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Abstract

We combine a camera, an optical fiber, and artificial intelligence into a single

optical magnetometer for magnetic field measurement. This novel combination pro-

vides enhanced spatial resolution, a mobile configuration, and e�cient, unbiased data

processing capabilities. The magnetometer is based on an undergraduate laboratory

Faraday rotation apparatus (a glass rod surrounded by a solenoid), linked to a camera

via a multimode optical fiber. To identify varying magnetic field strengths, an image

classification algorithm analyzes the fiber output “speckle” patterns that result from

di↵erent magnetically-induced changes in probe beam polarization. Initially, as we

constructed and strengthened the algorithm, we simulated these polarization changes

using a waveplate, and we investigated the algorithm’s response to external factors

such as natural fluctuations in probe beam, and therefore image, intensity. Later,

we replaced the waveplate with the glass rod and solenoid. Ultimately, we created

a sensor with angular sensitivity as small as 0.6 x 10�4 degrees, corresponding to

magnetic fields on the order of 0.5 µT. The device is applicable in structural defects

detection, including settings that require small size and mobility and that might not

be electronics-friendly.



Chapter 1

Introduction

1.1 Background

Magnetic field sensors have a wide variety of applications, making them an on-

going and prolific topic of inquiry. The uses of magnetometers range from highly

applied, such as geological surveying and heartbeat monitoring [1], to highly funda-

mental, such as in measurement of physical constants. As technology advances, the

need for increasingly sensitive magnetometers continues to propel research on these

devices. We propose a highly sensitive, optical magnetometer that boasts enhanced

imaging capabilities and a mobile configuration. With these qualities, our device’s

applications will center on defect detection in metal components, which can be useful

in areas like infrastructural health analysis, vehicle design, and passenger safety.

1.2 Motivation and Theory

Currently, in the field of magnetometry, there exists a tension between achiev-

ing high sensitivity and maintaining a compact, mobile device configuration. This

problem is often accompanied by a quest for spatial resolution of the field, which can

be extra, desirable or even essential, information. Over the course of more than half

a century, various types of optical magnetometers have emerged and been enhanced

1



to meet these challenges. Optical magnetometers can reach unprecedented levels of

sensitivity by probing atoms in a magnetic field with light. They then use the atoms’

and/or light’s response to detect the field.

We will focus on one traditional, elegantly simple type of optical magnetometer

called a Faraday rotation magnetometer. This specific device relies on the change in

polarization that light undergoes when it interacts with atoms in a material that is

exposed to a magnetic field. This phenomenon is called Faraday rotation. Specifically,

in a transparent material like glass, a magnetic field, directed along the direction of

light propagation will rotate the light’s polarization by an angle �, as shown in Figure

1.1 [2]. This angle of polarization rotation is proportional to the magnetic field B

according to

� = CVBl, (1.1)

where CV is the Verdet constant, which depends on the material, and l is the

length of the material along which the light propagates.

In the traditional setup, linearly polarized light shines through the sensor material,

often a crystal, and the light’s polarization is rotated by the angle, �, proportional to

B. This angle can be measured, for example, by a photodiode placed after a polarizer

at the output. Note, however, that for a reasonably sized magnetic field, the change

in polarization is quite small. Indeed, in the setup shown in Figure 1.1, a magnetic

field of 11.1 mT leads to a polarization rotation on the order of 10�4 rad, or about

0.005� [2].

A significant drawback of this traditional setup is that using a photodiode as the

sensing device does not provide any spatial resolution of the magnetic field. One

solution is to replace the photodiode with a CCD camera to image the field [3]. The

downside here is that adding a camera makes for a bulky sensor that would not be

2



Figure 1.1: [2] A visualization of Faraday rotation, where light (red arrow) of a po-
larization ✓ traveling through a transparent medium subject to an external magnetic
field, B, will rotate by an angle, �, proportional to B. Note that � is much smaller
than shown here.

compatible with, say, chip-scale manufacturing [4].

To solve this problem, we instead separated the camera physically from the Fara-

day rotation magnetometer using a multimode optical fiber. Fibers are inexpensive

and will allow a portable, flexible device configuration. When light travels down a

multimode fiber, its di↵erent modes scatter di↵erently, creating a kind of “speckle”

pattern intensity profile. These patterns appear random but note that they can be

theoretically predicted using the coupling conditions of the fiber. Figure 1.2 shows a

comparison between the intensity profiles of a traditional Gaussian beam travelling

through air and of a Gaussian beam after travelling down a multimode fiber.

Thus, when the laser’s polarization changes, its intensity does not change, but the

speckle patterns do change, because of interference inside the fiber. Figure 1.3 shows

a comparison of the speckle patterns for a 0� and 45� polarization. Therefore, we can

use the di↵ering speckle patterns to identify the beam polarizations corresponding to

di↵erent magnetic fields. Using a fiber eliminates the need for the polarizer that the

3



Figure 1.2: On the left is an example of a Gaussian laser beam intensity profile with
no modifications. On the right is the scrambled “speckle” intensity profile resulting
from sending the Gaussian beam travels down a multimode fiber.

conventional setup requires. Furthermore, it allows remote magnetic field detection, in

which the detector can be at significant distance from the sensor, safe from interfering

with or being a↵ected by the measured fields.

The drawback, though, is that the speckle patterns are complicated images. Also,

when the change in polarization is small, as it is when magnetically-induced, the

image features only change by a small amount, which is almost entirely undetectable

visually (See Chapter 3).

This problem invites the use of artificial intelligence (AI). Ultimately, we trained

an image classification algorithm to recover the laser polarization from these speckle

patterns. This AI approach increases data processing power for rapid field measure-

ment and analysis.

To summarize, we built an optical magnetometer employing AI for magnetic field

measurement. This approach combines the structural and informational advantages

of a fiber + camera setup with the e�cient, unbiased data processing power of AI for

enhanced spatial resolution and physical compactness. We hope to achieve sensitivity

4



Figure 1.3: A comparison of the multimode fiber output “speckle” patterns for 0�

(left) and 45� (right) polarization angles.

on the nanoTesla range for applications in structural defects detection of, say, air and

space vehicles, buildings and bridges, or pipelines and storage tanks. Our device also

o↵ers the possibility of replacing the Faraday rotation apparatus (glass rod) with

other media for enhanced sensitivity. One option is a crystal defect like a Nitrogen-

Vacancy (NV) center [5], [6], which would allow for further compactness and possibly

miniaturization to the chip scale.

The outline of this paper is as follows: In Chapter 2, we will explain the experi-

mental design, walking through each part of the device, from the physical setup to the

image classification algorithm used in this work. Interspersed throughout is theory

on image classification to guide an understanding of our methods. Chapter 3 explains

some results that are foundational to the current work, but that were obtained during

preliminary investigations done in Spring 2021. This work consisted of constructing

the image classification algorithm and optimizing it to our experimental conditions.

Chapters 4 and 5 describe early e↵orts to improve algorithm sensitivity to external

factors such as image intensity, and to establish a benchmark for angular sensitivity

upon which to improve. These two chapters describe a setup wherein we used a half

5



waveplate to generate changes in laser polarization, rather than an actual magnetic

field. Finally, in 6, we implement the Faraday rotation magnetometer. Here, we try

various methods to create the highest possible angular sensitivity so as to measure

the smallest magnetic fields.
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Chapter 2

Experimental Design: Optical

Setup, Data Acquisition, and

Image Classification Algorithm

In this chapter, we will describe the experimental design, starting with the

physical apparatus setup and then outlining the AI algorithm along with some useful

theory on image classification.

2.1 Experimental Setup

We will now describe the experimental setup, shown in Figure 2.1. We con-

ducted many experiments using a preliminary setup, with results discussed in Chap-

ters 3, 4, and 5. We then transitioned to the final Faraday magnetometer setup used

in Chapter 6. We describe both setups in the next two sections to facilitate a broad

understanding of our fiber+camera+AI approach before discussing the grittier details

of building, testing, and improving the algorithm.

2.1.1 Preliminary Waveplate Setup

As a foundational step toward constructing the actual magnetometer, we used a

half waveplate (Figure 2.1 b)) to polarize the laser beam that propagated through the

7



Figure 2.1: The experimental setup for the optical fiber-linked magnetometer using
AI for magnetic field measurement. Either a) (the Faraday apparatus) or b) (the half
waveplate) was used to change the laser polarization.

multimode fiber. A waveplate consists of a material, usually a crystal like quartz or

mica, that breaks linearly polarized light into two components, one parallel and one

perpendicular to the device’s own optical axis. These two components will travel at

slightly di↵erent speeds through the crystal due to a polarization-dependent refractive

index “birefringence”. Thus, the device introduces a phase di↵erence between these

two components, so that when they are recombined, the light’s overall polarization

has rotated by a certain angle. The experimentalist can rotate the device’s optical

axis to achieve the desired polarization rotation. A half waveplate introduces a 180�

phase shift, and thus is generally used to rotate linearly polarized light’s polarization

by such a desired amount. (By contrast, a quarter waveplate introduces a 90� phase

shift, thus converting linearly polarized light into circularly polarized light). In this

8



work, we used a half waveplate only.

2.1.2 The Faraday Apparatus and Setup

The Faraday magnetometer setup is shown in Figure 2.1 a). For the Faraday

rotation apparatus itself, we used a modified version of TeachSpin Inc.’s undergrad-

uate laboratory Faraday rotation apparatus. The apparatus contains a 10 cm long,

5 mm diameter SF-59 glass rod surrounded by a 15 cm long solenoid that connects

to a power supply. The value of CV depends on wavelength, but for 650 nm light,

CV = 23 rad/(T·m). For the solenoid, the calibration, given by the manufacturer [2],

between input current, I, and magnetic field, B is

B = (11.1 mT/A) · I. (2.1)

However, when we measured current versus change in polarization in the lab, we

obtained a calibration for I vs. �, which was slightly di↵erent, causing our values of

B obtained using Equation 1.1 to di↵er from those obtained using 2.1. Di↵erences

here likely result from the fact that CV depends on wavelength. The wavelength of our

laser was 780nm, when the value for CV was reported at 650nm. Figure 2.2 shows our

calibration of current vs. polarization for the apparatus. Placing a polarizer after the

TeachSpin apparatus, we recorded the output intensity for di↵erent currents. Using

the fact that intensity, i, is related to polarization, � by

i = i0 sin
2(�), (2.2)

where i0 is the maximum intensity possible, we converted intensity values into po-

larization rotations. We fit the data according to an absolute value function because

the relationship between polarization rotation and current is linear, but we included

“negative” values of current as well. These negative current values indicate crossed

9



Figure 2.2: Calibration of the TeachSpin Faraday rotation Apparatus: Polarization
Rotation, �, vs. Input Current, I. All intensity values used to calculate � were nor-
malized by i0 = 2000 µW, the maximum intensity transmitted through the polarizer.

wires in the power supply, which were used to obtain a wider range of polarization

angles.

For further apparatus specifications, see the TeachSpin Faraday Rotation manual,

[2].

For this work, we removed the laser, polarizer and photodiode that come attached

to the TeachSpin apparatus. We then inserted the remaining part into our setup, as

shown in Figure 2.1 a) pictorially and Figure 2.3 physically. Thus, our experimental

setup is as follows: A 780.24 nm diode laser travels through a modified version of the

TeachSpin Faraday rotation apparatus. After the light travels down the multimode

fiber (MMF), a neutral density (ND) filter reduces the beam’s intensitiy to a level

appropriate for imaging. A CCD camera images the resultant beam profile. The

images are then sent to the image classification algorithm. The MMF, ND filter, and

CCD camera are all contained in a cardboard box to shield from temperature changes

and ambient light.

10



Figure 2.3: The experimental setup, consisting of TeachSpin’s Faraday rotation ap-
paratus.

The data collection procedure for algorithm training and testing consisted of set-

ting the power supply to di↵erent current values and collecting a given number of

speckle pattern images for a given polarization.

The images taken were originally 1024x1280 matrices. To avoid long algorithm

run times, the images were then re-scaled to 256x320 matrices using an interpolation

procedure we developed in MATLAB in 2019 (See A.1). The images were normal-

ized so their matrix entries fall between 0 and 1. They were then converted to png

files, split into training and testing sets, and sent to the algorithm for learning and

classification.

In the following section, we will outline some basic theory of image classification

and then describe the algorithm constructed for this work.

11



2.2 The Image Classification Algorithm

Borhani et al.[7] and Wang et al. [8] have shown that deep learning can be

used to classify the “speckle patterns” that result from the propagation of an input

image through a multimode fiber. We therefore propose to use a similar approach to

identify the di↵erent speckle patterns that result from di↵erent magnetically-induced

probe beam polarizations traveling through a multimode fiber.

2.2.1 Image Classification Theory

The goal of image classification is to train a computer to sort images into two or

more categories based on previous experience, or “learning.” We used a convolutional

neural network (CNN) as our deep learning platform. A CNN distinguishes images by

assigning importance, or weight, to the images’ distinguishing features. The network’s

structure mimics that of a human brain, with di↵erent layers connected by neurons.

Below we will outline a typical image classification process, which was followed in

this work. We will start with the step directly following data acquisition and describe

the process up to algorithm testing. Helpful background information on convolutional

networks can be found in the overview paper by Albawi et al.[9]. Other more informal,

but still informative sources include webpages by Deshpande [10] and Saha [11].

Data Pre-Processing

After acquisition, the image data is divided into training data and testing data.

The images fall into two or more categories, where the correct category is known for

each datum. Typically an equal number of images from each category is present in

each of the training and testing sets. The training set is then fed into the CNN, while

the testing set is set aside. In this work, we also impose circular masks on our data

to block out any non-beam regions of our images. We explain this process further in

12



Section 6.3.

CNN Structure

Our CNN followed the traditional structure of a number of alternating convolu-

tional and pooling layers, followed by a fully connected layer. The relevant specifics

of these layers are outlined below.

Convolution. Traditionally, the first layer of this network is the convolutional

layer. During convolution, a filter is superimposed onto the input image. A filter is

simply a matrix of weights that is smaller than the original image. It may also be

referred to as a neuron. The filter is then convolved with the region of the image

that it covers. That is, element-wise multiplication is performed between the filter

and the image region. The multiplications are then summed into a single value that

represents that region of the original image. The filter then slides over all regions of

the image to form a feature map that describes the image as a whole.

Maximum Pooling Layer. A pooling layer further reduces the size of the feature

map in order to reduce the computational power required. A maximum pooling layer

groups the values of the feature map and takes the maximum value in each group as

the representative value. This way, the maximum pooling layer extracts dominant

features in the image. It also serves as a noise suppressant.

Fully Connected Layer/Classification. After one feature map is formed, con-

volutional and pooling layers may be repeated any number of times to extract lower

level features from the images. Once enough convolutions and poolings have occurred,

a fully connected layer is installed. The fully connected layer analyzes the previous

layer and determines to which image category the feature maps produced during

convolution most likely belong.

13



Training and Testing

Training.

In order for convolution to produce accurate results, the algorithm must run

through the above neural network structure multiple times, evaluating the “learning”

process after each pass. Initially, the filter weights obtained during convolution are

assigned randomly. However, during a process of “backpropagation,” the algorithm

evaluates the accuracy of the fully connected layer output. During each convolutional

cycle, the algorithm generates a loss function that determines which filter weights are

contributing most to errors in classification accuracy. The loss function used in our

algorithm was the Cross Entropy Loss. This function describes the di↵erence between

the algorithm’s prediction and the correct prediction. Based on the features the algo-

rithm detects during convolution and comparison to the original images, it assigns a

probability that those features belong to a given category. If it assigns a high proba-

bility to a category that is actually incorrect, the loss will increase. As the algorithm

generates this loss function, the lossy weights are updated in the direction that mini-

mizes classification error. This process repeats for as many iterations, or “epochs,” as

desired until the algorithm has adequately learned to distinguish between the image

categories.

There are a few training parameters that govern the training process and that

may be optimized for best learning. The parameters relevant to this work will be

outlined in the following paragraphs.

Number of Training Iterations, or “Epochs.” The number of training it-

erations is simply the number of times the algorithm runs through the CNN during

training. More epochs leads to better performance, creating a trade-o↵ between train-

ing run time and accuracy.

Filter Size. The size of the convolutional filters may be adjusted to capture

14



more general or more specific image features. Traditionally, filter size is increased in

consecutive layers as the network pieces together bigger and bigger patterns. Again,

larger filters may lead to higher algorithm run times, but may also improve accuracy.

Number of Filters Per Layer. The number of filters used in each layer may

also be adjusted. Too few filters in a layer leads to poor performance, while too many

increases run time.

Learning Rate. The learning rate is perhaps the most important parameter

to optimize when constructing a CNN. During backpropagation, the algorithm takes

steps backwards and forwards along the loss function it generates to find the point

of minimal error. The size of these steps is called the learning rate. The learning

rate is a positive value between 0 and 1. A learning rate of 0.01 means that the

lossy weights are updated by 1% of the weight error during each training iteration.

A larger learning rate allows the algorithm to run faster, but it risks converging on

a suboptimal set of filter weights. A smaller learning rate leads to slower run times,

but better algorithm performance. However, a learning rate that is too small may

lead to the algorithm getting stuck in a local minimum in the loss function. Thus,

proper configuration of the learning rate is crucial to algorithm performance [13].

Testing.

The final step in the image classification process is to present the algorithm with

images similar to those it was trained on, but that it has never seen before. These

images are passed through the CNN, and the ability for the algorithm to correctly

identify these new images is evaluated.

Measurements of Success

Algorithm e�cacy should be evaluated during both the training and testing

processes.
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Training Plots. In the training process, the algorithm will generate a learning

curve, which is a plot of classification accuracy vs. training epoch and loss vs. training

epoch. Increasing accuracy and decreasing loss over time will indicate successful

training. Figure 2.4 shows an example of a suboptimal learning curve and an optimal

learning curve. Ideally, the accuracy will increase steeply to indicate fast learning.

Usually, accuracy and loss should roughly mirror each other. However, they are

truly di↵erent quantities, and therefore both are needed to obtain an accurate under-

standing of the model. Accuracy is defined as a binary true/false designation made

at the end of each training cycle when evaluating the algorithm’s prediction. So, it

is a discrete variable. Loss, though, is a continuous function that describes how far

away the algorithm’s prediction is from the “correct answer.” A common instance

where accuracy and loss will not fully match up is when the accuracy has plateaued

at a high value, but loss is continuing to decrease. This phenomenon occurs when

the algorithm has become confident, but the margin it has created between the two

categories is narrow. Therefore, correct predictions may happen by change. Allow-

ing the loss to decrease to match the high accuracy will lead to increased algorithm

robustness and thus better performance in testing [12].

Output Performance Accuracy. If training is successful, the algorithm is able

to identify correctly the images included in the training set. During testing, we must

evaluate the algorithm’s ability to identify images it has never seen before. The

method of evaluation used in the work was a confusion matrix, a table showing, as

a percentage, how often the algorithm correctly identified the images in the given

category, and how often it confused one category for another. An ideal confusion

matrix will have 1s on the diagonal and 0s elsewhere, indicating that the algorithm

matched all images to their correct categories. Figure 2.1 shows a hypothetical con-

fusion matrix. In this case, the algorithm never confused Class 1 for Class 2, but it
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Predicted Class 1 Predicted Class 2
Actual Class 1 1 0
Actual Class 2 0.44 0.56

Table 2.1: An example of a confusion matrix for an algorithm distinguishing between
a hypothetical “Class 1” and “Class 2”. The row shows the algorithm’s prediction of
the class of the image in testing and the column shows the actual class of the image.
Thus, the third row, second column shows the percentage of times the algorithm
predicted class 1 when the image was actually class 2.

confused Class 1 for Class 2 44% of the time. In other words, the algorithm correctly

identified images in Class 1 100% of the time, and it correctly identified images in

Class 2 56% of the time.

In this work, the overall output accuracy was computed by taking the average of

the diagonal elements.

2.2.2 The Algorithm

We constructed the image classification algorithm used in this project in Spring

2021 as preliminary work. The flow chart in Figure 2.5 gives a visual representation

of the algorithm used currently. The final algorithm consisted of 3 convolutional

layers, each followed by a normalization layer and a maximum pooling layer. The

first convolutional layer consisted of 5 filters of size 1x1 pixel, the second of 15 filters

of size 6x6 pixels, and the third of 40 filters of size 12x12 pixels. After the three sets

of convolutional, normalization, and pooling layers was a fully connected layer and

then a classification layer.

The training parameters used were as follows:

• Filter weight optimization method: Stochastic Gradient Descent. This method

finds the minimum of the loss function, calculating the derivative of the function

in steps. Technically, the algorithm must follow this process for every single im-
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age feature, but this stochastic method does so only on a collection of randomly

chosen features in order to reduce computational time [14].

• Initial learning rate: 10�5

• Number of epochs: 100 (subject to change depending on test conducted)

• Shu✏e training data every epoch to ensure an unbiased training

(See A.2 for full code).

During each training, MATLAB generated a learning curve, which we used to

evaluate training progress. After testing, the algorithm output a confusion matrix for

the two image categories. The overall performance accuracy was evaluated by taking

the average of the diagonal elements in this matrix. Thus, the algorithm performance

was characterized by the average percentage of times the algorithm identified an image

correctly.
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Figure 2.4: On the top is an example of a suboptimal learning curve, and the bottom
is an example of an optimal learning curve. Plotted are training accuracy (blue/upper
half of graph) and loss (red/bottom half) vs. training iteration or “epoch.”
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Figure 2.5: A flow chart representation of the image classification algorithm used in
this work. Each colored box represents a layer in the neural network.
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Chapter 3

Preliminary Work to Achieve

Image Recognition

Before going into current work, we must outline some significant results of

preliminary work conducted in Spring 2021. They are

1. Development of a robust image acquisition procedure that is used currently.

2. Achieving algorithm recognition of images corresponding to changes in polar-

ization as small as 1�.

We will outline these achievements below.

Work done in Spring 2021 consisted of constructing and optimizing an image

classification algorithm to identify di↵erent laser beam polarizations. The machine

learning algorithm was constructed in MATLAB to distinguish between two image

categories, one polarization angle and another. Figure 3.1 shows sample images of the

speckle patterns taken at four di↵erent polarization angles: 0�, 6�, 10�, and 20�. Note

the increasing similarities between image features as the di↵erence in angle decreases.

For a 6� di↵erence in polarization, the features become di�cult to distinguish visually.

Therefore, we expected the algorithm to identify large di↵erences in polariza-

tion easily. Indeed, we did an initial check of training the algorithm to distinguish

between a polarization angle di↵erence of 45�, and it was 100% accurate. As real
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magnetically-induced changes in polarization are fractions of degrees, the challenge

would be to train the algorithm to distinguish between images that are much more

similar. However, against our expectations, the initial algorithm was 100% accurate

in distinguishing di↵erences in polarization as small as 2�. This result seemed too

good to be true. We concluded that the success of the identification was due to lack

of su�cient variation in the image data - essentially, the algorithm was being trained

on 100 or so identical images and then being tested on another identical image. This

scenario does not model reality well. So, we developed a data collection procedure

that introduces a realistic amount of variation in the speckle patterns.

First, we set the waveplate to a given polarization angle and recorded the desired

number of images, usually 25. We captured an image every 5 seconds to allow for

natural evolutions of the speckle patterns with time. This drifting of the patterns

can be caused by factors such as temperature changes or mechanical stress/strain on

the fiber from small vibrations or pressure perhaps. After recording the images of

a given polarization angle, we rotated the waveplate to the other desired angle and

captured another 25 images, one image every 5 seconds. We rotated the waveplate

back to the original angle and repeated this process 4 times. Thus, our final training

set consisted of 125 images at each polarization. Unlike in the case of aquiring 125

images of a given polarization all at once, we found that rotating the waveplate back

and forth during data acquisition introduced just enough lack of exact reproducibility

to provide adequate variation in our images.

With this new data collection procedure, our algorithm performance dropped to

around 80% when distinguishing a 2� polarization di↵erence. Therefore, we concluded

that the method of rotating the waveplate back and forth was e↵ective at introducing

variation into our images.

Following this drop in accuracy, we optimized the algorithm training parameters
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Figure 3.1: Shown above are sample images of speckle patterns at four di↵erent
polarizations, 0�(top left), 6�(top right), 10�(bottom left), and 20�(bottom right),
used in algorithm training.

until it was able to distinguish a 1� di↵erence in polarization angle with 96% accuracy.
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Chapter 4

Current Work to Reduce

Algorithm Sensitivity to Intensity

The goal for the current work is twofold: we now hope to identify changes in

polarization that are smaller than 1� in order to achieve magnetic field measurement

on the nanoT scale. We also want to render the algorithm insensitive to external

factors that may a↵ect the algorithm’s “interpretation” of the image data, such as

changes in image intensity.

4.1 Basis Algorithm Tests

Early in the semester, we set up the experiment as outlined in Section 2.1. As a

basis, we performed preliminary tests to ensure comparability to results obtained in

the spring. We used the “back and forth waveplate rotation” method to obtain image

data at 40�, 20�, 10�, 2�, 1�, 0.5�, and 0�. For each angle, the training set contained

125 images, and the testing set contained the same amount. We then trained the

algorithm to distinguish between each angle and 0�.

We found that the algorithm was highly accurate in recognizing polarization angle

di↵erences of 40�, 20�, 10�, 2�, and 1�. We found that a 0.5� di↵erence in polarization

angle, however, reduced the accuracy to 78%. Interestingly, when the number of
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epochs was doubled to 200, the algorithm was able to distinguish a 0.5� di↵erence

with 90% accuracy.

4.2 Exploring Algorithm Sensitivity to Laser Power

Realistically, the laser’s power may fluctuate, leading to changes in intensity of

di↵erent features in the speckle patterns. We investigated the algorithm’s response

to these changes so that we could ultimately prevent them from hindering algorithm

performance. A typical laser power fluctuates by a few percent, however, we wanted

the algorithm to be insensitive to even greater changes for maximum robustness.

In the following sections, we will outline a number of tests that we conducted to

evaluate, and ultimately minimize, the e↵ect of changing image intensity on algorithm

performance. Since we had shown the algorithm to have a high performance accuracy

at di↵erences in polarization as small as 1�, we conducted all intensity tests with 0�

and 1� as our two image categories.

4.2.1 Maximum Di↵erence in Power of 4 mW

Using the back and forth waveplate rotation method, we collected 5 sets each of

0� polarization and 1� polarization. The first set contained 125 images at 1 mW laser

power, the second 125 at 2 mW, and so on until 5 mW. We used a variable ND filter

to adjust the power incident into the multimode fiber. We then trained the algorithm

to distinguish between 0� and 1� at 1 mW and between 0� and 1� at 5 mW, both for

100 epochs. The algorithm was later tested on images of these same polarizations,

but taken at di↵erent powers between 1 and 5 mW. The goal was to see how big

of a di↵erence in power the algorithm could tolerate before failing to identify the

di↵erent polarizations. Figure 4.1 is a logical table showing the algorithm performance

accuracies for all possible combinations of training and testing on di↵erent powers.
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Figure 4.1: Image Classification Accuracies for distinguishing between a fiber input
beam polarization 0� vs. 1� polarization. Accuracies range from 0 (0% accurate) to 1
(100% accurate). The first row is the training image powers and the first column in
the testing image powers. Thus, shown in all other cells are classification accuracies
for all possible combinations of training on 1 mW or 5 mW and testing on 2, 3, or 4
mW. Training and testing on the same powers are shaded out.

The algorithm as 50-65% accurate in all cases. A 50% accuracy means the algo-

rithm is essentially guessing, and a 60% accuracy is not much better. We had expected

that the algorithm would have been more successful, at least for small di↵erences in

power, like 1 mW.

There are two main possibilities for an image classification algorithm to return a

50% performance accuracy: 1) the algorithm did not learn during the training process;

2) the algorithm learned the training images well, but the algorithm interprets the

testing images as very di↵erent from the ones familiar to it. We eliminated possibility

1) by examining the learning curves for training on 1 and 5 mW. As shown in Figs 4.2

and 4.3, both trainings were successful, with the performance accuracies increasing

to near 100% and the loss decreasing to about 0.4.

We concluded that possibility 2) was likely true. A 4 mW di↵erence in power was
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Figure 4.2: Learning Curve for 0� vs.
1� polarization, at 1 mW image inten-
sity. The x axis is the number of train-
ing iterations, and the y axis is training
accuracy (above) and training loss (be-
low).

Figure 4.3: Learning Curve for 0� vs. 1�

polarization, at 5 mW image intensity

too high for the algorithm to withstand. To investigate this hypothesis further, we

conducted similar trainings, focusing on di↵erences in power of 1.5 mW and smaller.

These tests are outlined in the next section.

4.2.2 Maximum Di↵erence in Power of 1.5 mW.

We examined the e↵ect of smaller di↵erences in power on algorithm perfor-

mance. We expected that these smaller di↵erences would lead to testing images that

were more recognizable to the algorithm. Using again the back and forth waveplate

rotation method, we collected 4 sets each of 0� polarization and 1� polarization. The

first set contained 125 images at 0.5 mW laser power, the second 125 at 1 mW, the

third 125 at 1.5 mW, and the fourth 125 at 2 mW. As before, we trained the algo-

rithm to distinguish between 0� and 1� at a certain power for 100 epochs, and tested

the algorithm on images of these same polarizations, but taken at a di↵erent power.

Figure 4.4 shows the logical table representing the algorithm performance accuracies
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Figure 4.4: Image Classification Accuracies for 0� vs. 1�, training and testing on
images taken at 0.5, 1, 1.5, and 2 mW. The first gives the training images’ power,
and the first column the testing images’ powers. Thus, shown in the other cells are
classification accuracies for all possible training and testing combinations.

for all possible combinations of training and testing on di↵erent powers.

The algorithm was about 60% accurate or worse, except for three exceptions:

• Train on 0.5 mW, test on 1 mW: 80% accurate

• Train on 0.5 mW, test on 2 mW: 84.4% accurate

• Train on 1 mW, test on 2 mW: 94.4% accurate.

We noted also that switching the training and testing sets did not necessarily

guarantee the same performance accuracy. For example, training on 1 mW and

testing on 2 mW was 94.4% accurate, but the reverse scenario was 50% accurate.

Again, we eliminated possibility 1) of poor training by examining the learning curves

corresponding to these results. As shown in Fig 4.5, the trainings for all four values

of power were successful, with the performance accuracies increasing to near 100%

and the loss decreasing to 0.5 or below.

Therefore, we hypothesized that the algorithm is so sensitive to changes in power

that even a 0.5 mW di↵erence in image intensity rendered the testing images unrec-
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Figure 4.5: Learning Curves when training to distinguish between 0� and 1� polar-
ization, where each plot shows trainings conducted on images taken at four di↵erent
fiber input powers, 0.5, 1, 1.5, and 2 mW. The top left image shows the training
conducted on 0.5 mW images, the top right 1 mW, the bottom left 1.5 mW, and the
bottom right 2 mW.

ognizable. As of now, we are unable to explain the three exceptions, though it is

interesting that 2/3 of them occur when training on 0.5 mW, the dimmest setting.

4.2.3 Training on Mixed Power Datasets

Because our algorithm seemed very sensitive to small changes in image intensity,

we tried to improve performance by training on a set of images taken at multiple laser

powers. We used data acquired in the previous section (0.5, 1, 1.5, 2 mW) to conduct

these tests. We started by including 2 di↵erent values of power in the training set.
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Figure 4.6: Learning curve for 0� and 1�, where the training set consisted of images
taken at 0.5 mW and 2 mW.

The training set contained 120 images of 0�, divided into 60 images taken at one

power and 60 at another, and 120 images of 1�, with 120 image divided evenly among

those same two powers. We trained on all possible combinations of two of four power

levels. We then tested on a single power of the four, where the testing set contained

125 images of each angle, as before.

When first training on a mixed power dataset, the learning curves were subopti-

mal. For example, when training on a set containing images at 0.5 and 2 mW, the

plot did not converge to a high accuracy within 100 epochs, see Figure 4.6. This poor

learning led to a performance accuracy of 66.4% when testing on images at 0.5 mW.

So, we doubled the number of epochs for subsequent trainings and saw significant

improvement in the learning curves as shown in Figure 4.7.

Figure 4.8 shows the results of these trainings with 200 epochs. Training on
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Figure 4.7: Learning Curves for training to distinguish between 0� and 1�, where
training sets consisted of combinations of 2 power values among 0.5, 1, 1.5, and 2
mW. 200 training iterations were used to allow convergence to high accuracy and low
loss. The top right image shows training on images taken at 0.5 and 1 mW, the top
middle at 0.5 mW and 1.5 mW, the top right at 0.5 mW and 2 mW, the bottom left
at 1 mW and 1.5 mW, the bottom middle at 1 mW and 2 mW, and the bottom right
at 1.5 mW and 2 mW.

mixed power data sets improved the performance accuracies considerably compared

to the single power training sets. Promisingly, whenever the algorithm was tested

on a power included in the set it was trained on, it performed excellently. However,

if the testing level of power was not included in the training set, half the time the

algorithm performed well and the other half it performed poorly. The main pattern

we observed was that if testing power was between the minimum and maximum power

levels included in the training set, then the performance was high. We will investigate

this pattern further in the upcoming sections.

It seemed that the algorithm needed to be trained on varying levels of power in

order to become insensitive to power variation. We now trained the algorithm on sets
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Figure 4.8: Image Classification Accuracies for 0� vs. 1�, training on images taken at
two di↵erent powers and testing on a single power. The first row indicates the power
combination trained on, while the first column indicates the single power tested on.
All possible combinations of two power levels were tried for training.

containing three di↵erent powers out of the four. This time, the training set for each

angle, 0� and 1�, contained 180 images, 60 at each power. We trained on all possible

combinations of three of four power levels. We then tested on a single power of the

four. Again, the testing set contained 125 images of each angle, as before.

Training on three power levels improved algorithm performance further. The

learning curves remained ideal (Fig 4.9), and all accuracies were above 96%, with just

two exceptions (See Figure 4.10) As before, the algorithm was consistently accurate

in identifying testing images when the image’s power matched one of the power levels

in the training set. Again, when the testing level of power was not included in the

training set, the algorithm performed well only if the testing level was between the

minimum and maximum training levels.

4.2.4 Training on Modulated Power

We concluded that training on datasets with images taken at multiple powers

best reduced algorithm sensitivity to power. Since a laser may fluctuate by small
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Figure 4.9: Learning Curves for training to distinguish between 0� and 1�, where
training sets consisted of combinations of 3 power levels among 0.5, 1, 1.5, and 2
mW. The top left training was conducted on images taken at 0.5 mW, 1 mW, and
1.5 mW, the top right at 0.5 mW, 1 mW, and 2 mW, the bottom left at 0.5 mW, 1.5
mW, and 2 mW, and the bottom right at 1 mW, 1.5 mW, and 2 mW.

amounts within a given range, a more representative training set would consist of

images taken at random powers within that range. To achieve this randomness, we

used an acousto-optical modulator (AOM) placed before before the waveplate. We

sent the first di↵raction order down the multimode fiber and set the modulation

frequency to 0.3 Hz. We used the variable ND filter after the waveplate to adjust the

input power to vary between 0.6 and 0.9 mW (the range of power was limited by the

AOM). Using the back and forth waveplate rotation method, we collected 125 images
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Figure 4.10: Image Classification Accuracies for 0� vs. 1�, training on images taken
at three di↵erent powers and testing on a single power. All possible combinations of
two power levels were tried for training.

of 0� polarization and 125 of 1� polarization. We captured 3 images every second

so as to allow the images to show the random distribution of powers created by the

AOM.

With this training set, we then acquired test images at 0.7, 0.8, and 0.9 mW. We

turned the AOM o↵ and used the ND filter to achieve these powers. Each testing set

consisted of 125 images taken 0.3 seconds apart. (Note that we took a similar testing

set with images taken 5 seconds apart, as before, but we found that the duration of

pause did not a↵ect the algorithm performance).

As shown in Figure 4.11, the algorithm easily learned to identify the training

images at randomly distributed powers. However, the performance accuracies were

much worse than expected, especially given the promising results described in the

previous section. Table 4.1 shows that the algorithm was 50% accurate when being

tested on 0.8 mW and 0.9 mW, and 81% accurate when tested on 0.7 mW.
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Figure 4.11: Learning curve for a training set consisting of a random distribution
of image intensities between 0.7 and 0.9 mW. These training images were obtained
using an AOM.

Testing Power ( mW) Accuracy
0.7 0.81
0.8 0.50
0.9 0.50

Table 4.1: Image Classification Accuracies for 0� vs. 1�, training on a random assort-
ment of power levels between 0.7 mW and 0.9 mW, obtained using the AOM. We
conducted 3 tests of this training, with images at 0.7 mW, 0.8 mW, and 0.9 mW.
The testing images at each power were taken 0.3 seconds apart.

4.3 Training the Algorithm to Distinguish between

Images Taken at Di↵erent Powers

To investigate more thoroughly the algorithm’s response to di↵erent image in-

tensities, we reversed the training scenario with regards to polarization and power.

Using the same data as in Section 4.2.3, we fixed the polarization angle and trained
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the algorithm to distinguish between images at di↵erent intensities. Ultimately, we

want the algorithm to view images at the same polarization but di↵erent intensity as

identical because, in that case, the algorithm would be using polarization features,

rather than intensity features, to distinguish between images.

We trained the algorithm to distinguish between all possible combinations of 2

power levels, among 0.5, 1, 1,5, and 2 mW. We ran the trainings for 100 epochs, to

ensure consistency with previous protocols. Each training set contained 100 images.

Notably, though, all the learning curves converged to near 100% before the 10th

epoch (Fig 4.12 ). By contrast, when distinguishing between di↵erent polarizations,

the algorithm needed 100 or more epochs to reach high accuracy. We also note that

the loss in these cases decreased essentially to zero, whereas in the previous scenario,

the loss never reached below 0.4. Therefore, we postulate that the algorithm picks

up on di↵erences in intensity very easily and that di↵ering intensity features take

precedent over the di↵ering spatial/shape features that changing polarization causes.

This hypothesis may explain the low accuracies we saw when training the algorithm

to distinguish between di↵erent polarizations when the power varied: It would mean

that the algorithm sees test images of the same polarization, but di↵erent intensity,

as completely di↵erent from the training images.

Indeed, for a fixed polarization of 0�, the algorithm was 100% accurate in testing on

images of two di↵erent power levels at the same polarization, with one exception.(See

Table 4.2). There were 25 images for each power in the testing set. For the same

training scenario, we also tested the algorithm on images of 1� polarization, as shown

in Table 4.3. Notably, changing the polarization of the testing images did not a↵ect

the algorithm performance. These results suggest that, when di↵ering intensities are

present among the training and testing images, the algorithm relies heavily on these

features, thus preventing it from easily distinguishing di↵erent polarizations.
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Training Powers ( mW) Testing Accuracy
0.5 vs. 1 0.5
0.5 vs. 1.5 1
0.5 vs. 2 1
1 vs. 1.5 1
1 vs. 2 1
2 vs. 1.5 1

Table 4.2: Image classification accuracies for training the algorithm to distinguish
between speckle patterns at di↵erent intensities. The first column displays the two
power levels the algorithm was trained on, and the second displays the resulting
accuracy in testing. All training and testing images were of a 0� polarization. There
were 100 images per power level in the training set and 25 per power level in the
testing set.

Training Powers ( mW) Testing Accuracy
0.5 vs. 1 0.5
0.5 vs. 1.5 1
0.5 vs. 2 1
1 vs. 1.5 1
1 vs. 2 1
2 vs. 1.5 0.94

Table 4.3: Image classification accuracies for training the algorithm to distinguish
between speckle patterns at di↵erent intensities. All training images were of a 0�

polarization, and all testing images were of 1� polarization.
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Figure 4.12: Learning Curves for training the algorithm to distinguish between images
at two di↵erent intensities, where the polarization was fixed to 0�. The top left curve
shows training on 0.5 mW vs. 1 mW, the top middle 0.5 mW vs. 1.5 mW, the top
right 0.5 mW vs. 2 mW, the bottom left 1 mW vs. 1.5 mW, the bottom right 1 mW
vs. 2 mW, and the bottom right 1.5 mW vs. 2 mW.

4.4 Fixing Image Saturation Issues

After the inconclusive investigations into the algorithm’s sensitivity to power,

outlined in sections 4.2 and 4.3, we examined the image data more closely and de-

termined that many of the images used were saturated. Saturation could obscure

important image features. During data processing, we normalize the images so that

their pixel values fall between zero and one. This way, images taken at di↵erent power

levels should not show any visual di↵erences in intensity. The hypothesis was, then,

that the algorithm would be insensitive to changes in power. However, the saturation

was skewing the normalization process, so that di↵erences in intensity were in fact

visible. Figure 4.16 shows two example normalized images, one taken at 0.8 mW and
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Figure 4.13: 0.8 mW Figure 4.14: 0.2mW
Figure 4.15: 0.8 mW/0.2
mW

Figure 4.16: The top two images are the incorrectly normalized speckle intensity
profiles of the beam at 0.8 mW (left) and 0.2 mW (right). The bottom left image
shows a cross section of the 0.8 mW image taken at the 125th row of pixels. Plotted
are the normalized (between 0 and 1) intensity vs. pixel number, where 1 is the
leftmost pixel and 356 the rightmost. The bottom middle image shows the same plot
for the 0.2 mW image. The bottom right image is the cross section of the 0.8 mW
image divided by the cross section of the 0.2 mW image vs. pixel position.

one at 0.2 mW, which, despite normalization, show visible di↵erences in intensity.

Examining a cross section of the 0.8 mW image reveals saturation at the 163rd pixel

since the normalized pixel intensity is cut o↵ at 1. Dividing this cross section by

the same cross section in the 0.2 mW image shows an average pixel intensity above

one, meaning that the normalization was unsuccessful. That is, the images taken at

di↵erent powers do not have the same pixel intensity values.

The saturation was occurring because the camera exposure time was set to “au-

toexposure” in the data acquisition script. We therefore changed the exposure time

manually to 5000. To check for saturation in the new images, we plotted a cross

39



Figure 4.17: The top two images are the correctly normalized speckle intensity profiles
of the beam at 1 mW (left) and 0.2 mW (right). The bottom left image shows a cross
section of the 1 mW image taken at the 125th row of pixels. Plotted are the normalized
(between 0 and 1) intensity vs. pixel number, where 1 is the leftmost pixel and 356
the rightmost. The bottom middle image shows the same plot for the 0.2 mW image.
The bottom right image is the cross section of the 1 mW image divided by the cross
section of the 0.2 mW image vs. pixel position.

section of an image at a given power divided by the same cross section of an image

at a di↵erent power. The plot showed values hovering around 1 with fluctuations due

to noise, as expected. There is also some noise on the first 50 or so pixels due to

the image being dark at those points. Similarly, the resulting png images showed no

visual di↵erences in intensity - see Figure 4.17 for an example of images at 1 mW and

0.2 mW, and compare to Figure 4.16.

Now avoiding image saturation, we took a new set of images at 0� and 1�, at power

levels of 1, 0.5, 0.3, and 0.2 mW. We performed the three main trainings that we had

tried in the past, which will be outlined in the following sections.
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Figure 4.18: Image Classification Accuracies for 0� vs. 1�, training and testing on all
possible combinations of 0.2 mW, 0.3 mW, 0.5 mW, and 1 mW.

4.4.1 Distinguishing between 0� and 1�, Train on One Power

Level, Test on Another

We first followed the protocol given in section 4.2.2, where we trained the algorithm

to distinguish between 0� and 1�, training on one power level and testing on a di↵erent

power level. The powers used were 0.2 mW, 0.3 mW, 0.5 mW, and 1 mW. Despite

our avoidance of saturation and successful normalization, we saw similar behavior as

in the past. As shown in Figure 4.18, the algorithm was about 50% accurate for all

training/testing combinations. The training plots also look ideal and similar to past

plots in terms of convergence time and loss decrease. We were surprised to see no

obvious improvement over trainings using saturated images, as shown in Figure 4.19.

4.4.2 Distinguishing between 0� and 1�, Train on Mixed Power

Levels

We next followed the protocol given in section 4.2.3, where we trained the

algorithm to distinguish between 0� and 1�, this time training on a set of images

containing 3 di↵erent power levels. As before, the algorithm was highly accurate when

tested on a power level included in the training set. However, as shown in Figure 4.20,
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Figure 4.19: Learning Curves when training to distinguish between 0� and 1� polar-
ization, where each plot shows trainings conducted on unsaturated images taken at
four di↵erent fiber input powers, 0.2, 0.3, 0.5, and 1 mW. The top left image shows
the training conducted on 0.2 mW images, the top right 0.3 mW, the bottom left 0.5
mW, and the bottom right 1 mW.

when testing on a power level not included, there were two cases where the algorithm

was over 90% accurate. In one other case, though, it was 78% accurate, and in the

other, it was 56% accurate. These results follow the same pattern we noticed before

where the testing images must be taken at levels of power between the minimum and

maximum training powers in order to achieve high performance. It seems in general

that the algorithm can extrapolate between two training endpoints, but not outside

of them.

The corresponding training plots are shown in Figure 4.21.
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Figure 4.20: Image Classification Accuracies for 0� vs. 1�, training on images taken
at three di↵erent powers among 0.2 mW, 0.3 mW, 0.5 mW, and 1 mW, and testing
on one of those powers. All possible combinations of two power levels were tried for
training.

4.4.3 Train the Algorithm to Distinguish between Two In-

tensities for a Fixed Polarization

Finally, we followed the protocol outlined in section 4.3. We fixed the polariza-

tion to 0� and trained the algorithm to distinguish between two di↵erent intensities.

With one exception, the algorithm was 100% accurate in all cases (Table 4.4), just

as before. Furthermore, the training plots converged to 100% accuracy by the tenth

epoch, and the loss decreased to almost zero (Figure 4.22). The results of this third

test especially indicate that the algorithm is picking up on di↵erences in intensity,

despite our e↵orts to eliminate these di↵erences through normalization. Initially we

thought that this behavior could be explained by the algorithm picking up on the

noise pixels, from positions 1-50 shown in Figure 4.17. However, as will be discussed

in Section 6.3, we found that blocking out regions of the images outside the actual

beam did not a↵ect performance accuracy. Another possibility is that this noise acts

as a background that remains present in the images even after normalization. In this

case, we would need to calculate this background and subtract it out.

At this time, therefore, we conclude the investigations into intensity by noting that
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Figure 4.21: Learning Curves for training to distinguish between 0� and 1�, where
training sets consisted of combinations of 3 power levels among 0.2, 0.3, 0.5, and 1
mW. The top left training was conducted on images taken at 1 mW, 0.3 mW, and
0.2 mW, the top right at 1 mW, 0.5 mW, and 0.2 mW, the bottom left at 1 mW, 0.5
mW, and 0.3 mW, and the bottom right at 0.5 mW, 0.3 mW, and 0.2 mW.

algorithm performance depends on image intensity more strongly than expected. We

are content, then, to keep the laser intensity constant in further experiments, with

the acknowledgement that the matter of intensity merits more investigation when

time allows. The algorithm’s ability to extrapolate between levels of training powers

is encouraging, but we would eventually like to investigate why it cannot extrapolate

outside the training levels. Practically, though, this drawback could be easily solved

by knowing the endpoints of the device laser’s intensity fluctuations.
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Training Powers ( mW) Testing Accuracy
0.2 vs. 0.3 1
0.2 vs. 0.5 1
0.2 vs. 1 1
0.3 vs. 0.5 0.78
0.3 vs. 1 1
0.5 vs. 1 1

Table 4.4: Image classification accuracies for training the algorithm to distinguish
between speckle patterns at di↵erent intensities. The first column displays the two
power levels the algorithm was trained on, and the second displays the resulting
accuracy in testing. All training and testing images were of a 0� polarization. There
were 100 images per power level in the training set and 25 per power level in the
testing set.

Figure 4.22: Learning Curves for training the algorithm to distinguish between images
at two di↵erent intensities, where the polarization was fixed to 0�. The top left curve
shows training on 0.2 mW vs. 1 mW, the top middle 0.3 mW vs. 1 mW, the top
right 0.3 mW vs. 0.2 mW, the bottom left 0.5 mW vs. 1 mW, the bottom right 0.5
mW vs. 0.2 mW, and the bottom right 0.5 mW vs. 0.3 mW.
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Chapter 5

Improving Angular Sensitivity

with the Waveplate

Besides decreasing the algorithm’s sensitivity to changing environmental fac-

tors, the goal of this work is to enable the algorithm to detect the small changes in

polarization that correspond to those induced by a magnetic field. By Spring 2021,

the algorithm developed was able to distinguish between changes in polarization as

small as 1�.

After fixing the image saturation issues mentioned in Section 4.4.3, we reassessed

the algorithm’s angular sensitivity. Using the “back and forth waveplate rotation”

method, we took images of multimode fiber output patterns corresponding to polar-

izations of 1�, 12
�
, 14

�
, 18

�
, and 0�. Each training set consisted of 100 images, and each

testing set consisted of 25. As shown in Table 5.1, with the unsaturated images, the

algorithm was able to distinguish between a change in polarization as small as 1
4

�
.

This test was 90% accurate, while a change in polarization of 1
2

�
was 86% accurate,

and a change of 1� was 100% accurate, as before. A change of 1
8

�
was 74% accurate,

but this result is unreliable as the change in polarization is so small. The waveplate

used had a precision down to 1
25

�
, so we would estimate an instrumental uncertainty

of 1
50

�
. However, a 1

8

�
rotation corresponded to 3

25

�
+ 1

8·25
�
rotation of the waveplate

knob. This extra 1
8·25 was beyond the waveplate’s precision.
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Training Polarizations Testing Accuracy
0 � vs. 1 � 1
0 � vs. 1

2

�
0.86

0 � vs. 1
4

�
0.90

0 � vs. 1
8

�
0.74

Table 5.1: Image Classification Accuracies for changes in polarization of 1�, 12
�
, 14

�
,

and 1
8

�
when using unsaturated images.

As shown in Figure 5.1, the learning curves were ideal in all cases except 1
8

�
,

indicating that the algorithm can indeed learn to distinguish changes in polarization

as small as 1
4

�
.

47



Figure 5.1: Learning Curves for improved angular sensitivity using unsaturated im-
ages. The top left plot shows training to distinguish between 0� and 1�,the top right
shows 0� and 1

2

�
, the bottom left shows 0� and 1

4

�
, and the bottom right shows 0� and

1
8

�
.
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Chapter 6

Implementing a Faraday

Magnetometer

6.1 New Setup Replacing the Waveplate with a

Solenoid

With the improved angular sensitivity, we transitioned to imposing a real mag-

netic field onto our setup instead of using a waveplate to rotate the laser polarization.

Thus, we moved to the final experimental setup, originally discussed in Chapter 2

and shown in Figure 2.1.

6.2 Faraday Magnetometer Benchmark Angular Sen-

sitivity Tests

After calibrating the TeachSpin apparatus to determine what current values

corresponded to what angle of polarization rotation (see Figure 2.1), we performed

similar tests to those done with the waveplate to ensure that we obtained comparable

algorithm performance. We took image data at a 0 �, 0.5 �, 1�, 1.5 �, and 2�. As before,

the training sets for each angle consisted of 100 images and the testing sets consisted

of 25. We took all the images for each angle in one straight set since there was no

equivalent to the “back and forth waveplate rotation” method with the solenoid. A
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Training Polarizations Testing Accuracy
0 � vs. 0.5 � 0.92
0 � vs. 1 � 1
0 � vs. 1.5 � 1
0 � vs. 2 � 1
0.5 � vs. 1 � 0.8
0.5 � vs. 1.5 � 1
0.5 � vs. 2 � 1
1 � vs. 1.5 � 1
1 � vs. 2 � 1
1.5 � vs. 2 � 1

Table 6.1: Image Classification Accuracies for the benchmark Faraday magnetometer
tests.

pause of 3 seconds separated each image capture. The trainings were conducted for

100 epochs.

All possible combinations of angles were tested, and the training plots were ideal

in all cases - four examples are shown in Figure 6.1. As shown in Table 6.1, the

performance accuracy was 100% in all cases except two. From here, we can conclude

that so far the algorithm can generally distinguish between changes in polarization

as small as half a degree.

6.3 Imposing Masks on the Image Data

Our earlier tests of image intensity brought up concerns that perhaps the algo-

rithm was picking up on di↵erences in the images that lay outside the actual beam,

in the black background. To eliminate this possible e↵ect, we henceforth imposed

circular masks on our images to “block out” non-beam regions.

To create the masked images, we passed the image data through a MATLAB code

that set all the pixels outside a given radius to the same value. Thus, all the images

would be uniform outside the given circle. The circle radius and center location could
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Figure 6.1: Learning Curves for determining angular sensitivity using the Faraday
magnetometer. The top left plot shows training to distinguish between 1� and 0.5�,
the top right shows 1� and 1.5�, the bottom left shows 1� and 2�, and the bottom
right shows 0� and 0.5�.

be adjusted to match the data.

The data from Section 6.2 showed speckle patterns of radius about 125 pixels

centered about at coordinates (175, 150). We imposed masks with these specifications

on this data and repeated the trainings. For the training categories that were 100%

accurate without the mask, imposing the mask resulted in no change. Interestingly,

in the 0 � vs. 0.5 � and the 0.5 � vs. 1 � cases, which had below 100% accuracy without

the mask, imposing a mask did not significantly improve performance. The former
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Figure 6.2: Sample Masked Images, where the mask has been outlined for viewing
ease. Left: sample data with a mask of 75 pixel radius. Right: sample data with
mask of 125 pixel radius.

case became 94% accurate and the latter 78% accurate, from 92% and 80% accurate,

respectively. Both of these small changes are likely attributable to the uncertainty

in algorithm performance. Thus, we concluded that the algorithm was not using

non-beam regions to distinguish between di↵erent polarizations.

6.4 Exploring Performance Dependence on Mask

Size and Location

We hypothesized that reducing the size of the masks could improve accuracy by

allowing the algorithm to focus on a smaller area of the complicated speckle patterns,

while also decreasing computational power.

We first investigated how far the mask radius could be decreased before perfor-

mance su↵ered. We used the data described in the previous two sections. We con-

ducted this study on images of 0� and 1� because the algorithm was 100% accurate

at distinguishing these two angles without a mask and with a mask the size of the

beam. We tested mask radii of 125, 100, 75, 50, 25, 12, 6, and 3 pixels. The masks

were centered on the beam at an x value of 175 and y value of 150. The trainings
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lasted 100 epochs. Surprisingly, we found that the algorithm was 100% accurate in

distinguishing these two angles at all the radii listed tested. This indicates that the

algorithm can distinguish between detailed image features at the pixel level.

With these promising results, we tested whether decreasing the mask size would

improve the performance when distinguishing between the pairs of angles that yielded

less than 100% accuracies without a mask and with a mask of 125 pixels, 0� vs. 0.5�

and 0.5� vs. 1�.

For a 50 pixel radius mask centered on the beam, the algorithm was 92% accurate

at distinguishing between 0� and 0.5�, and for a 25 pixel radius mask centered on

the beam, it was 88% accurate for those same angles. When distinguishing between

0.5� and 1� with a 50 pixel radius mask, centered, it was 74% accurate. Without a

mask, the algorithm was 92% and 80% accurate at distinguishing these two pairs of

angles. Thus, decreasing the mask size did not improve performance that was sub par

without a mask. We may try even smaller mask radii in case, but we do not expect

improvement.

We also experimented with changing the location of the center of the mask in

our images. As before, we started investigations with an angle pair that yielded high

accuracies without a mask. We chose 1� vs. 1.5�. Using a radius of 20 pixels, so as to

avoid hitting the edge of the beam, we tested center locations at (x, y) coordinates

of (150, 110), (220, 200), and (210, 100). All cases were 100% accurate. Because of

such e↵ective training, we were able to reduce the number of training epochs to just

40.

From all these tests involving image masks, we concluded that imposing a mask to

“block” out non-beam regions of the image is a best practice that we will incorporate

into our data processing procedure from now on. Changing the size or location of the

mask does not seem to have any benefit.
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Training Polarizations Number of Epochs Testing Accuracy (%)
0 � vs. 1

2

�
100 1

0 � vs. 1
4

�
100 66

0 � vs. 1
4

�
200 74

0 � vs. 1
8

�
100 84

0 � vs. 1
8

�
200 72

Table 6.2: Image Classification Accuracies for Fractional Angles Using the Faraday
Magnetometer.

6.5 Testing Smaller Angles

We now tested the angular sensitivity of our Faraday magnetometer. We took

image data at 0�, 1
8

�
, 14

�
, and 1

2

�
, and tested all possible combinations. As shown in

Table 6.2, the algorithm was 100% accurate in distinguishing a 1
2

�
change in polariza-

tion, as before. However, for a 1
4

�
change, it was only 66% accurate with 100 epochs,

and 74% accurate with 200 epochs. Strangely, with 100 epochs, it was 84% accurate

in distinguishing a 1
8

�
change, but this accuracy decreased to 72% when doubling the

number of epochs. These results contradict our two basic expectations that a smaller

change in polarization will be less accurate and a larger number of epochs will improve

performance. We also observe from the learning curves in Figure 6.3 that despite the

fact the accuracy increases to 100% in all cases, the loss does not reach or just barely

reaches zero. This suboptimal loss could indicate, that though the algorithm has high

confidence, it is not su�ciently robust in testing (see Section 2.2.1). The next section

will discuss e↵orts to understand and improve these inconsistencies.

6.6 Improving Angular Sensitivity of the Faraday

Rotation Magnetometer

In this last section, we will discuss methods we tried to improve the angular

sensitivity of the Faraday magnetometer and to resolve the questions that concluded
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the last section. To address these inconsistent results, we first tried increasing the

size of the testing and training sets to 500 images in each. We also ensured that

images were placed into the training and testing sets randomly. With these changes,

we observed drastic improvements.

Note that we attribute the vast majority of this improvement to the larger data

set size rather than the random image distribution into the testing and training

sets. With previous, smaller datasets, we tried swapping the images included in the

training and testing sets and found no change performance, so we concluded that

randomly distributing the images would not greatly a↵ect performance. We merely

implemented the random distribution as a best practice.

We achieved to 100% accuracy in detecting a change in polarization as small as

0.6 x 10�4 �, as shown in Table 6.3. Note that in this Table, magnetic field values were

calculated using equation 1.1 after � was calculated from the current vs. polarization

calibration shown in Figure 2.2. We used a value of CV = 23 rad/(T·m), which is

the value for 650 nm light. Our light was of a higher wavelength (780 nm), so our

reported values of B might be slightly high. We were unable to find a reference that

reported a value of CV for SF-59 glass at 780nm.

The learning curves shown in Figure 6.4 were ideal. This change in polarization

corresponds to a magnetic field of about 0.5 µT. When measuring an angle this small,

we ran up against the precision of our mA power supply. So far, there is no indication

that the algorithm will struggle to distinguish smaller changes in polarization, which

can be obtained with an extra sensitive power supply.

We thus conclude that a training set of 100 images was too small for this type of

training when the change in polarization was so small.

We are currently continuing e↵orts to push the algorithm’s sensitivity lower. So

far, the only obstacle is the precision of our power supply, which is sensitive up to
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Training Polarizations (x 10�4 degrees) Magnetic Field (µT ) Testing Accuracy (%)
0 vs. 156.3 119 1
0 vs. 78.1 59 1
0 vs. 39.0 30 1
0 vs. 19.5 15 0.998
0 vs. 6.8 5 1
0 vs. 5.0 4 0.999
0 vs. 2.4 2 1
0 vs. 0.6 0.5 1

Table 6.3: Image Classification Accuracies for Smaller Fractional Angles and Corre-
sponding Magnetic Fields.

0.1 mA. There are no indications yet that the algorithm will fail at smaller magnetic

fields.
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Figure 6.3: Learning Curves for determining angular sensitivity using the Faraday
magnetometer. The topmost plot shows training to distinguish between 0� and 1

2

�
, the

second row shows 0� and 1
4

�
for 100 and 200 iterations (left and right, respectively),

and the bottom row shows 0� and 1
8

�
for 100 and 200 iterations (left and right,

respectively).
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Figure 6.4: Learning curves for determining further angular sensitivity using the
Faraday magnetometer. The top left plot shows training to distinguish between 0�

and 156.3 x 10�4 �, the top right shows 0� and 19.5 x 10�4 �, the bottom left shows
0� and 5.0 x 10�4 �, and the bottom right shows 0� and 0.6 x 10�4 �.

58



Chapter 7

Conclusion

We constructed an optical fiber-linked magnetometer for magnetic field mea-

surement. Using this unique approach, we detected a change in magnetically-induced

laser polarization as small as 0.6 x 10�4 degrees, or 1.0 x 10�5 rad, with 100% accuracy,

which corresponds to a magnetic field of 0.5 µT.

For this work, we constructed a convolutional neural network capable of distin-

guishing the small changes in polarization that occur in the presence of a magnetic

field. We tested the algorithm first using a waveplate to obtain a preliminary angular

sensitivity of 1
4

�
. We tested the algorithm’s response to changing image intensity. We

concluded that the algorithm is very sensitive to changes in image intensity even when

the images are all unsaturated and then normalized identically. We implemented the

procedure of imposing masks on the images, which confirmed that the algorithm was

not training on non-beam regions of the images.

When replacing the waveplate with TeachSpin’s Faraday rotation apparatus, we

found that we could improve the device’s angular sensitivity beyond 1
8

�
by training

on a data set five times the size of the original sets we had used.

To summarize, in addition to optimizing the image classification algorithm itself,

we also developed a variety of data collection and processing procedures that lead to

optimal performance. They are:
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• Collecting all the image data for a single training episode as close together

as possible in order to avoid large scale drifts in the speckle patterns. We

acknowledge that for a practical, commercial device, this protocol would be

di�cult. We will work on ways to mitigate the e↵ects of pattern changes on

performance.

• Rescaling the images from 1280x1024 pixels2 to 320 x 256 pixels2. to reduce

computational power and time.

• Normalize images so their pixel values all fall between 0 and 1.

• Ensure images are unsaturated to avoid skewing the normalization.

• Impose on all images a mask the size of the beam, centered on the beam, as a

best practice.

• Keep laser intensity constant until further investigations into the e↵ect of in-

tensity on performance are done. Currently, it seems that the algorithm can

identify images at new levels of power if that level is within endpoints set by

the training data.

• Allow the performance loss to decrease to zero even if the accuracy has plateaued

at 100% to ensure algorithm robustness.

• Use large training and testing sets - we used 500 images in each.

In the future, to improve the magnetic field sensitivity, we may replace the crystal

with some much more magneto-sensitive material, such as a Rb atomic vapor, which

has a Verdet constant, CV , of 1.4 × 103 [15], two orders of magnitude higher than

that of the glass rod used thus far. Another option is to use a crystal vacancy, such
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as an Nitrogen-Vacancy (NV) center, as the sensor. The NV center would allow for

further compactness, with the possibility of miniaturization in a chip-scale device.

We expect our magnetometer to perform well in applications like defects detection

of metal components, say, in aerospace vehicles or infrastructure. The device’s com-

pact, flexible configuration makes it attractive for settings that require small scale

and mobility. The optical fiber makes the device useful also in settings that are not

electronics friendly because it allows for separation between the actual sensor and

the detection mechanism. using a crystal, we could place the sensor in small, hard-

to-reach places where a magnetic field needs to be measured, while the detection

mechanism is far away in a more accessible location. Thus, the user may detect very

small changes in high magnetic fields. Finally, the AI component allows for high

speed analysis in time-sensitive situations.
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Appendix A

Image Processing Code and Image

Classification Algorithm

A.1 Image Acquisition and Rescaling Code Sam-

ple

The following is the MATLAB code which acquired the speckle pattern images,
scaled them down to 320x256 using interpolation, and normalized their pixel values
between 0 and 1.

/***********************************************************/

/* Sofia Brown */

function [data] = aquire_images_Matrix2RescaledFile(vid_obj,exposure_time,frames_per_trigger,
frame_num)
%% setting defaults
if nargin < 1

vid_obj = ’ mWspinnakerimaq’;
end

if nargin < 3
frames_per_trigger = 1;

end

%% Aquiring Data from Blackfly
% set file name params
date = ’20211117’; %yyyymmdd %
%type_ind = ’10’;% ’00’,’10’,’-10’ (vortex setting)
%pos_ind = ’_t’ ;% ’_L’, ’_R’, ’_C’ (vortex horizontal position) %
pol_angle = ’1’; %Polarization angle in degrees
frame_num = 25 ;%Input number of images you want to be taken per cycle
data_set = ’2’ ; %The number of the data set being taken
power = ’_Half mW_’;
% Run aquisition
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vid = videoinput(vid_obj, 1, ’Mono10Packed’);

%Set camera settings
src = getselectedsource(vid);
src.ExposureAuto = ’Off’;
src.ExposureTime=5000;
vid.FramesPerTrigger = frames_per_trigger;

for i = 1:frame_num
start(vid);
data(:,:,i) = getdata(vid,1);
stop(vid);
pause(5) %Pause number of seconds between images in a cycle
msg=horzcat(’frame ’, num2str(i));
disp(msg)
end

disp(’saving data’)
%file_name = horzcat(date,’_LG_’,type_ind,pos_ind);
filename = horzcat(date, ’_’, pol_angle, ’deg’, power, data_set);
save(horzcat(’Z:\Sofia\Fall2021\RangeofPowers_Unsaturated_11_17_21\UnnormalizedData\’,filename),
’data’);

%
filepath = ’Z:\Sofia\Fall2021\RangeofPowers_Unsaturated_11_17_21\UnnormalizedData\’;
savepath = ’Z:\Sofia\Fall2021\RangeofPowers_Unsaturated_11_17_21\’;
fileext = ’.png’;
Nsmallx = 320;
Nsmally = 256;
start_num = 1;
finish_num = 25;

Matrix2Rescaled2file(filepath,filename, savepath, fileext, Nsmallx, Nsmally, start_num,
finish_num);

end

end

%% Matrix2Rescaled file cuts a 3D matrix into i 2D matrices, rescales them to Nsmallx x
Nsmally pixels (which can increase or decrease the size of the orignal matrix through
interpolation) Then, the rescaled images are saved in the desired format

%% Break 3D matrix
%filepath is a string that is the name of the file and its directory
%savepath is the path where the new files are saved
function [] = Matrix2Rescaled2file(filepath,inputfile, savepath, fileext, Nsmallx, Nsmally,
start_num, finish_num)
datin=load(horzcat(filepath, inputfile));
%Change datain._____ to match variable name
dat = datin.data;
[~, ~, zdim] = size(dat);
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for i = start_num : finish_num
slice = dat(:,:,i);
slice = double(slice);

%% Rescaling

[Nsupery, Nsuperx] = size(slice);

xcsuper = 1: Nsuperx;
xcsuper = xcsuper - 0.5;
ycsuper = 1:Nsupery;
ycsuper = ycsuper-0.5;

% sx, sy: axis scale factors
sx = Nsuperx/Nsmallx;
sy = Nsupery/Nsmally;

xcsmall=1:Nsmallx;
xcsmall = (xcsmall-0.5)*sx;
ycsmall = 1:Nsmally;
ycsmall = (ycsmall-0.5)*sy;

%% Interpolation

[Xcsuper, Ycsuper] = meshgrid(xcsuper, ycsuper);
[Xcsmall, Ycsmall] = meshgrid(xcsmall, ycsmall);

NormInterpIntensity = interp2(Xcsuper, Ycsuper, slice, Xcsmall, Ycsmall, ’makima’);
NormInterpIntensity = NormInterpIntensity.*(sx).*(sy);

%% Saving

%Normalize the interpolated matrix so that i mWrite to png/jpg doesn’t return just black and
white (because slice is double) - shift data so that minimum is zero and maximum is 1

NormInterpIntensity = double(NormInterpIntensity - min(NormInterpIntensity(:))) /
double(max(NormInterpIntensity(:)));

filename = horzcat(inputfile, ’_’, int2str(i));
i mWrite(NormInterpIntensity,horzcat(savepath,’Pngs\Half mW\0deg\’, filename, fileext),’png’);

save(horzcat(savepath, filename, ’.mat’), ’NormInterpIntensity’);

end

end
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A.2 Image Classification Algorithm

The following is the MATLAB code which represents the machine learning
algorithm used to classify the speckle pattern images.

/***********************************************************/

/* Sofia Brown */
%% Optimized parameters (learning rate, epochs, and filter sizes) as of 3.19.21
%Set up training data
rootFolder = ’FolderContainingTrainingsImages’;
categories = {’1deg’,’0deg’};
rng(0);
imds = imageDatastore(fullfile(rootFolder, categories), ’LabelSource’, ’foldernames’,
’FileExtensions’,’.png’);

%Define Layers
layers = [

imageInputLayer([256 320 1])

convolution2dLayer(1,5,’Padding’,2)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,’Stride’,2)

convolution2dLayer(6,15,’Padding’,’same’)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,’Stride’,2)

convolution2dLayer(12,40,’Padding’,’same’)
batchNormalizationLayer
reluLayer

fullyConnectedLayer(2)
softmaxLayer
classificationLayer];

%Set training options
options = trainingOptions(’sgdm’, ...

’InitialLearnRate’,0.00001, ...
’MaxEpochs’ , 100, ...
’Shuffle’,’every-epoch’, ...
’Verbose’,false, ...
’Plots’,’training-progress’);

%Train
[net, info] = trainNetwork(imds, layers, options);
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%% Plot and save the accuracy and loss data
figure();
subplot(2,1,1);
plot(info.TrainingAccuracy, ’b’);
title(’Training Progress’);
grid on;
xlabel(’Iteration’);
ylabel(’Accuracy (%)’);
subplot(2,1,2);
plot(info.TrainingLoss, ’r’);
grid on;
xlabel(’Iteration’);
ylabel(’Loss’);
fname = horzcat(’Z:\Sofia\SavePlotLocation’,’.png’);
print(fname, ’-dpng’)

%Save the raw data as well, with the same name
save(horzcat(’Z:\Sofia\SavePlotRawDataLocation’));
%% Set up test data
rootFolder = ’FolderContainingTestingImages’;
imds_test = imageDatastore(fullfile(rootFolder, categories), ...

’LabelSource’, ’foldernames’);

%Test one at a time
figure();
labels = classify(net, imds_test);

ii = randi(2);
im = imread(imds_test.Files{ii});
imshow(im);
if labels(ii) == imds_test.Labels(ii)

colorText = ’g’;
else

colorText = ’r’;
end
title(char(labels(ii)),’Color’,colorText);

%Test all the data at once and assess the accuracy by generating a confusion matrix
confMat = confusionmat(imds_test.Labels, labels);
confMat = confMat./sum(confMat,2);
mean(diag(confMat))
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