


Contents

Acknowledgments iii

List of Figures viii

Abstract ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Single Mode Squeezing . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Two-Mode Squeezing . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Four-Wave Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Qualitative Description . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Classical Description of FWM . . . . . . . . . . . . . . . . . . 11

1.3.3 Quantum Description of FWM . . . . . . . . . . . . . . . . . 12

1.3.4 Optical Angular Momentum Conservation . . . . . . . . . . . 16

2 Experimental Technique 20

2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Noise Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



2.4 OAM Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Intensity Squeezing Optimization 27

3.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Shot Noise Recalibration and Results . . . . . . . . . . . . . . . . . . 28

3.3 Power Dependence of Squeezing . . . . . . . . . . . . . . . . . . . . . 31

4 OAM Results 33

4.1 Input Probe Beam Carrying a Vortex . . . . . . . . . . . . . . . . . . 33

4.2 Pump Beam Carrying a Vortex . . . . . . . . . . . . . . . . . . . . . 35

4.3 Probe and Pump with Same Charge Vortex . . . . . . . . . . . . . . 36

4.4 Probe and Pump with Opposite Charge Vortex . . . . . . . . . . . . 37

5 Conclusions 47

5.1 Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Bell States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Polarization Entanglement . . . . . . . . . . . . . . . . . . . . 49

ii



Acknowledgments

I’d like to thank Irina Novikova for her tireless advice and guidance. I can always rely

on her to push me to better myself, whether in experimental physics or in daily life.

I would also like to thank Nikunj Prajapati for making days in lab infinitely more

enjoyable, and for spurring on the experiment when it had stagnated. This work is

supported by National Science Foundation under grant No. PHY-308281.

iii



List of Figures

1.1 Example phasor, with amplitude A, phase φ, and quadratures X and

Y . [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Phasor representation of a coherent state. [2] . . . . . . . . . . . . . . 6

1.3 (a) Coherent state, (b) Phase-squeezed state, (c) Amplitude-squeezed

state. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 (a) Uncorrelated fields, with the noise of a coherent field represented by

the dashed ring. (b) Amplitude squeezed fields, showing the decrease
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Abstract

The goal of the project is to produce a pair of intensity-squeezed light fields

using Four-Wave Mixing (FWM) in hot Rubidium vapor. In this process, interaction

of atoms with near-resonant strong control optical field results in strong amplification

of a weak probe optical field and in generation of a quantum correlated conjugate

Stokes optical field. In order to establish the quantum correlation between the Stokes

and probe fields, we measured the differential intensity noise between the Stokes and

probe fields. If the noise falls below the quantum noise limit, then two-mode intensity

squeezing has been achieved, as a first step toward realization of the polarization Bell

states. We also examine the conservation of orbital angular momentum (OAM) in

the FWM process with OAM-bearing input fields.



Chapter 1

Introduction

1.1 Motivation

In many experimental systems, it is important to have the highest measurement

sensitivity possible. A popular technique for increasing sensitivity in noisy optical sys-

tems is to split the input field in two before the experiment, send one branch through

the experiment, and subtract the other from the signal-bearing field. For classical

electromagnetic fields, this method leads to the complete erasure of the noise in the

field, and resolution of the experimental data limited only by the measuring device.

Unfortunately for us, we do not live in an optical world that can be accurately de-

scribed by classical electrodynamics, and our EM fields carry intrinsic, independently

propagating noise that cannot be removed by a simple subtraction method. This in-

trinsic EM noise, known as shot noise (SNL refers to the shot noise limit), limits the

best resolution achievable with optical measurements. For most experiments, this

level of noise is far lower than other technical noises in their systems, and so this

is a limit they never run up against. But for certain high resolution experiments,

such as LIGO’s gravitational wave detection system and the fields of optical imaging

and photolithography, the quantum noise limit is a fundamental roadblock to further

progress.
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The quantum nature of light leads to the noise problem I described above, but it

also provides a mechanism to circumvent this problem. Through nonlinear processes,

we can produce squeezed light, which reduces noise in either amplitude or phase, and

correspondingly produces higher noise in the other, due to a Heisenberg uncertainty

relation between these quantities. Two-mode squeezing is a similar concept that oc-

curs when the fluctuations in two fields are correlated. Two-mode amplitude squeezed

light can be used in a differential measurement scheme similar to the ideal classical

case, and noise levels below shot noise can be achieved. One such nonlinear process

that can produce two-mode amplitude squeezed light is Four-Wave Mixing (FWM). I

will go into more detail on this later, but this is a process where two input fields lead

to three output fields, two of which are amplitude squeezed relative to each other.

Another aspect of this experiment involves the conservation of optical angular

momentum in this FWM setup. This is important for quantum communication and

imaging techniques, as it provides additional information storage capacity. Any field

of arbitrary spatial structure can be thought of as a sum of plain-waves. Since these

plain-waves are basis modes, they are orthogonal and are squeezed independently.

Each of these modes can be used to store quantum information. For the FWM setup,

there is a bandwidth of k-vectors that has gain and the resulting squeezing. We

can also relate these spatial modes to their optical orbital angular momenta. We

investigate the conservation of the optical angular momentum (OAM) by imposing

OAM on our input beams and observing the resulting spatial structure of our output

beams.

The long-term goals of this experiment are for applications with polarization en-

tanglement. Light entanglement is a feature of quantum mechanics that is entirely

impossible in a classical understanding of the universe. In essence, if the two fields

are entangled, it means that a measurement on one of the fields absolutely determines
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the state of the other, without measurement and without interaction. To put this in

quantum mechanical terms, the two fields have states that are superimposed in a way

that makes independent characterization impossible. This is represented generically

in Eq. 1.1. The measurement of one field collapses the combined state superimposi-

tion, determining the state of the other field. This phenomenon provides a way to

realize qubits, the quantum analog to the bits of classical computing, as well as pos-

sibilities in quantum imaging, communication, and improved sensor technology. In

this particular experiment, we are working on entangling polarization and frequency

modes so that we can perform the classic Bell state measurements.

|Ψ〉1,2 =
1√
2

(|Ψ1〉 ± |Ψ2〉) (1.1)

1.2 Squeezing

1.2.1 Single Mode Squeezing

A classical field can be described as a phasor, a vector that represents the field’s

amplitude as its length and its phase as an angle. The axes of this vector are known

as quadratures, a phrase that will be brought up throughout this thesis. An example

is shown in Fig. 1.1.

We can describe an electric field of a single photon as

E(t) = 2E0(Xcos(ωt) + Y sin(ωt)) (1.2)

where E0 =
√
h̄ω/2ε0V is the electric field amplitude, ω is the angular frequency, and

V is the active volume of the field[1]. For quantum mechanical description of EM

fields, the X, Y are replaced with the operators X̂, Ŷ
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Figure 1.1: Example phasor, with amplitude A, phase φ, and quadratures X and Y .
[2]

X̂ =
â+ â†

2
(1.3a)

Ŷ =
â− â†

2i
(1.3b)

where â, â† are the annihilation and creation operators, respectively. Acting on the

Fock states[3] with given photon number n, |n〉, these operators lower and raise the

number of photons in the field as such

â |n〉 =
√
n |n− 1〉 (1.4a)

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.4b)

n̂ |n〉 = â†â |n〉 = n |n〉 (1.4c)

where n̂ is the number operator that retrieves the current number of photons in the

field.
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X̂ and Ŷ have a commutation relation[2]

[X̂, Ŷ ] =
i

2
(1.5)

that leads to the following uncertainty relation

〈(∆X̂)2〉〈(∆Ŷ )2〉 ≥ 1

16
(1.6)

When the minimum uncertainty in is evenly shared between the two quadratures,

i.e.,

∆X̂ = ∆Ŷ =
1

2
(1.7)

we say that we are dealing with a coherent state, |α〉. These coherent states can be

represented in the Fock basis as such

|α〉 = e−|α|
2/2

∞∑
n=1

αn√
n!
|n〉 (1.8)

These states are most closely related to the representations of classical fields with

the lowest possible noise, i.e. at the quantum noise limit (QNL). It is worth noting

that

â |α〉 = α |α〉 (1.9)

Their uncertainty appears as a round ball on a phasor diagram, as shown in

Fig. 1.2.

Like Turnbull[2], we will refer to the uncertainty in X̂ as amplitude uncertainty

and the uncertainty in Ŷ as phase uncertainty, since we can rotate phasors with a

simple change of basis such that our phasor lies on the X axis.
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Figure 1.2: Phasor representation of a coherent state. [2]

I have spent this time introducing a framework through which squeezing can be

understood, but I have yet to address the concept itself. A squeezed light state is one

in which the uncertainty is unevenly distributed between X and Y , such that Eq. 1.7

is satisfied, i.e. ∆X̂ > 1
2
,∆Ŷ < 1

2
or vice versa. These conditions results in a phasor

where the uncertainty stretches from a ball into an ellipse along the Y and X axes

respectively, as shown in Fig. 1.3.

Phase-squeezed light can be measured with greater precision in its phase and less

precision in its amplitude, and amplitude-squeezed light can be measured with greater

precision in its amplitude and less precision in its phase.

1.2.2 Two-Mode Squeezing

While the previous section is sufficient to understand the generation of single-mode

squeezed light, for our purposes, we must deal with two-mode squeezing, in which two

optical fields are quantum correlated. Specifically, this will deal with relative intensity

6



Figure 1.3: (a) Coherent state, (b) Phase-squeezed state, (c) Amplitude-squeezed
state. [2].

squeezing, wherein two entangled light fields have correlated amplitude fluctuations.

If we have two EM fields of the same frequency, ω, we can describe them[2] as

Ê1(t) = 2E0[X̂1 cosωt+ Ŷ1 sinωt] (1.10a)

Ê2(t) = 2E0[X̂2 cosωt+ Ŷ2 sinωt] (1.10b)

and define the following joint quadrature terms

X̂+ =
1√
2

(X̂1 + X̂2) (1.11a)

X̂− =
1√
2

(X̂1 − X̂2) (1.11b)

Ŷ+ =
1√
2

(Ŷ1 + Ŷ2) (1.11c)

Ŷ− =
1√
2

(Ŷ1 − Ŷ2) (1.11d)

As Turnbull derives, we see that the following uncertainty relations hold

[X̂±, Ŷ±] =
i

2
(1.12a)

[X̂±, Ŷ∓] = 0 (1.12b)
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which means that we can simultaneously observe squeezing in X̂+ and Ŷ− or vice

versa.

In our case, we deal with relative intensity squeezing, so the squeezed quantities

are X̂− and Ŷ+. This means that the same temporal fluctuations are present in photon

count in E1 and E2. When a differential measurement of the two fields is taken, we

will see a reduced noise below the QNL. At the same time, the increased noise in X+

means that the individual fields will have increased amplitude noise (i.e., gain). This

situation is shown in Fig. 1.4.

Figure 1.4: (a) Uncorrelated fields, with the noise of a coherent field represented by
the dashed ring. (b) Amplitude squeezed fields, showing the decrease in X̂− and Ŷ+

and the increase in X̂+ and Ŷ−. [2]
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1.3 Four-Wave Mixing

1.3.1 Qualitative Description

In order to entangle the polarizations and frequencies of two fields, we need

them to be intensity-correlated. We will be taking advantage of a 3rd-order, non-

linear atomic process, Four-Wave Mixing (FWM), in Rubidium in order to obtain

these intensity-correlated fields. FWM involves sending a powerful optical field, called

the pump or control field, into a Rubidium vapor cell. When a weaker field, called

the probe, is sent in, a third field, the Stokes or conjugate field, is generated by

Raman scattering of incident photons. The probe and Stokes both experience an

intensity gain through this process. A graphical representation of this process is

shown in Fig. 1.6, and an energy level diagram in Fig. 1.5 shows that the process is

a parametric double-lambda transition.

Figure 1.5: FWM process in terms of the energy levels of the 85Rb system. ω0 is the
pump frequency, ωc is the conjugate frequency, ωp is the probe frequency, ωHF is the
hyperfine splitting of 3036 MHz, ∆1 is the pump detuning, ∆2 = ∆1 + ωHF , δ is the
two-photon detuning.

52S1/2 is the ground state, and the F = 2 and F = 3 are the hyperfine-splitting of

9



Figure 1.6: Graphical representation of FWM process. The pump and probe combine
at a small angle before the Rb cell, and probe, pump, and Stokes emerge, probe and
pump symmetric around the pump.

the ground state. 52P1/2 is the first excited state. The control couples the 52S1/2,F=2

to 52P1/2 transition, pumping electrons into the excited state, and the probe couples

the 52P1/2 to 52S1/2,F=3 transition, sending electrons down via stimulated emission.

The control also couples to a virtual state, detuned from the excited state by approxi-

mately one hyperfine splitting energy. Due to Raman scattering, the conjugate Stokes

field closes the cycle to the F = 2 state. Through this process, two control photons

are converted into a Stokes photon and a probe photon. The frequency relations are

governed by Eq. 1.13a, and the directional relations (wave-vectors) are governed by

Eq. 1.13b, with the 0 subscript referring to the pump, and the c and p corresponding

to conjugate (Stokes) and probe.

ωc = 2ω0 − ωp (1.13a)

∆k = 2k0 − kp − kc = 0 (1.13b)

Since the nonlinear process leads to generation of probe and Stokes photons simul-

taneously, the two fields are intensity correlated. This means that fluctuations in the

intensities of the fields will be identical. The difference in noise between the two fields

is lower than the noise in either individual field, making this system highly effective

10



in lowering noise. Given a strong enough interaction without much decoherence, it

is possible to achieve noise measurements below the QNL, the noise level we would

expect from two independent coherent fields of the same intensities

1.3.2 Classical Description of FWM

A more detailed derivation of FWM process and the resultant two-mode squeezing fol-

lows, taking inspiration from Turnbull[2] and Jasperse[4]. FWM is a nonlinear optical

process, which is driven by nonlinear polarization components. In many materials,

polarization has a linear relationship with the electric field

P (1)(t) = ε0χ
(1)E(t) (1.14a)

E(t) = E0 sinωt (1.14b)

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
(1.14c)

ε0 is the permittivity of free space and χ(1) is the linear optical susceptibility of the

material. Eq. 1.14c is the wave equation for the E field in a medium.

More exactly, polarization can be decomposed in powers of E

P (t) = P (1) + P (2) + P (3) + ... = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (1.15)

where P (n) is the n-th order polarization and χ(n) is the n-th order optical suscepti-

bility. Rubidium is a χ(3) medium, which means that the 3rd order polarization is the

dominant effect at high powers. Inversion symmetry causes χ(2) = 0. In the process

described in the previous section, the 3rd order polarization is as follows[5]

P (3)(t) =
∑

n∈{0,p,c}

P (ωn)e−iωnt (1.16)
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with

P (ωc) = 3ε0χ
(3)(ωc)(E0)2E∗p (1.17)

as one possible permutation. Boyd[5] calculates all the possible permutations of

frequencies generated by this scheme, but since the pump is so much stronger than

the probe and conjugate, the polarization terms that create the strongest fields are

those with (E0)2[6]. These terms are [7]

P (ωp) = ε0χ
(D)(ωp)(E0)2eikp·r + ε0χ

(C)(ωp)(E0)2ei(2k0−kc)·r (1.18a)

P (ωc = 2ω0 − ωp) = ε0χ
(D)(ωc)(E0)2eikc·r + ε0χ

(C)(ωc)(E0)2ei(2k0−kp)·r (1.18b)

with Ei being the field strength, χi being the susceptibility, ωi being the frequency

and ki being the wavevector for each field in vacuum. The D superscript for χ is the

direct, linear susceptibility, and the C superscript is the cross-coupling susceptibility.

If we plug these back into Eq. 1.14c, we will get a series of coupled equations that

are solvable for the temporal and spatial behavior of this system. We will see the

annihilation of two pump photons and the creation of a probe and a Stokes photon.

1.3.3 Quantum Description of FWM

The interaction Hamiltonian of this system can be expressed as follows[4]

Ĥ = ih̄βb̂†ĉâ†ĉ+ h.c. (1.19)

where β is the interaction strength, b̂† and â† are the Stokes and probe creation op-

erators respectively, ĉ is the annihilation operator for the pump, and h.c. denotes the

Hermitian conjugate of the first term. We will use the undepleted pump approxima-

tion, where we assume that the relative strength of the pump is so much higher than

12



the other fields that the interaction doesn’t noticeably deplete the pump’s photon

count. More specifically

αpump(z = 0) ≈ αpump(z = L)→ dαpump
dz

≈ 0 (1.20a)

Ĥ = ih̄βα2
pumpb̂

†â† + h.c. (1.20b)

We can rewrite Eq. 1.20b as follows

Ĥ = ih̄ξb̂†â† + h.c. (1.21)

with ξ representing the overall interaction strength, since we can choose αpump to be

real[4]. We can also define the time-evolution operator for this Hamiltonian

Û(t) = e
iĤ t
h̄ = e−ξ(âb̂−b̂

†â†)t (1.22)

If the process occurs over a timescale τ , we can define the squeezing operator as such

Ŝ = Û(τ) = es(b̂
†â†−âb̂) (1.23)

with s = ξτ known as the squeezing parameter[8].

We can also look at the time evolution of the creation and annihilation operators

dâ

dt
=
i

h̄
[Ĥ , â] = ξb̂† (1.24a)

db̂

dt
=
i

h̄
[Ĥ , b̂] = ξâ† (1.24b)

Differentiating Eq. 1.24a,1.24b and solving the equations of motion generated

there leads to the following time-dependent creation and annihilation operators

â(t) = cosh(ξt)âi + sinh(ξt)b̂†i (1.25a)
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b̂(t) = cosh(ξt)b̂i + sinh(ξt)â†i (1.25b)

where the i subscript denotes the initial fields at t = 0. Observing these operators

after the interaction, at time τ , leads to the following matrix

(
â(τ)

b̂†(τ)

)
=

(
cosh s sinh s
sinh s cosh s

)(
âi
b̂†i

)
(1.26)

From here we can show how the number states of the fields evolve from the

interaction. We operate in a regime with a vacuum input for the conjugate, so

〈b̂†b̂〉(t = 0) = 0. Calculating the expectation values for 〈b̂†b̂〉 and 〈â†â〉 after the

interaction can be done by calculating 〈αa|â†(τ)â(τ)|αa〉 and 〈αb|b̂†(τ)b̂(τ)|αb〉. This

yields the following expectation values[4]

〈N̂a(τ)〉 ≡ 〈â†(τ)â(τ)〉 = cosh2(s)〈â†i âi〉+ sinh2(s) ≈ G〈â†i âi〉 (1.27a)

〈N̂b(τ)〉 ≡ 〈b̂†(τ)b̂(τ)〉 = sinh2(s)〈â†i âi〉+ sinh2(s) ≈ (G− 1)〈â†i âi〉 (1.27b)

〈N̂a(τ) + N̂b(τ)〉 = cosh(2s)〈â†i âi〉+ 2sinh2(s) ≈ (2G− 1)〈â†i âi〉 (1.27c)

〈N̂a(τ)− N̂b(τ)〉 = 〈â†i âi〉 (1.27d)

where G = cosh2(s) is our gain factor. It can be shown that the number difference,

N̂a − N̂b, is invariant under the squeezing operator, and so the variance after the

interaction can be shown to be the following[4]

V ar(N̂a(τ)− N̂b(τ))SQZ = V ar(â†i âi − b̂
†
i b̂i) = V ar(â†i âi) = 〈â†i âi〉 (1.28)

For a coherent state (i.e., at the QNL) of the same magnitude, however, we would

expect a variance of the following[4]

V ar(N̂a − N̂b)QNL ≡ 〈N̂a + N̂b〉 ≈ (2G− 1)〈â†i âi〉 (1.29)
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We can then define the degree of squeezing (DS) as

DS =
V ar(N̂a − N̂b)SQZ

V ar(N̂a − N̂b)QNL
≈ 〈â†i âi〉

(2G− 1)〈â†i âi〉
=

1

2G− 1
(1.30)

We can look at the logarithmic degree of squeezing, DS(dB) = 10 log10(DS). Since G

comes from s, this means that the stronger the FWM interaction (and consequently

the stronger the gain in the probe and the generation in the Stokes), the more negative

the DS(dB) and the more the noise is reduced.

We can examine the effect of phase mismatch from the ideal case of Eqs. 1.13a,1.13b

by amending the interaction Hamiltonian, Eq. 1.19. We can add a phase term to each

creation and annihilation operator to yield the following[4]

Ĥ ∝ (e−ikc·r−ωctb̂†)(e−ik0·r−ω0tĉ)(e−ikp·r−ωptâ†)(e−ik0·r−ω0tĉ) + h.c.

= [ei(2k0−kp−kc)·re2ω0−ωp−ωc ]b̂†ĉâ†ĉ+ h.c

= [ei∆k·r−i∆ωt]b̂†ĉâ†ĉ+ h.c.

(1.31)

where ∆k = 2k0−kp− kc and ∆ω = 2ω0−ωp−ωc are the wavevector and frequency

mismatches from ideal phase matching conditions.

If we integrate Eq. 1.31 in the interaction volume (V = lxlylz), we find[4]

H ∝

[
χ(3)lxlylzsinc

(
lx(∆k)x

2π

)
sinc

(
ly(∆k)y

2π

)
sinc

(
lz(∆k)z

2π

)]
b̂†ĉâ†ĉ+ h.c. (1.32)

where

sinc(x) =

{
sin(πx)
πx

for x 6= 0

1 for x = 0

and Fig. 1.7 shows the function.

This shows that the interaction strength of the FWM process is dampened signif-

icantly by the k mismatch, but still yields a valid spatial bandwidth wherein strong
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Figure 1.7: sinc(x)

mixing can occur. Similarly, if we include the frequency mismatch in the FWM

treatment starting from Eq. 1.21 (adding ei∆ωt). The following occurs[4]

Ĥ = ξe(i∆ωt)b̂†â† + h.c.→ ∂â

∂t
= ξei∆ωtb̂† → ∂2â

∂t2
= −i∆ω∂â

∂t
+ ξ2â

which can be solved to yield

â(t) = e−
1
2
i∆ωtcosh

(√
ξ2 − 1

4
(∆ω)2t

)
â+ e−

1
2
i∆ωtsinh

(√
ξ2 − 1

4
(∆ω)2t

)
b̂† (1.33)

This equation has the form of the squeezing we saw earlier with an adjusted squeez-

ing parameter s =
√
s2

0 − 1
4
(∆ω)2τ , where s0 is the squeezing level with no phase-

mismatch[4]. This is another effective bandwidth on the mixing strength, this time

in frequency.

1.3.4 Optical Angular Momentum Conservation

If we want to look at the spatial structure of an EM field and the optical orbital

angular momentum, we need to solve the Helmholtz equation
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∇2ξ + k2ξ = 0 (1.34)

where ξ is the scalar electric field[9]. Under the paraxial approximation, where we

assume the field maintains a small angle with the optical axis, we can make the

following substitution[9]

ξ(r) = u(r)eikz (1.35)

where u is the amplitude distribution, and arrive at the following equation

∇2
tu+ 2ik

∂u

∂z
= 0 (1.36)

where the t subscript indicates the transverse portion of the Laplacian.

In Cartesian coordinates, the natural basis for solutions to this formula are the

Hermite-Gaussian (HG) modes.

uHGnl (x, y, z = uHGn (x, z)uHGl (y, z) (1.37a)

uHGn (x, z) =
CHG
n√
w(z)

e
ik x2z

2(z2
R

+z2) e
− x2

w2(z) e−i(n+1/2)χ(z)Hn

(√
2x

w(z)

)
(1.37b)

where CHG
n =

√
1/(2nn!)(2/π)1/4, Hn is the Hermite polynomial of nth order, w(z)

is the Gaussian spot size, zR is the Rayleigh range.

w(z)2 =
2(z2

R + z2)

kzR
= wz0

[
1 +

(
z

zr

)2]

zR =
πw2

0

λ

where λ is the wavelength. This is the most common spatial mode basis for light

fields, but HG basis is not an eigenbasis for OAM[9].
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An alternate basis, in cylindrical coordinates, that is an eigenbasis for orbital

angular momentum[9], is the set of Laguerre-Gauss (LG) modes.

uLGmp(ρ, φ, z) =
CLG
mp√
w(z)

(
ρ
√

2

w(z)

)|m|
e
− ρ2

w2(z)L|m|p

(
2ρ2

w2(z)

)
e
−ik ρ2z

2(z2
R

+z2) e(imφ)e−i(2p+|m|+1)χ(z)

(1.38)

where CLG
mp =

√
2|m|+1p!/[π(p+ |m|)!] and L

|m|
p are the Laguerre polynomials. The

phase factor of eimφ indicates that the LG modes have well-defined orbital angular

momentum (OAM), 〈Lz〉 = h̄m[9].

Figure 1.8: LG Modes. [10]

We will be discussing vortices quite a bit later in this paper, which are simply

points of zero electric field amplitude surrounded by continuously varying phase[9].
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Many optical vortices have the form

E ∝ r|m|eimφe−r
2/w2

where m is the topological charge of the vortex (note the exponential term from the

LG modes). A vortex of charge m corresponds to an LG|m|0 mode.

m =
1

2π

∮
C

∇S · dl

and is how many times the phase cycles across the vortex. Also, vortices with charge

|m| > 1 can be thought of as m single vortices overlapped[9].

Since a charge of m corresponds to a discrete OAM, the FWM process must

conserve this quantity[9]. Specifically,

2m0 = mp +mc (1.39)

where p refers to probe, c to conjugate, 0 to pump.
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Chapter 2

Experimental Technique

I will begin by describing the current experimental setup in detail, and then go

into the parameters we adjust to get optimal noise suppression. The full schematic is

shown in Fig. 2.1.

Figure 2.1: Schematic for the experimental setup of this project.
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2.1 Setup

We use the same laser to generate the pump and probe input fields, a Toptica TA

Pro diode laser. We use two different outputs of the same field; the amplified laser

output is used as the pump, and the weak output is used as the probe. We output

the pump through a fiber coupler, and use two Polarizing Beam Splitters (PBS) to

clean polarization in the field. We then send it through a telescope in order to adjust

the beam waist size and position inside the Rb cell.

Figure 2.2: Closer look at the probe setup.

For the probe, I will show a closer look at the setup in Fig. 2.2. We use half-

waveplates (HWP) to make its polarization perpendicular to the pump, and then

couple it to an optical fiber. In the first fiber, we use Electro-optic Modulation

(EOM) to shift the frequency of the probe relative to the pump using an RF signal.

This is how we control the two-photon detuning referred to throughout. After this
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stage, we send the probe through an etalon (a Fabry-Perot interferometer) in order to

select the desired frequency (filtering out extra frequencies introduced by the EOM).

We then use a final HWP to adjust the polarization before the final fiber.

Figure 2.3: Closer look at cell and detection setup.

The cell and detection setup is shown in Fig. 2.3. The probe and pump are

then combined on PBS1 at a small angle, and sent through the Rb vapor cell. The

cell is surrounded by a three-layer magnetic shield that is thermally stabilized and

controlled externally. After the FWM interaction takes place, the three fields exit the

cell, and the pump is mostly filtered out using PBS2. From there, since the beams

are spatially separated, the probe and Stokes can be sent in different paths using an

edge mirror. The probe and Stokes are each focused onto a separate photodetector

(PD), with irises used to cut out the remainder of the pump. The PD outputs are

then electronically subtracted, and this signal is sent to a spectrum analyzer, where

we view the frequency dependent noise.

2.2 Parameter Optimization

The parameters we mainly vary are pump frequency, etalon setting, cell temperature,

probe detuning, and probe and pump beam waist positions.

• The pump frequency and etalon setting are linked in that we adjust the etalon
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and then tune the pump frequency to get maximal probe transmission. So the

etalon is an indirect constraint on the pump frequency we use.

• The cell temperature governs atomic number density in the cell, and therefore

the strength of interaction. With high enough density, absorption increases and

spontaneous decay effects cause decoherence in the fields.

• The two-photon detuning, controlled via the RF frequency in the EOM, also

determines the strength of the interaction and the optical depth of the medium.

• Finally, we adjust the positions of the beam waists of the probe and pump in

order to have the best phase-matching conditions, and therefore the highest

interaction strength.

2.3 Noise Measurements

We use an HP8596E spectrum analyzer (SA) to analyze our differential signal. The

SA takes in a time domain intensity signal and decomposes it into the frequency

domain, allowing us to view the power present in our signal at any given frequency in

the SA’s range. This spectrum represents the noise floor in the optical system. The

SA displays its measurements in dBm (power relative to 1 mW in decibels). If we

see 4 dBm noise reduction in the system, that corresponds to a 2.5x reduction in the

noise floor in base 10. Since the SA shows the power distribution in the system, a

differential noise measurement below shot noise for a given intensity is indicative of

amplitude squeezing.

Shot noise calibration works as follows:

• Send a beam with a well-known power to a 50-50 beam splitter.

• Propagate each arm to a separate photodiode.
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• Electronically subtract the two signals.

• Average the spectrum on the SA on the frequency range of interest (in our case

100 kHz-500 kHz).

• Repeat for different input powers.

This is an effective measurement of shot noise because once the two fields of equal

magnitude are subtracted, the classical noise of the system is eliminated, leaving

just the quantum noise of the system. Imbalances in the detection will skew the

measurements high, as this introduces classical noise into the differential signal. We

use the frequency range of 100 kHz-500 kHz because it avoids most of the noise present

in our environment (low frequency, other electronic noise from nearby).

2.4 OAM Experiment

In order to examine the orbital angular momentum conservation of the system, we

need to input fields with OAM. We can either input OAM-bearing probe, pump, or

both. For the pump field, we use a phase mask to impart a charge of m = ±1. This

mask has a gradually changing index of refraction that changes the phase of the field

azimuthally. The chirality of the vortex can be controlled by which direction the mask

faces relative to the optical axis. For the probe, for the first set of measurements,

we used the phase mask and imparted a charge of m = +1. For the later sets where

we also had a vortex on the pump, we used a diffraction grating to generate different

orders of vortices and choose the first order which corresponds to m = −1. See

Fig. 2.4 for reference.

In order to see the fields that are output from the Rb cell, we placed a camera

into the residual transmission of a mirror after PBS2 to view the output beams. For

most of our measurements, we use the interference method described in Vasnetsov[11]

24



Figure 2.4: Schematic with the diffraction grating in the probe path and the phase
mask in the pump path.

to more easily measure the angular momentum present in each field. For the probe,

we split the field before PBS1 and send this around the cell. We then use a mirror

to overlap this new field with the probe output from the cell. For the Stokes, we

introduce a flip mirror after the mirror after the cell, expand the field with a lens,

and then choose a small portion of the beam away from the vortex to interfere with

the leak Stokes from before.

For the tilted lens method[12], we expect images similar to Fig. 2.5. For a charge

of 1, we expect the beam to split into two lobes, with the line separating them on a

diagonal. For charge 2, we expect three lobes with two separating lines. For charge

3, we expect 4 lobes with three separating lines. For the opposite chirality, we expect

to see the mirror image. Since it can be hard to tell a vortex from some other beam

defect, and since the tilted lens method can be difficult to precisely and repeatedly

use, we use the interference method, for most of our measurements.

For the interference method, we expect forks in the interference fringes to form

at any vortices, as in Fig. 2.6. For vortices of charge 2, we expect to see a double

fork (three fringes converging to one), and for charge 3 we expect a triple fork (four

fringes converging to one).
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Figure 2.5: Top row: charge 1, with and without tilt; middle row: charge 2, with and
without tilt; bottom row: charge 3, with and without tilt. [13]

Figure 2.6: Left: LG01 mode without interference; right: the same mode interfered
with a plane-wave. [14]
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Chapter 3

Intensity Squeezing Optimization

3.1 Preliminary Results

We originally observed squeezing in Spring ’17, but our initial squeezing measurements

were done with an improperly calibrated shot noise. The two parameters that we

mainly varied initially were cell temperature and pump frequency/etalon tuning. We

looked at temperatures of 92 ◦C, 96 ◦C, 100 ◦C, 110 ◦C. At the time we thought we

saw higher noise at 110 ◦C than at the other temperatures; this is also near the safe

temperature limit for our cell.

Fig. 3.1 shows the data set that had the among the best squeezing when calcu-

lated with the shot noise calibration we had at the time. The black line shows the

differential noise between the probe and Stokes fields. The red line shows the differ-

ential noise between two independent fields, the SNL for a particular intensity of the

probe and Stokes. Since the black line is below the quantum noise limit, we say that

we have intensity squeezing, and we know that the probe and Stokes are quantum

correlated. In low frequencies, we saw what appeared to be -4.5 dB of squeezing.

We realized, though, that the shot noise should have a flat noise spectrum in the

examined frequency region, and we were concerned with the slope in the shot noise in

Fig. 3.1. Recalibrating our data, we saw that we had overestimated shot noise, and
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Figure 3.1: Differential noise between Stokes and probe in black, and the quantum
shot noise limit in red. We see as much as -4.5 dB of squeezing.

had therefore overestimated squeezing.

3.2 Shot Noise Recalibration and Results

Our initial shot noise calibration and our subsequent recalibration and fit are shown

in Fig. 3.2

We can see in the graph that our initial shot noise calibration overestimated the

SNL for lower powers. Armed with this new calibration, I went back and reanalyzed

the data from 2017. This is shown in Fig. 3.3-Fig. 3.5. These figures feature both

squeezing vs two-photon detuning (left axis) and probe and Stokes signal strength

vs two-photon detuning (right axis). As I talked about in Ch. 1.3.3, the two-photon

detuning determines the strength of the FWM interaction. The relationship between

this detuning and squeezing is not quite that simple, however. While Eq. 1.30 gives the

degree of squeezing considering only the effects of the FWM process we are interested

in, and this depends only on the gain on the probe, other gain processes can contribute
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Figure 3.2: Shot noise calibrations.

uncorrelated noise to the fields. Because of this, the area of highest gain will not be the

area of best squeezing. As we tune further away from highest gain, however, we expect

worse squeezing, as the interaction strength begins to wane. We expect a parabolic

trend for squeezing vs two-photon detuning. We also expect our best squeezing to

happen with well-balanced probe and Stokes intensities, though we don’t see this in

every case.

It turns out that we the highly overestimated squeezing was at 92 ◦C and 96 ◦C.

While we don’t see the same maximum squeezing for 100 ◦C that we thought we had,

we do see squeezing of up to -2.8 dB. I also reanalyzed the data at 110 ◦C, which

can be found in Fig. 3.6. The x-axis for this plot is the detuning from the hyperfine
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Figure 3.3: Squeezing vs detuning with cell tem-
perature of 92 ◦C. The left axis corresponds to
the squeezing level of each measurement, and the
right axis corresponds to the signal strength of
probe and Stokes of each measurement. The x-
axis corresponds to the two-photon detuning, or
how far the probe is detuned from the pump fre-
quency.

Figure 3.4: Squeezing vs detuning with cell tem-
perature of 96 ◦C. The left axis corresponds to
the squeezing level of each measurement, and the
right axis corresponds to the signal strength of
probe and Stokes of each measurement. The x-
axis corresponds to the two-photon detuning, or
how far the probe is detuned from the pump fre-
quency.

resonance (0 MHz corresponds to 3035 MHz in the other plots). It turns out that the

noise in this region wasn’t as high as we once thought, though we still don’t want to

push the physical limits of the system. From this information, we decided to start

working at 100 ◦C.

From here we took great pains to adjust the beam waists of the pump in probe in

order to have the best phase matching conditions possible. The optimal configuration

ended up being the following: the pump waist slightly larger than the probe waist,

the pump waist position slightly outside the shielding of the cell, and the probe waist

in the cell. This was achieved by adjusting the telescope for the pump and adjusting

the output coupler focus for the probe. The best results we got for this section of the

experiment is shown in Fig. 3.7. The error bars for this data represent one standard

deviation in the squeezing value across 5 measurements. The best squeezing we have

had to date was -4.1 dB, which can be seen in Fig. 3.8. These measurements were

taken with pump power of 350 mW and cell temperature of 100 ◦C.
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Figure 3.5: Same as Fig. 3.3, except the cell tem-
perature was 100 ◦C. The x-axis corresponds to
the two-photon detuning, or how far the probe is
detuned from the pump frequency.

Figure 3.6: Same as Fig. 3.3, except the cell tem-
perature was 110 ◦C. The x-axis is defined as the
two-photon detuning as defined in Fig. 3.3 minus
the hyperfine splitting frequency of 3035 MHz.

3.3 Power Dependence of Squeezing

We also looked at the dependence of squeezing on the input pump power. This is

an important parameter for the future of the experiment, as we will need to operate

under tighter power constraints. We changed the power input while attempting to

hold other parameters constant, and took squeezing measurements across two-photon

detunings. These are shown in Fig. 3.9-Fig. 3.12. We went from 450 mW to 175 mW.

We can see that there is a slight drop in squeezing level as we decrease power, from

-2.5 dB to -1.8 dB. It is worth noting that these measurements were taken before we

reanalyzed our old data and decided to move to 100 ◦C, and so was taken at 96 ◦C.

Also note that we started with -2.5 dB squeezing at 450 mW, and so were not in a

region with the best squeezing to start with.

From these results, it seems plausible to maintain a significant degree of squeezing

with lower pump power. With more precise adjustments at each power, we should

also be able to increase the level of squeezing.
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Figure 3.7: Best squeezing vs detuning results
(pump power of 350 mW, T = 100 ◦C). The axes
are defined the same as in Fig. 3.3.

Figure 3.8: Best squeezing so far. The blue line is
the raw data, black line is SNL for input power,
red line is smoothed differential noise data.

Figure 3.9: Squeezing vs detuning with 450 mW
pump power. The axes are defined the same as
in Fig. 3.3. The cell temperature was 96 ◦C.

Figure 3.10: Same as Fig. 3.9, except the pump
power was 390 mW.

Figure 3.11: Same as Fig. 3.9, except the pump
power was 295 mW.

Figure 3.12: Same as Fig. 3.9, except the pump
power was 175 mW.
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Chapter 4

OAM Results

Recall the setup in Ch. 2.4. For this part of the experiment, we input pump and

probe beams to the FWM setup with different OAM. mp refers to the OAM of the

probe, and m0 refers to the OAM of the pump. We took data for 4 configurations:

mp = +1,m0 = 0; mp = 0,m0 = −1; mp = −1,m0 = −1; mp = −1,m0 = +1. For

each of these, I will show plots of the intensity profiles of the probe and Stokes for

multiple detunings, as well as the squeezing vs detuning. Note that the introduction of

vortices changes the beam sizes for the effected beam, and requires adjustments in the

beam waist size and locations order to maintain good phase-matching conditions. For

these data sets, the x-axes will be in terms of detuning from the hyperfine resonance

of 3035 MHz.

4.1 Input Probe Beam Carrying a Vortex

We took this data before we started using the interference method, so I will show

images from the lens tilt method. Since we input mp = +1,m0 = 0, we expect to get

mc = −1 to conserve OAM. For a tilted lens setup, we expect two lobes to develop on

a diagonal in a field with a vortex of charge 1. For the opposite chirality, we expect

the opposite tilt.

The tilted lens data for three different detunings is shown in Fig. 4.1-Fig. 4.3. We
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Figure 4.1: Beam profiles of probe and Stokes at
-22 MHz for vortex in probe input.

Figure 4.2: Beam profiles of probe and Stokes at
-12 MHz for vortex in probe input.

Figure 4.3: Beam profiles of probe and Stokes at
-6 MHz for vortex in probe input.

note that as we move the two-photon detuning closer to the resonance, the intensity in

the probe moves from the bottom-right lobe to the top-left lobe; the Stokes intensity

moves from the top-right to the bottom-left. It is also apparent, especially in Fig. 4.2,

that the probe and Stokes have the opposite tilt, and therefore the opposite chirality.

This matches up with the theoretical conservation of OAM (Eq. 1.39, m0 = 0, mp =

+1, mc = −1).

The squeezing for this is shown in Fig. 4.4. The highest squeezing we see for this

data set is -3.5 dB. This configuration yielded the highest overall squeezing of the 4,

with -3.8 dB.
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Figure 4.4: Squeezing vs detuning with vortex of m = +1 on the probe input. The
left axis corresponds to the squeezing level for each measurements, and the right axis
corresponds to the signal strength of the probe and Stokes for each measurement.
The x-axis is the two-photon detuning minus the hyperfine splitting frequency of
3035 MHz.

4.2 Pump Beam Carrying a Vortex

We did use the interference method to measure the OAM for this data set. Graphs for

different detunings are shown in Fig. 4.5-Fig. 4.8, with the Stokes on the left, pump

in the center, and probe on the right. For this configuration, since we input pump

with m0 = −1, and mp = 0, we expect a Stokes with mc = −2 to conserve OAM

(Eq. 1.39). This means we expect to see no forks in the probe interference pattern,

and either two single forks or one double fork in the Stokes interference pattern.

For most of the detunings, we see what we expect: 0 charge in the probe and

charge of 2 in the Stokes. This satisfies Eq. 1.39, m0 = −1, mp = 0, mp = −2. These

are visible in the forks in the interference pattern on the Stokes. As we tune closer

to the resonance, the vortices in the Stokes move closer together, almost overlapping.
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For -85 MHz, we see some odd features. Instead of mp = 0,mc = −2, we see

|mp| = 5, |mc| = 3. We believe this is due to improper alignment and beam size

matching. For OAM-bearing beams, we believe that matching the beam sizes of the

pump and probe in the cell is important for the conservation of OAM in the dominant

modes of the fields.

The squeezing for this data set is shown in Fig. 4.9.

We see that these points are above shot noise. It should be noted that there was

significant leak of the pump into the Stokes channel for these measurements. The

beam sizes of different charges were also mismatched. The best squeezing for this

configuration was -1.2 dB, not shown here.

4.3 Probe and Pump with Same Charge Vortex

For this configuration (mp = −1,m0 = −1), we expect a Stokes field output with

mc = −1, in order to satisfy Eq. 1.39. This means we expect to see to see one fork in

the interference fringes of both the probe and the Stokes. Graphs with the probe and

Stokes with and without interference for different detunings are shown in Fig. 4.11,

Fig. 4.12, Fig. 4.13. The squeezing measurements for this data set are shown in

Fig. 4.10.

We can see that the best squeezing level is about -2.4 dB. We see conservation of

OAM for all of these detunings, satisfying Eq. 1.39 with m0 = −1, mp = −1, mc =

−1. We see single forks in the interference patterns of the probe and Stokes, indicating

the charges of the fields. We also see that the fields become more evenly amplified

across their profiles as we tune toward better squeezing.
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4.4 Probe and Pump with Opposite Charge Vor-

tex

For this configuration (mp = −1,m0 = +1), we expect a Stokes field output with

mc = +3, by Eq. 1.39. This means we expect a single fork in the probe interference

pattern, and either a triple fork, one double fork and two single forks, or three single

forks in the Stokes interference pattern. Graphs with the probe and Stokes with and

without interference for different detunings are shown in Fig. 4.15, Fig. 4.16, Fig. 4.17.

The squeezing measurements for this data set are shown in Fig. 4.14.

The best squeezing for this set is about -2 dB. In each of these graphs, we can

see that OAM is conserved (Eq. 1.39, m0 = +1, mp = −1, mc = +3). As we tune

through the probe frequencies, it seems that the Stokes charges move together and

overlap at -7 MHz. Here we see a single fork and a double fork, which corresponds

to a single vortex and a double vortex, which suggests that the Stokes is partially

composed of the LG02 mode at this frequency. This seems to agree with the theory I

mentioned at the end of Ch. 1.3.4. We also observe that the images clean up (more

even amplification across the profiles) as we move toward the area of better squeezing.

37



Figure 4.5: Beam profiles of Stokes, pump, and
probe at -85 MHz for vortex in pump input.

Stokes on left, pump in center, probe on right.
Interfered with plane-waves on top, without

interference on bottom.

Figure 4.6: Beam profiles of Stokes, pump, and
probe at -55 MHz for vortex in pump input.

Stokes on left, pump in center, probe on right.
Interfered with plane-waves on top, without

interference on bottom.

Figure 4.7: Beam profiles of Stokes, pump, and
probe at -25 MHz for vortex in pump input.

Stokes on left, pump in center, probe on right.
Interfered with plane-waves on top, without

interference on bottom.

Figure 4.8: Beam profiles of Stokes, pump, and
probe at -5 MHz for vortex in pump input.

Stokes on left, pump in center, probe on right.
Interfered with plane-waves on top, without

interference on bottom.
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Figure 4.9: Same as Fig. 4.4, but with vortex of m = −1 on the pump input and no
vortex on the probe input.

Figure 4.10: Same as Fig. 4.4, but with vortex of m = −1 on both input fields.
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Figure 4.11: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -15 MHz for same charge in pump and probe input.
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Figure 4.12: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -6 MHz for same charge in pump and probe input. The Stokes is the beam
on the left in its images.
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Figure 4.13: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -3 MHz for same charge in pump and probe input.
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Figure 4.14: Same as Fig. 4.4, but with vortex of m = −1 on probe input field,
m = +1 on pump input field.
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Figure 4.15: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -14 MHz for opposite in pump and probe input. The Stokes field is on the
left of its images.
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Figure 4.16: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -7 MHz for opposite charge in pump and probe input.
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Figure 4.17: Beam profiles of probe and Stokes with (left) and without (right) inter-
ference at -1 MHz for opposite charge in pump and probe input.
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Chapter 5

Conclusions

Although our degree of squeezing is not as high as we had first thought, -4.1 dB is a

significant achievement. We have found that the positions and sizes of the beam waists

for the input fields matters a great deal for the level of squeezing. Our data indicates

that a cell temperature of 100 ◦C yields the best squeezing. We also examined the

dependence of squeezing on the power of the input pump field. While we see a

slight degradation of squeezing quality with decreased intensity, we were still able to

maintain -1.8 dB (vs -2.5 at the highest power for this set of measurements) at low

power. From these results, it seems reasonable to say that we have observed intensity

squeezed light in a wide range of experimental conditions.

For the OAM portion of our experiment, we have looked at four different config-

urations: vortex in probe alone, vortex in pump alone, vortices in both with equal

chirality, vortices in both with opposite chirality. Our best squeezing results among

those configurations was with the vortex in the probe alone. We saw up to -3.8 dB

of squeezing. We saw the OAM we expected to, with a vortex in the Stokes of the

opposite chirality of that of the probe. In this case, as we changed detuning the

intensity of the probe and Stokes shifted from one side of their profiles to the other.

For the vortex in the pump alone, we saw our worst squeezing at -1.2 dB, but we

had significant pump leak in our Stokes detector. At the furthest detuning from the
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hyperfine resonance we saw a strange structure develop with 3 vortices in the Stokes

and 5 in the probe, which is not what we expect. This is probably due to improper

alignment and beam waist matching. For the other frequencies, we saw what we

expected, with 2 vortices developing in the Stokes. As we moved towards the area of

highest squeezing, these vortices started to converge. Our best squeezing for vortices

in both channels with the same chirality was -2.4 dB. For this case, we see the OAM

generated in the Stokes that we expect. We saw more evenly amplified probe and

Stokes across their profiles as we tuned towards higher squeezing. The best squeezing

for opposite chirality was -2 dB. We saw the OAM we expected in the Stokes, with

3 vortices developing. We also saw these move closer together as we approached the

region of highest squeezing. Two of them converged into a double vortex.

5.1 Future Plans

In the immediate future, we will use a spatial light modulator (SLM) to explore the

effects of different input OAMs. These can be used to create a more general spatial

phase pattern and allow us to input probes with various OAM structures.

The long term goals of this experiment are to generate the polarization Bell states.

5.1.1 Bell States

The Bell states are a basis for two-field entanglement, shown in Eq. 5.1 and Eq. 5.2,

and correspond to 0 and 1 in a single bit basis. In the equations, |H〉 refers to the

horizontally polarized state and |V 〉 refers to the vertically polarized state, and the

subscripts P and S refer to probe and Stokes respectively. The first equation is the

superposition of parallel probe and Stokes, and the second equation is the super-

position of perpendicular probe and Stokes. They are essential to realize quantum

information, as information can be encoded in the superposition of the Bell states.

48



1√
2

(|H〉P |H〉S ± |V 〉P |V 〉S) (5.1)

1√
2

(|H〉P |V 〉S ± |V 〉P |H〉S) (5.2)

5.1.2 Polarization Entanglement

This will require us to double our setup in order to incorporate the Faraday polar-

ization controller device made in previous work on this project, and to recombine the

different modes. The general design we will look to implement is a dual-rail system.

This requires us to split the probe in two and the pump in two, to perpendicularly

polarize one probe with respect to the other, and one pump with respect to the other,

and to send all four of these fields through our cell without overlap. We must then

create a scheme that allows us to achieve each of the Bell states. Since multiple Bell

states cannot be realized at the same time, we want to make it easy to switch between

them. This will require various phase and polarization shifts, using wave-plates and

polarizers, as well as a physical recombination of the four fields. In order to realize

this setup, each arm needs to be given adequate power for the FWM process to occur

efficiently. This means we will need to work at half of our maximum power in each

arm.
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