luminosity, one can calculate the cross sections and

obtain the radiative correction as the ratio defined in Eq. 4.23. No missing mass

cuts are applied in the radiative correction procedure, because they are already

accounted for by the acceptance corrections.

Since the new code for calculating exclusive radiative corrections is expected

to be tested and be better understood in the near future, the uncorrected cross

sections will be made available for a future analysis involving a full integration over

the photon kinematics.

4.10 Target Stability and Normalization

During the 1.5 GeV portion of the e1c running period the cryogenic target was

not very stable. Periodically part of the liquid hydrogen would evaporate, leaving

the liquid hydrogen level below the beam position on the target, thus decreasing the

effective density of the target for the run. The automatic control system recovered

the liquid phase of the target within a few seconds. But these variations of the

target density with time can cause errors in the luminosity determination. For this

reason, the events collected during the short time intervals, when the target density

was lower than normal, were dropped from the analysis.
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Figure 4.15: Live-time (top), the π+ rate (middle) and the elastic rate (bottom), calculated
using live-time corrected charge, versus scaler event number. The blue and red horizontal
lines represent the cuts used to reject the events with unstable target densities.

There are a number of ways to diagnose the problems associated with the

varying target density. One of the signatures of the target getting empty is the

increase of the live-time of the data acquisition system (DAQ) above the working

range of 90%−95%. Another is the dramatic decrease of the event rates normalized

to the live-time corrected charge, measured in the Faraday cup. The live-time, single

π+ and the elastic scattering rates versus scaler event number are shown in Fig. 4.15.

For some of the intervals between two scaler events the live-time or the event rates

are outside of the imposed limits, shown by the red and blue lines. In most cases one

can see correlations between such anomalies in these three plots. The events which

occurred within these time intervals were ignored and the charge, corresponding to

these “bad” time intervals, was subtracted from the integrated charge of the run.

To ensure that the normalization procedure was done correctly, the elastic cross

section was calculated and was compared with the elastic cross sections calculated
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Figure 4.16: Ratio of the elastic cross section, averaged over five sectors, to the Bosted
parameterization [70], plotted versus θe angle of the electron. The lower blue line corre-
sponds to unity, the upper green line indicates a 3% deviation from the parameterization,
and the black line is a fit of the experimental elastic cross sections to a straight line.

using the form factor parameterizations of the world data by Bosted [70]. The model

cross sections were radiated using the formalism of Mo and Tsai [68]. A comparison

on a sector-by-sector basis showed that the elastic cross section in Sector 2 is by

≈ 5% lower than in the other five sectors. This discrepancy has not been understood

yet, and therefore the events with the electron detected in Sector 2 were excluded

from the analyzed data sample. Fig. 4.16 shows the comparison of the elastic cross

sections averaged over the remaining five sectors with the parameterization. The

single π+ electroproduction cross sections were corrected for the 1.5% discrepancy

found from this comparison.

4.11 Systematic Error Studies

4.11.1 Acceptance Errors

Because of the finite bin size, the result of averaging the acceptance over an

acceptance bin depends on the distribution of events in that bin. If the physics model

used in the MC simulation differs from the real data, then the averaging over a bin
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Figure 4.17: Bin migration effects for linear, exponential and “Mexican hat” distributions.
The blue curves show the original distributions, and the red curves show the distorted
result due to finite resolution in x, here set σx = 1. For linear distribution there are no
distortions in the central part of the curve; only the edges are distorted. For the curves
with non-zero curvature there can be distortion even away from the edges. Note that these
analytical curves are equivalent to infinitely small acceptance bins.

may result in an incorrect cross section. The introduced error depends on the shape

of the acceptance function and the cross sections as well as on the acceptance bin size.

If the acceptance function and the cross section have very strong variation within

an acceptance bin, then it becomes important to use a realistic physics model in the

Monte-Carlo simulations to determine the acceptance. Reducing the acceptance bin

size obviously will reduce the error associated with averaging over the bin.

Since the CLAS detector has a finite resolution, some of the events produced

in one acceptance bin will be reconstructed in a different bin. It can be shown

analytically that for distributions with large curvatures the resolution of the detector

can cause significant distortions, as illustrated in Fig. 4.17. Even for distributions

with a small curvature there is a significant effect at the edges, where events can

migrate only in one direction. In order to correctly account for bin migration effects

one has to have a realistic physics generator and to use the GSIM detector simulation

package to reproduce the resolution of the CLAS detector. Unlike the effects from

averaging over an acceptance bin, this kind of systematic uncertainty cannot be

reduced by decreasing the bin size.



83

W , GeV
1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

δ 
σ sy

s 
 / 

 σ

10
-3

10
-2

10
-1

 θ=82.5, φ=105

θ , deg
0 20 40 60 80 100 120 140 160 180

δ 
σ sy

s 
 / 

 σ

10
-3

10
-2

10
-1

 W=1.23, φ=105

θ , deg
0 20 40 60 80 100 120 140 160 180

δ 
σ sy

s 
 / 

 σ

10
-3

10
-2

10
-1

 W=1.45, φ=105

φ , deg
0 50 100 150 200 250 300 350

δ 
σ sy

s 
 / 

 σ

10
-3

10
-2

10
-1

 W=1.45, θ=97.5

Figure 4.18: Relative systematic errors versus W , θ and φ. Open circles - “global” errors
due to electron and pion efficiencies; open squares - due to missing mass cuts, open triangles
- due to vertex cut; open diamonds - due to physics model in the acceptance calculations;
open crosses - due to PID cuts. Solid circles represent the combined systematic uncertainty.

In order to estimate the errors in the final results due to the model used in the

acceptance calculations, we considered two realistic isobar models: MAID2000 and

MAID98 [71]. These are two versions of the same model with different unitarization

procedures. However, the difference between them is comparable to the difference

between the CLAS data and MAID2000. Therefore, the comparison of the results

with MAID2000 acceptance corrections and MAID98 acceptance corrections allows

us to estimate the systematic errors due to the acceptance model dependence (see

open purple diamonds in Fig. 4.18).

4.11.2 Missing Mass Cut Errors

As was mentioned in the previous sections, we use a missing mass cut around

the neutron peak to select single pion production events, which causes loss of some

events. This should be accounted for by using “radiated” events in the MC simula-

tions for the acceptance calculations, assuming the radiative processes were calcu-

lated exactly. In our MC simulation the radiative effects are calculated using the
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modified Mo and Tsai formalism [69], which is correct for inclusive electroproduc-

tion. For the exclusive channels this formalism is, generally speaking, not correct.

The error associated with the missing mass cut was estimated by calculating the

difference in the cross sections with two different missing mass cut applied both on

the real data and MC data sample.

Although the standard missing mass cut used in the data is 0.884 GeV < MX <

0.994 GeV, we used two other cuts to estimate the systematic uncertainty due to

the missing mass cut. One of the cuts was more narrow than the standard cut,

0.972 GeV < MX < 0.906 GeV, while the other was wider, 0.862 GeV < MX <

1.016 GeV. The absolute value of the difference between the cross sections calculated

with these two cuts, averaged over φ at fixed Q2, W and θ, was considered as the

systematic uncertainty for all φ for that fixed Q2, W and θ. As one can see from

Fig. 4.18, the errors due to missing mass cuts, shown with open green squares, are

about 2% − 3% of the measured cross sections.

4.11.3 Two Pion Background

In order to estimate the background coming from two pion production, a MC

sample of two pion events was analyzed as if it were the actual data sample. From

the resulting missing mass plot, shown in Fig. 4.19 , one can see that there is very

little background in the region of missing mass MX < 1 GeV, and it is on the order

of 1.0% of the number of events above the pion threshold at 1.07 GeV. Because the

height of the multi-pion background in the actual data sample is always much lower

than the height of the neutron peak, we assign a conservative 1% global systematic

uncertainty to all bins.
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Figure 4.19: Missing mass distribution produced by two pion MC events on a linear (upper
graph) and logarithmic scale (lower graph). The number of events with MX < 1 GeV is
less than 10% of the population above the pion threshold.

4.11.4 π+ Identification Errors

Because all the positive tracks in this analysis are considered to be either π+’s or

protons, there may be some background from misidentified positrons. In Fig. 4.20

the mass squared of pion candidates, determined by TOF, is shown for the final

data sample with all the cuts applied. In addition, a cut on the momentum Ph <

0.25 GeV is applied to amplify the positron peak, because most of the positrons

are created with low momentum. One can see the prominent pion peak at M2
h =

0.019 GeV2, and a peak near M2
h = 0.01 GeV2 corresponding to muons from pion

decays. The positron peak is located at M2
h ≈ 0. The height of the positron peak is

about ≈ 1% of the height of the pion peak. Since for the higher momentum pions

the background from positrons is significantly less, it is safe to assign a 1% global

systematic uncertainty due to positrons for each data bin.

In order to see what effect the pion identification cuts can have on the cross

section, a cut M2
h < 0.15 GeV2 was applied to the GSIM events in the acceptance
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Figure 4.20: Mass squared of the pion candidates with P < 0.25 GeV. The selected events
also satisfy the standard missing mass, vertex and fiducial cuts.

calculation while leaving the cut fixed for the real data. The difference between

the resulting cross sections and the cross sections calculated with the nominal π+

identification was under 0.5% (see open green crosses in Fig. 4.18).

4.11.5 Errors due to Normalization, e− Identification and Electron Detection

Efficiency

One of the main sources of systematic errors in this experiment is the uncer-

tainty in the normalization. This can arise from miscalibrations of the Faraday

cup, target density instabilities, and errors in determining the target length and its

temperature, DAQ live-time and other factors. However, the presence of the elastic

events in the data set allows us to check the normalization of the cross sections by

comparing the elastic cross sections to the world data. This way we can combine

the normalization, electron detection, electron tracking and electron identification

errors into one global uncertainty factor. In Fig. 4.16 the ratio of the elastic cross

section to the Bosted parameterization [70] of the elastic cross sections is shown.
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The parameterization cross sections are also “radiated”, while the elastic cross sec-

tions from the CLAS data are not corrected for radiative effects. One can see that

there is an overall 1.5% offset, with all the points positioned within the upper and

lower lines, indicating 3% and 0% offsets, correspondingly. This procedure allows us

to assign a 3.5% global uncertainty due to the normalization, electron identification

and electron efficiency.

4.11.6 Errors due to the Vertex Cut

Charged pions are not stable particles and they can decay into a µνµ pair with

99.9% branching ratio [83]. Since the mass of muons is very close to the mass of

pions, it is practically impossible to reliably separate them using the time-of-flight

technique. In order to reduce the number of events with decayed pions, a ±2 cm

vertex cut was used (see Fig. 4.9 b). From the simulation it was determined that

this cut would reduce the number of undecayed pions by 0.5% − 1%. Although

the expectation is that a GSIM based acceptance calculation will account for most

of these losses, a systematic uncertainty due to differences in the vertex resolution

in the simulation and the real data is still possible. In order to determine these

errors the analysis was repeated with a different vertex cut of ±4 cm. The averaged

absolute value of the errors over the φ variable was considered as the systematic

error due to the vertex cut. Typically it is on the order of 1%, as illustrated by the

blue open triangles in Fig. 4.18.

4.11.7 π+ Efficiency Errors

As for the case of the electron, the pion detection efficiency, including its decay

in the detector, can be simulated by the GSIM program. Application of these

acceptance corrections, which in this analysis is a combination of the geometrical

acceptance and the detector efficiency, will recover the correct pion production cross
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Figure 4.21: Pion efficiency from GSIM (red) and data (black) versus pion angle θlab
π in

the laboratory frame for six sectors of CLAS. Pion momentum is in the 0.2 GeV < Pπ <
0.4 GeV range.

section. In order to verify that GSIM can indeed reproduce the pion efficiency,

double pion production data was used to compare the π+ efficiency from GSIM

with the π+ efficiency estimated from the actual data.

If in a process of scattering electrons off protons one detects an electron, a

proton and a π−, then from the charge conservation law one expects at least another

positive particle in the final state. Using the missing mass technique one can require

that the missing particle be a pion. The ratio of the number of events where the

expected π+ was detected to the number of events where a π+ was expected, would

yield the efficiency of π+ detection and reconstruction.

As shown in Fig. 4.21, the efficiency calculated with two different methods

mostly agree. By fitting the flat areas in Sectors 1, 2 and 4 to horizontal lines

and calculating the average difference between the constants of the fits for the two

methods, one obtains an estimate for the uncertainty due to pion efficiency modeling
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e− efficiency and normalization global 3.5%
π+ efficiency global 2.5%

π+ identification global 0.5%
missing mass cut local 2.0%

vertex cut local 1.5%
acceptance local 1.0%

two pion background local 0.5%

Total systematic error 5.2%

Table 4.3: Summary of the averaged systematic uncertainties.

in the GSIM program, which in this analysis was found to be 2.5%. This number

was used as a global systematic error.

The plots for the three other sectors have larger disagreements, because the

definitions for the pion angles are different in the two methods. For pions from the

two pion events from the actual data set one associates the missing momentum of

epπ− system with the momentum of the positive pions. But for GSIM events the

generated π+ momentum is used instead. Because the missing momentum technique

gives a very poor angular resolution, the presence of the large holes can affect the

reconstruction efficiency for a wide area in their vicinity. For this reason only the

three sectors with relatively flat efficiency dependence on the pion angle θlab
π+ were

chosen to estimate the systematic uncertainty due to π+ efficiency.

As one can see in Fig. 4.18, the largest systematic uncertainty comes from

the normalization and electron efficiency, combined with the π+ efficiency errors,

shown with red open circles. Next come uncertainties due to the vertex cut and

the acceptance model. The particle identification cut and the two pion background

introduce negligible errors. Table 4.3 summarizes the average size of each of the

systematic uncertainties. The “global” systematic errors are applied as an overall

systematic error to all data bins. The “local” systematic errors are calculated for

every data bin, then for fixed Q2, W , θ averaged over the φ variable. The values for
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the “local” errors in Table 4.3 are averaged over the whole data set.



CHAPTER 5

Results

5.1 Cross Sections

The cross section of single π+ electroproduction with unpolarized beam and

target can be written [1] as:

∂5σ

∂Ef∂Ωe∂Ω∗
π

= Γ · dσ

dΩ∗
π

,

dσ

dΩ∗
π

= σT + ǫσL + ǫσTT cos 2φ +
√

2ǫ(1 + ǫ)σTL cosφ, (5.1)

where ǫ is the virtual photon polarization parameter, Γ is the virtual photon flux,

and dσ
dΩ∗

π
is the photoabsorption cross section. Since the cross section does not depend

on the azimuthal angle φe of the electron in the laboratory frame, the data were

binned in four variables (Q2, W , θ, φ), averaging in φe over five sectors of CLAS1.

The cross section for each bin was determined using the following formula:

∂5σ

∂Ef∂Ωe∂Ω∗
π

=
1

2π

∑

events

1

ALǫcc
· 1

∆Q2∆W sin θ∆θ∆φ
· ∂(W, Q2)

∂(Ef , cos θe)
,

L =
QFCUP

e
NaρLT ,

∂(W, Q2)

∂(Ef , cos θe)
=

W

2MpEiEf

, (5.2)

where A is the acceptance correction factor for an event, L is the integrated lumi-

nosity, Na is the Avogadro number, ρ is the target density, LT is the target length,

QFCUP is the integrated charge corrected for the live-time, e is the electron charge,

ǫcc is the Čerenkov efficiency correction factor, ∆Q2, ∆W , ∆θ, ∆φ are the bin sizes,

1Events with an electron in Sector 2 were dropped because the measured elastic cross section
in Sector 2 was lower than in the other five sectors by ≈ 5%.
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Figure 5.1: Photoabsorption cross sections dσ/dΩ∗ at Q2 = 0.4 GeV2 from the CLAS
experiment, compared to MAID2000 [71] (red solid curves) and Sato-Lee model [72] (blue
dashed curves): a) φ dependence of the cross section at W = 1.23 GeV; b) W dependence
at θ = 82.5o and φ = 105o ; c) and d) θ dependence at θ = 75o and W = 1.23 GeV and
W = 1.45 GeV.

∂(W,Q2)
∂(Ef ,cos θe)

is the Jacobian between the (W, Q2) and (Ef , cos θe) sets of variables. The

values of all kinematical variables are calculated for each particular event, as opposed

to being taken at the center of the bin. The statistical error for the cross sections is

calculated using Eq. (4.10). Sample plots of the cross sections compared with MAID

[71] and with Sato-Lee [72] models are shown in Fig. 5.1. The solid curves represent

the MAID [71] model and the dashed curves are from Sato-Lee calculations [72].

The shaded area underneath shows the estimated systematic errors, while the error

bars on the experimental data points are from statistical error analysis only. One

can see that the data and the models globally are in reasonable agreement, but they

differ significantly in detail. Due to the large number of such histograms it is more

suitable to compare the structure functions from the theoretical models and this

experiment, rather than the cross section histograms themselves.
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Figure 5.2: χ2
r distributions for fits of the φ dependences at Q2 = 0.3, 0.4, 0.5, 0.6 GeV2.

The mean value of the χ2
r distributions is approximately 1, which indicates consistency

between the size of statistical errors and the spread of the data points.

5.2 Structure Functions

By fitting the φ-dependence of the cross sections one can separate the structure

functions σTT , σTL and the linear combination of the transverse and longitudinal

structure functions σT +ǫσL. Each φ-dependent histogram corresponding to a single

Q2, W and θ bin was fitted with a function of the form:

F (φ) = A + B cos 2φ + C cos φ. (5.3)

The reduced χ2
r distributions of the fits for different values of Q2 is shown in Fig. 5.2.

Reduced χ2
r is defined as the χ2 per degree of freedom:

χ2
r ≡ χ2

Npts − 3
, (5.4)

where Npts is the number of non-zero points in the φ-dependent histogram, and 3 is

the number of free parameters in the fit function in Eq. (5.3). The average value of

χ2
r is close to 1, which indicates that the statistical error bars on the cross sections

are consistent with the spread of the data points. Sample plots of the structure
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Figure 5.3: Structure functions at Q2 = 0.3 GeV2 compared with MAID [71] (red solid
curve) and Sato-Lee [72] models (blue dashed curve). Shaded areas represent the estimated
systematic errors.

functions versus θ and W compared with MAID [71] and Sato-Lee [72] models

are shown in Fig. 5.3. The full set of the structure function plots is presented in

Appendices A and B. The solid red curves show the MAID2000 predictions, while

the dashed blue curves are from Sato-Lee calculations. The latter incorporates

only ∆(1232) resonance, and therefore, does not describe the data above the first

resonance region. The shaded areas around zero indicate the estimated systematic

uncertainties for the structure functions, while the error bars on the data points

represent the statistical errors only. Systematic errors for the structure functions

were obtained by comparing the fit results for each bin from the data sets with

different cuts described in the Chapter 4. The combined systematic uncertainty was

calculated as:

σ
(sys)
comb

2
=

∑

i

σ
(sys)
i

2
, (5.5)

where σ
(sys)
i are the deviations of the structure functions from different data sets

with respect to the results obtained from the standard data set. From Fig. 5.3 one
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can see that the experimental σT + ǫσL is lower than the MAID [71] and Sato-Lee

[72] model predictions in the ∆(1232) resonance region. On the other hand, the σTT

structure function, which incorporates only transverse helicity amplitudes, is in a

better agreement with the theoretical predictions. This suggests that in these models

the resonance contributions are better understood than the background terms, where

most of the longitudinal contributions come from. The σTL term is the smallest term,

and therefore, the relative size of the error bars are bigger than for the other two

terms. One can also notice a significant difference between the data and the MAID

curves for W ∈ [1.41, 1.45] GeV for σTT and σTL terms (see Fig. 5.3 or Figs. A.2, A.3

in Appendix A). This is indicative of an incomplete understanding of the P11(1440)

resonance excitation in the MAID calculations. Therefore, these data can be used

to improve the knowledge of electroproduction amplitudes for the Roper and the

other two states in the second resonance region, as well as to better constrain the

background amplitudes for single π+ electroproduction.

5.3 Fit with JANR

In order to analyze the CLAS pion electroproduction data a special fitting

program “JLab Analysis of Nucleon Resonances” (JANR) was developed [78], which

allows us to extract the resonance parameters by fitting the observables from the

experiment. This program is based on the Mainz Unitary Isobar Model (UIM or

MAID) [71] with modifications for higher energy behavior of the multipoles. The

model assumes Breit-Wigner forms for the resonant multipoles:

Dl±(W ) = dl±fγN
WRΓ

W 2
R − W 2 − iWRΓtotal

fπNCπN , (5.6)

where fγN and fπN are kinematic factors associated with the two vertices of the

s-channel Feynman diagram, CπN are isospin Clebsch-Gordan coefficients, and dl±

are fit parameters for each resonant amplitude. The non-resonant contributions are
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Figure 5.4: JANR fit results (red curve) compared with the experimental values of cross
sections and structure functions for a few bins at Q2 = 0.3 GeV2.

calculated using an effective Lagrangian of the form:

L = LγNN + Lγππ + LπNN + LγπV + LV NN , (5.7)

where LγNN and Lγππ describe the nucleon and pion electromagnetic vertices, the

LπNN describes the πN interaction, LγπV and LV NN terms account for vector meson

exchange contributions. A mixed type for πNN coupling is used in this model:

LπNN =
Λ2

Λ2 + q2
LPV

πNN +
q2

Λ2 + q2
LPS

πNN , (5.8)

where LPV
πNN and LPS

πNN are Lagrangian terms describing pseudo-vector and pseudo-

scalar pion-nucleon interaction [71]; Λ is a scale parameter, chosen to be Λ =

0.45 GeV; and q is the pion 3-momentum in the center of mass frame. With such a

pion-nucleon interaction Lagrangian the pseudo-vector coupling LPV
πNN dominates at

low values of pion momentum, while at higher momentum the pseudo-scalar πNN

interaction starts playing a larger role. The parameters in the Lagrangian are fixed

at the real photon point to agree with the VPI analysis results [82]. Only the reso-
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Q2, GeV2 MP11
, GeV MS11

, GeV MD13
, GeV

0.3 1.434 ± 0.003 1.532 ± 0.002 1.515 ± 0.002
0.4 1.421 ± 0.004 1.532 ± 0.003 1.512 ± 0.003

Table 5.1: Masses of the resonances obtained with JANR fit.

Q2, GeV2 ΓP11
, GeV ΓS11

, GeV ΓD13
, GeV

0.3 0.429 ± 0.022 0.121 ± 0.006 0.112 ± 0.004
0.4 0.324 ± 0.011 1.122 ± 0.009 0.125 ± 0.006

Table 5.2: Widths of the resonances obtained with JANR fit.

nance amplitude parameters dl±, their masses and their widths are allowed to vary

during the fit. Their best values are found by minimizing

χ2 ≡
∑

i

(yi
(exp) − yi

(mod))2

σi
(exp)2

, (5.9)

where y
(exp)
i and y

(mod)
i are values for observables from the experiment and the model,

respectively, and σ
(exp)
i is the estimated standard deviation for the i-th experimental

point.

The data from the single π+ production experiment were fitted with JANR to

obtain the resonant amplitudes for the four dominant resonances in the first and

second resonance regions. The experimental data for each Q2 bin were analyzed

separately. The first two bins at Q2 = 0.3 GeV2 and Q2 = 0.4 GeV2 were fit

allowing the resonant amplitudes for the states in the first and second resonant

regions to vary. The masses and widths for P11(1440), D13(1520) and S11(1535)

were allowed to float as well, and their fit values are presented in Tables 5.1 and

5.2. For the last two bins at Q2 = 0.5 GeV2 and Q2 = 0.6 GeV2 only resonant

amplitudes for ∆(1232) were allowed to vary, while other parameters were fixed at

their values obtained from the fit at Q2 = 0.4 GeV2. The reason for doing this is

that the upper limit in the W coverage decreases as Q2 increases (see Fig. 4.10),
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State Mass Full Width π Branching Ratio

S11(1535) 1.535 GeV 0.150 GeV 0.4
D13(1520) 1.520 GeV 0.120 GeV 0.5

Table 5.3: Masses, widths and pion branching ratios used in calculations of photon coupling
amplitudes.

leaving the second resonance region outside of the acceptance for the last two Q2

bins. The values for masses, widths and pion branching ratios for the D13(1520) and

S11(1535) resonances, used to calculate the photon coupling amplitudes, are shown

in Table 5.3.

The errors σ
(exp)
i in Eq. 5.9 were set to be equal to the estimated statistical errors

of the cross sections. The systematic uncertainty was estimated by comparing the

results from fitting sets of cross sections with different cuts, similar to the procedure

performed to estimate systematic errors for the cross sections and the structure

functions. In addition, any discrepancy between the results from data sets with

two different magnetic field settings with It = 1500 Amps and It = 2250 Amps

was considered as an additional systematic uncertainty. This can overestimate the

total error bars, because this discrepancy can be explained in part by statistical

fluctuations.

The ratios REM and RSM obtained from the fit are shown in Fig. 5.5, where

the CLAS data is represented with black circles. The black portions of the error

bars show the statistical errors obtained as the estimated uncertainty for the fit pa-

rameters in MINUIT [84]. The blue portions of the error bars are due to systematic

uncertainties. The values for REM and RSM are given in Table 5.4. The E1+/M1+

ratio is found to be small and positive, and it shows a steep rise with Q2. It was

found [79] that the E1+ amplitude is much more sensitive to the details of the model

used in the fitting program than the S1+ amplitude. The uncertainty due to the
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Figure 5.5: Results for REM (left) and RSM (right) ratios for P11(1232). The curves are
from [10, 36, 72, 74, 75, 77].

Q2 REM (%) RSM (%)

0.3 GeV2 0.567±0.31
±1.45 −4.930±1.40

±0.34

0.4 GeV2 0.695±0.26
±0.56 −4.456±1.38

±0.90

0.5 GeV2 2.520±1.40
±0.39 −3.714±1.29

±0.45

0.6 GeV2 3.449±1.37
±0.63 −4.665±0.47

±0.56

Table 5.4: Results for REM and RSM in percents. The systematic errors are shown as
superscripts and the statistical errors are shown as subscripts.

physics model in the extraction procedure is not shown on this plot. A combined

fit with the π0 channel cross sections is necessary to extract the REM ratio more

accurately. RSM is negative and agrees within the error bars with most recently

measured values and with predictions of many theoretical models.

The JANR fits failed to produce reasonable results for Roper multipoles. Large

differences were observed between the results of the fit with single π+ cross sections

and a combined fit with the preliminary data from the beam spin asymmetry mea-

surements at CLAS [79]. A combined analysis of π+ and π0 cross sections along with

the single and double polarization data will help extract the Roper electroexcitation
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Figure 5.6: Results for A1/2 and A3/2 photon coupling amplitudes for D13(1520) shown
with black circles. Black portions of the error bars represent statistical errors only. The
pre-existing data are from [4, 1, 38]. Red dashed curves from [74], green solid curves from
[80], dashed blue curves from [81].

multipoles in the near future.

Figure 5.6 shows our results for the D13(1520) amplitudes compared with the

existing data. The agreement is reasonable for both A1/2 and A3/2. The large

systematic errors for the A1/2 amplitude are due to the discrepancy between the

results from the data sets with two different magnetic field settings. Our values

indicate a steeper fall-off for the A3/2 amplitude at Q2 < 1 GeV2 than previously

measured [1]. We also observe a possible transition from a negative value A1
sys
stat =

−0.292±0.28
±0.089 at Q2 = 0.3 GeV2 to a positive value A1

sys
stat = +0.072±0.28

±0.074 at Q2 =

0.4 GeV2 for the transverse photon asymmetry A1, shown in Fig. 5.7. Both of these

points are consistent with zero at 1σ confidence level. The values for the photon

coupling amplitudes are presented in Table 5.5.

Even though η production is the cleanest channel for studying the excitation

of the S11(1535) resonance, it is very useful to extract the A1/2 independently from

the pion electroproduction data. The values obtained for the A1/2 amplitude are

shown by black solid circles in Fig. 5.8 and are given in Table 5.5. The full error
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Figure 5.7: Results for A1 asymmetry for D13(1520). CLAS points shown with black
circles. Black portions of the error bars represent statistical errors only. The pre-existing
data are from [4, 1, 38]. Red dashed curves from [74], green solid curves from [80], dashed
blue curves from [81].

Q2 A1/2 for D13(1520) A3/2 for D13(1520) A1/2 for S11(1535)

0.3 GeV2 −58.085±17.1
±4.8 78.473±5.2

±3.7 104.703±6.5
±2.4

0.4 GeV2 −60.837±16.9
±3.5 56.624±3.8

±2.4 110.997±7.5
±2.2

Table 5.5: Results for photocoupling amplitudes for D13(1520) and S11(1535) in
10−3×GeV−2 units. The systematic errors are shown as superscripts and the statisti-
cal errors are shown as subscripts.

bars in Fig. 5.8 represent statistical and systematic errors combined in quadrature.

Our result is by ≈ 2σ higher than the recent η production result from CLAS [45].

The disagreement may be due to uncertainty in the pion and η decay branching

ratios of the S11(1535): the Particle Data Group values [83] are Γπ/Γ = 35%−55%,

and Γη/Γ = 30% − 55%. The analysis programs used to extract the amplitude

from these experiments are different, and the disagreement may also be due to the

model-dependence of the extraction procedures. The error bars for both of these

data sets do not include the uncertainties associated with selecting a particular

physics analysis model. The world data set is best described by the hypercentral

quark model [80], represented with the black solid curve.
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Figure 5.8: Results for A1/2 photon coupling amplitudes for S11(1535) shown with black
circles. The black portions of the error bars represent statistical errors only. Green solid
line is [34], blue dashed line is [74], red dash-dotted line is [39], black solid line is [80], pink
dotted line is [81]. The pre-existing data are from [40, 41, 42, 43, 44] .

5.4 Summary

The experiment described in this thesis is the first measurement of single π+

electroproduction cross sections in the resonance region with a nearly complete an-

gular coverage in the center-of-mass frame. In this analysis the cross sections were

extracted at four points in the range 0.25 GeV2 < Q2 < 0.65 GeV2 and for W be-

tween 1.1 GeV and 1.6 GeV. The size of combined statistical and systematic error

bars for the cross sections, averaged over ≈ 8600 data bins, is under 10%. The

structure functions σTL, σTT and the linear combination σT + ǫσL were obtained by

fitting the φ-dependence of the cross sections. Comparisons with the MAID and

Sato-Lee models in the ∆(1232) region indicate that the dominant M1+ resonant

amplitude is well known, while the background terms for π+ electroproduction are

less understood. In the region of the P11(1440) resonance considerable disagree-

ments were found between MAID predictions and the experimental values for the

interference structure functions.

An isobar fit was performed using the newly developed JANR program using
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single π+ electroproduction cross sections only. The value for RSM obtained for

∆(1232) is small and negative, in agreement with the π0 data analysis. The REM

ratio is small and positive, but is very-model dependent [79]. A combined fit with

π0 data is necessary to reliably determine the REM and RSM for the ∆(1232).

The values obtained for the A1/2 and A3/2 photon coupling amplitudes for

the D13(1520) resonance are in reasonable agreement with the existing data. The

transverse photon asymmetry A1 appears to change its sign somewhere in-between

Q2 = 0.3 GeV2 and Q2 = 0.4 GeV2 values of the momentum transfer.

The A1/2 amplitude for S11(1535) from single π+ electroproduction data is in 2σ

disagreement with the latest result from the η electroproduction analysis at CLAS,

possibly due to uncertainty in the knowledge of the decay branching ratios.

The results for the resonance amplitudes obtained in this thesis were based on

the single π+ electroproduction cross sections only. Even though the experimental

systematic uncertainties were estimated, the final results for resonant amplitudes

are likely to have sizable uncertainties due to the model used in the extraction

procedure. However, these uncertainties are expected to be significantly smaller

than those of many previous analyses based on data sets with limited kinematic

coverage. Clearly, one needs more experimental observables, such as cross sections

from different decay channels or polarization observables, to have more constraints

on the fit.

The main result of this work is the single π+ electroproduction cross section

covering nearly full angular range in the hadronic rest frame in the first and second

resonance regions. The future analyses of these data along with single π0 electro-

production cross sections will allow us to determine the REM and RSM ratios for

∆(1232), while a combined fit with the beam and beam-target asymmetry data

will improve our knowledge of the resonant amplitudes for the excited states in the

second resonance region.
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Figure A.1: Dependence of σT + ǫσL on θ at Q2 = 0.3 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure A.2: Dependence of σTL on θ at Q2 = 0.3 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.
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Figure A.3: Dependence of σTT on θ at Q2 = 0.3 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.



108

θ*, deg

µb
 / 

sr

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.110    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.130    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.150    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.170    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.190    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.210    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.230    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.250    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.270    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.290    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.310    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.330    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.350    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.370    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.390    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.410    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.430    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.450    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.470    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.490    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.510    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.530    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.550    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.570    

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
 W=1.590    

 σT + εσL , Q2 = 0.40 (GeV/c)2,  ∆Q2 = 0.10 (GeV/c)2 

Figure A.4: Dependence of σT + ǫσL on θ at Q2 = 0.4 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure A.5: Dependence of σTL on θ at Q2 = 0.4 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.
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Figure A.6: Dependence of σTT on θ at Q2 = 0.4 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.
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Figure A.7: Dependence of σT + ǫσL on θ at Q2 = 0.5 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure A.8: Dependence of σTL on θ at Q2 = 0.5 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.
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Figure A.9: Dependence of σTT on θ at Q2 = 0.5 GeV2. Red solid curve represents MAID-
2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee model.
Shaded areas represent the systematic uncertainties.
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Figure A.10: Dependence of σT + ǫσL on θ at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure A.11: Dependence of σTL on θ at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure A.12: Dependence of σTT on θ at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure B.1: Dependence of σT + ǫσL on W at Q2 = 0.3 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure B.2: Dependence of σTL on W at Q2 = 0.3 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure B.3: Dependence of σTT on W at Q2 = 0.3 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.



121

W, GeV/c2

µb
 / 

sr 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ= 7.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=22.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=37.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=52.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=67.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=82.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=97.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=112.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=127.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=142.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=157.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=172.5    

 σT + εσL , Q2 = 0.40 (GeV/c)2,  ∆Q2 = 0.10 (GeV/c)2 

Figure B.4: Dependence of σT + ǫσL on W at Q2 = 0.4 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure B.5: Dependence of σTL on W at Q2 = 0.4 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure B.6: Dependence of σTT on W at Q2 = 0.4 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure B.7: Dependence of σT + ǫσL on W at Q2 = 0.5 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure B.8: Dependence of σTL on W at Q2 = 0.5 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.
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Figure B.9: Dependence of σTT on W at Q2 = 0.5 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-
Lee model. Shaded areas represent the systematic uncertainties.



127

W, GeV/c2

µb
 / 

sr 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ= 7.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=22.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=37.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=52.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=67.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=82.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=97.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=112.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=127.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=142.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=157.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

5

10

15

20

25
θ=172.5    

 σT + εσL , Q2 = 0.60 (GeV/c)2,  ∆Q2 = 0.10 (GeV/c)2 

Figure B.10: Dependence of σT + ǫσL on W at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.



128

W, GeV/c2

µb
 / 

sr 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ= 7.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=22.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=37.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=52.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=67.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=82.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=97.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=112.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=127.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=142.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=157.5    

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
-6

-4

-2

0

2

4

θ=172.5    

 σTL , Q2 = 0.60 (GeV/c)2,  ∆Q2 = 0.10 (GeV/c)2 

Figure B.11: Dependence of σTL on W at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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Figure B.12: Dependence of σTT on W at Q2 = 0.6 GeV2. Red solid curve represents
MAID-2000 calculations, while the blue dashed curve shows the predictions of the Sato-Lee
model. Shaded areas represent the systematic uncertainties.
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