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Abstract

We explore the properties of electromagnetically induced transparency (EIT) and its ap-

plications as a frequency filter in the field of gravitational wave interferometry. Through

modeling and simulation, we determine parameters for atom-light configurations of multi-

state atoms which will theoretically allow for transmission frequencies and intensities of

squeezed light in a range suitable for increasing sensitiviy levels in gravitational wave in-

terferometers. This corresponds to contrasts greater than 50% and linewidths of 100 Hz or

less. We produce EIT experimentally and characterize the distributions by fitting them to

a generalized Lorentzian. The largest contrast observed is 3.9% with a linewidth of 657 Hz.

The smallest linewidth observed is 202 Hz with a contrast of 0.84%.
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Introduction

1.1 Gravitational wave interferometers

A prediction of the general theory of relativity is that moving objects produce waves in

spacetime which propagate in all directions at the speed of light. These gravitational waves

(GWs) contract space in one dimension while expanding space in transverse dimensions,

alternating with each half period. Attempts to confirm the existence of GWs have resulted

in the construction of high precision laser interferometers across the Earth [1]. These inter-

ferometers use mirrors as test masses so that as a GW passes through, one arm will shorten

while the other elongates, causing a measurable phase shift of the light. A simplified diagram

of one of these interferometers is shown in Figure 1.1.

test mass

test mass

test mass

test mass

light storage arm

photodetector

laser

beam

splitter

light storage arm

Figure 1.1: The Laser Interferometer Gravitional Wave Observatory (LIGO) is a Michelson
interferometer with 4 km long Fabry-Perot cavities as arms. LIGO has 2 sites 3000 km apart
in Livingston, Louisiana and Hanford, Washington.
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1.2 Squeezed states and their application to interfer-

ometry

The uncertainty principle places a fundamental limit on how precisely two quadratures, such

as position and momentum, can be known. A generic form of this limit is shown in Equation

1.1, where χ1 and χ2 are the measurable quadratures.

∆χ1∆χ2 ≥ Limit (1.1)

Due to the Heisenberg uncertainty principle, the amplitude and phase of light cannot be

known beyond a quantum limited precision. This uncertainty in a measurement can be

visualized as Figure 1.2, where rather than a distinct point measurement, there is a ”ball” of

uncertainty in the phase-amplitude plane. The area of this ball is governed by the uncertainty

principle, however, there is no law that these uncertainties must be symmetric [1]. For

example, the ball could be squeezed into an ellipse at some angle (as shown in Figure 1.2)

so that, while maintaining the same total area, the uncertainty in amplitude becomes much

larger than the uncertainty in phase. This is analogous to purposefully losing information

of the amplitude (increasing its uncertainty), so that the phase can be known with greater

precision while still satisfying the uncertainty principle. Once this is done, the light is said

to be in a squeezed state. Using squeezed light, an interferometer can measure the signal

of interest beyond the standard quantum limit, thereby increasing sensitivity to GWs [1].

This would enable GW observatories such as LIGO to make detections more frequently from

a broader range of astronomical sources. However, LIGOs optical fields are already in a

squeezed state due to radiation pressure noise within the Fabry-Perot cavities [2]. In order

to inject a new squeezed state, the squeeze angle must be matched [1, 2]. This necessitates

the use of an optical filter with a linewidth < 100 Hz [1, 2]. In addition to the requirement

of a narrow linewidth, a filter is of little use if the resulting signal cannot be measured. In
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Figure 1.2: The left plot shows a symmetric ”ball” of uncertainty. The right plot shows the
uncertainty squeezed.

general, a good filter should provide contrast of at least 50% and peak transmission of at

least 95%.

1.3 Electromagnetically induced transparency as a fre-

quency filter

One option for a frequency filter, which is suitable for LIGO, is Electromagnetically Induced

Transparency (EIT). EIT is the phenomenon of an opaque material becoming transparent

for certain frequencies of light. This occurs by ”pumping” atoms into a ”dark” state by

applying optical fields which match the frequency difference between excited states and the

hyperfine ground states, creating a superposition of the ground states which doesn’t interact

with the applied fields [3]. This allows a ”probe” to pass through the medium with high

transmission across a slim range of frequencies. An EIT media could potentially be used

as a filter for rotating the angle of an injected squeezed state [2]. EIT has been shown to

produce linewidths narrower than 100 Hz, while maintaining low optical losses and high

contrast [2]. Beyond these requirements, an EIT filter also offers the convenience of being

tuned electronically.
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Theory

2.1 The lambda model

The Λ model is a simplistic atomic configuration consisting of 3 states in total, 2 ground

states and 1 excited state. A representation of the model and the optical fields that are

applied is shown in Figure 2.1. ∆ is the 1-photon detuning, δ is the 2-photon detuning,

γ is the decay rate from the excited state, |a〉, to the hyperfine ground states, |b〉 and |c〉,

and γbc is the decay rate between ground states. Ωd and Ωp are the Rabi frequencies of the

fields applied at transitions |c〉 −→ |a〉 and |b〉 −→ |a〉, respectively. These are measures

of how strongly coupled the light fields are to the transitions which they are applied. Rabi

frequencies are defined as:

Ω =
di,jE

h̄
(2.1)

where di,j is the dipole moment between states |i〉 and |j〉 and E is the light amplitude field.

The populations and coherences evolution is given by the equations below [4]:

ρ̇aa = −iΩ∗
pρab + iΩpρba − iΩ∗

dρac + iΩdρca − 2γρaa (2.2)

ρ̇bb = iΩ∗
pρab − iΩpρba + γρaa − γbcρbb + γbcρcc (2.3)

ρ̇cc = iΩ∗
dρac − iΩdρca + γρaa − γbcρcc + γbcρbb (2.4)

ρ̇ab = −Γabρab + iΩp(ρbb − ρaa) + iΩdρcb (2.5)

ρ̇ca = −Γcaρca + iΩ∗
d(ρaa − ρcc)− iΩ∗

pρcb (2.6)

ρ̇cb = −Γcbρcb − iΩpρca + iΩ∗
dρab (2.7)

where the coherence decay rate Γij is given by Equations 2.8 through 2.10 [4].
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Figure 2.1: Λ configuration [4]
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Γab = γ + i(∆ + δ) (2.8)

Γca = γ − i∆ (2.9)

Γcb = γbc + iδ (2.10)

Because the density matrix is Hermitian, the remaining off diagonal elements can be found

as:

ρij = ρ∗ji, i 6= j (2.11)

2.2 The dark state in a 3-state atom

In order for EIT to be realized, there must be a state for an atom in which absorption of

light does not occur. For this to be possible, the population of the excited state, described

in Equations 2.2 to 2.7, must be zero. This means that the wave function describing this

system must be a superposition of only the ground states. Such a state occurs when the

frequency difference of the applied fields is equal to the hyperfine splitting of the ground

states. This condition is called a 2 photon resonance and results in the wave function given

in Equation 2.12, known as the dark state [3].

|D〉 =
Ωde

−iωbt |b〉 − Ωpe
−iωct |c〉√

Ω2
p + Ω2

d

(2.12)

Here ωb and ωc are the frequencies of states |b〉 and |c〉, respectively. Atoms are pumped

into the dark state by Ωd, the drive field. While there, atoms no longer transition to the

excited state. This enables Ωp, the probe field, to pass through without absorption. The

dark state deteriorates as the fields are detuned from the two photon resonance, giving the

EIT an inherent linewidth [3]. An approximation of this linewidth, γEIT , is given below [4].

γEIT = γbc +
|Ωd|2 + |Ωp|2

γ
(2.13)
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Simulation

3.1 Simulation methods and parameters

In order to see the evolution of the light-atom system, we used numerical integration soft-

ware called eXtensible Multi-Dimensional Simulator (XMDS). This allowed for integrating

Equations 2.2 through 2.7 across time while varying the detuning to see how the dark state

changed with respect to the probe frequency and propagation through a medium. Attaining

high resolution in detuning and propagation quickly increases the memory requirements of

the simulation, so it was necessary to utilize William and Mary’s high performance comput-

ing cluster, SciClone.

Simulations were run with the following parameters:

• Drive Rabi frequency (Ωd): varied from 16.6 to 25.0 kHz

• Probe Rabi frequency (Ωp): 0.1 Hz

• Excited state decay (γ): 6 MHz

• Ground state decay (γbc): 1 Hz

• Length of medium: varied from 0 to 2 cm

• Particle density of medium (N): 1× 1015 particles per m3

Equation 3.1 is used in simulations to account for the evolution of the drive and probe

fields with propagation [4]. Wave vector k = 2π/λ, where wavelength λ = 794.7nm.

∂E

∂z
+

1

c

∂E

∂t
= 2πikN

∑
i,j

di,j ρ̃i,j (3.1)
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3.2 Simulation results and analysis

Because EIT does not have precisely 100% transmission, a small percentage of the probe

intensity is lost to atoms while propagating. When the probe is detuned from the resonant

frequency, however, transmission drops considerably more, resulting in the development of

transmission resonance with characteristic contrast and linewidth (Figure 3.1). These are

the properties which are measured for any EIT from specific parameters.

4
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Figure 3.1: The evolution of EIT as it propagates through an atomic medium in the Z
direction. With increasing atom interactions, the field is absorbed for frequencies far from
resonance, while frequencies near resonance are free to pass.

In order to accurately determine the linewidth and contrast, we fit these lineshapes to a

generalized Lorenztian as given in [5].

Transmission = A
γ2r

γ2r + δ2
+B

γrδ

γ2r + δ2
+ C (3.2)
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Here the term with coefficient A is the absorptive Lorentzian and the B term is the dispersive

Lorentzian. Parameters A, γr, and δ are the contrast, half width half maximum (HWHM),

and 2 photon detuning, respectively [5]. An example of this curve fitted to simulation data

is shown in Figure 3.2.
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Transmission vs 2 photon detuning

Simulation
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Figure 3.2: An example EIT transmission distribution fitted to a Lorentzian.

The effects of initial drive power (Ωd) and propagation length (z) on transmission are

displayed in Figure 3.3. This shows that transmission increases with drive and decreases

with propagation. From Figure 3.4 one can see that contrast does indeed increase with

propagation. This also results in a narrowing of the linewidth with propagation, as shown

in Figure 3.5. Given that an ideal filter should have high transmission and contrast with

a narrow linewidth, one can see that these 3 measures compete with one another in terms

of their respective ideal parameters. For instance, linewidth is improved with propagation,

while transmission is reduced. Using Figure 3.6 we can see that the requirement of a linewidth
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< 100 Hz can be achieved with contrast > 50% while maintaining high transmission (> 95%).

This area includes drives ranging from 17 kHz to at least 25 kHz for nearly any medium

length greater than 1 cm. This is the range that is useful for applications of EIT as a

frequency filter in GW interferometers.
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Figure 3.3: This map shows how the transmission of the EIT is affected by the drive Rabi
frequency (Ωd) and length (Z) of the atomic media through which the fields are propagating.
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Contrast (%) vs drive vs z
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Figure 3.4: This map shows how the contrast of the EIT is affected by the drive Rabi
frequency (Ωd) and length (Z) of the atomic media through which the fields are propagating.
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Width (Hz) vs drive vs z
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Figure 3.5: This map shows how the linewidth of the EIT is affected by the drive Rabi
frequency (Ωd) and length (Z) of the atomic media through which the fields are propagating.
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Transmission (%) for contrast > 50% and linewidth < 100 Hz

Z (m)

0.005 0.01 0.015 0.02

Ω
d
 (

M
H

z
)

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

80

82

84

86

88

90

92

94

96

98

100

Figure 3.6: This map shows transmission for the regions of drive and z where contrast is >
50% and linewidth < 100 Hz.
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Experiment

4.1 Experimental setup and procedures

4.1.1 Setup

Figure 4.1: A diagram of the experiment configuration.

Figure 4.1 shows a schematic of our experimental setup. We begin with a semiconductor

laser tuned to the 5S 1
2
F = 2 −→ 5P 1

2
F = 1 transition frequency of 87Rb using the reference

cell. The beam is then attenuated before being passed to an electro-optic modulator (EOM).

The EOM is modulated at a frequency of 6.834 GHz, corresponding to the hyperfine splitting

of 87Rb. This creates a side band with the main beam, to act as our probe and drive fields,

respectively. The probe is swept through a range of 4.768 kHz over a time of 101 ms. The two

fields then pass through a magnetically shielded cell of 87Rb before reaching a photodiode.

The cell is roughly 1.5 cm in diameter and 1 cm in length. It has a high temperature anti-

relaxation coating intended to extend the lifetime of the dark state (decrease γbc in Equation

18



2.13), and so allow for narrower linewidths. Cell temperature is controlled using a heating

element and thermocouple connected to an external controller.

4.1.2 Procedures for varying beam intensity

It is important to understand the dependence of linewidth, contrast, and transmission on

intensity in order to determine ideal experimental parameters. Measurements with varying

intensity are done by changing the attenuation of the beam before the cell through the

addition of neutral density filters. The resulting power is measured. This measurement is

what is used for most of our plots, however, this can be converted to a Rabi frequency as

below [4].

Ω = 2πγ

√
I

8
(4.1)

Here intensity, I, is measured in mW
cm2 . For 87Rb, γ is 6 MHz. The power measured is a roughly

equal combination of the drive field and two probes (the EOM produces two sidebands at

± the modulation frequency). This estimates our drive and probe Rabi frequencies to be in

the range of 5 to 30 MHz. This is much larger than the regime which simulations cover, as

with our current setup it would not be feasible to detect such small fields.

4.1.3 Procedures for varying cell density

As with varying power, we also need to know the dependence of EIT properties on density.

Rather than increasing atom-light interactions through lengthening the cell as we did in

simulations, experimentally it is easier to increase the density of atoms in the cell. This is

done by increasing the temperature. When taking any measurements with varying temper-

ature, we set temperature first, then iterate through any secondary variables such as power

or beam size. This is due to the prolonged amount of time required for the temperature to

become stable at a new point. We have taken measurements for temperatures ranging from

60 to 75 degrees Celsius in increments of 5 degrees. This corresponds to a range in particle

19



concentration of about 1×1011 to 9×1011 (particles
cm3 ) [6].

4.1.4 Procedures for varying beam waist

Although it was not addressed in our simulations, studies with anti-relaxation coated cells

have shown that a smaller beam waist results in a finer linewidth of the EIT resonance [7].

In order to incorporate this variable into our study, an iris was placed in front of the Rb

cell as shown in Figure 4.1. Rather than attempting sub-millimeter measurements of the

beam waist, we quantify the waist size by the percentage of power passed through the iris.

These measurements are then converted to a fraction of our beams ω0, the radius at which

intensity has dropped by a factor of e2. We have taken data for 3 beam waist values: full

beam, 1.2ω0, and 0.8ω0, corresponding to roughly 100, 50, and 25 percent of the full beam

power, respectively.

4.2 Experimental data and data analysis

4.2.1 Contrast and linewidth vs power for varying particle con-

centration

As with simulations, we measure the linewidth and contrast of the experimental EIT line-

shapes by fitting them to the generalized Lorentzian given in Equation 3.2. An example of

this curve fitted to experimental data is shown in Figure 4.2.

The data collected as described in Section 4.1.3 is shown on the following pages. Figures

4.3 through 4.12 show trends of contrast, linewidth, and transmission as functions of drive

field power and rubidium concentration alongside simulation trends for comparison. The

simulation trends are taken as slices from the figures in Section 3.2. Trends where drive

Rabi frequency (Ωd) is the independent variable are given in terms of Ω2
d in order to be

comparable to experimental trends where power is directly measured (see Equation 4.1 for

20
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Figure 4.2: Fit of experimental EIT with a contrast of 3.9% and linewidth of 657 Hz. Error
bars given represent a 95% confidence interval.

Rabi frequency’s relation to power).

We see that contrast increases with drive power, as well as a pattern of contrast increasing

with density. Both of these results were also observed in simulations (Figures 3.4, 4.3, and

4.9), with the exception that in experiment we see contrast eventually declines with increasing

power and concentration rather than plateauing (Figures 4.4 and 4.10). Linewidth clearly

increases with power. This experimental trend is expected from the simulation results in

Figures 3.5 and 4.5.
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Figure 4.3: Simulation results of contrast vs power (measured in Rabi frequency)
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Figure 4.4: Experimental results of contrast vs power. Beam size is 0.8ω0 and particle
concentration is 6.3× 1011 (1/cc).
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Figure 4.5: Simulation results of linewidth vs power (measured in Rabi frequency)
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Figure 4.6: Experimental results of linewidth vs power. Beam size is 0.8ω0 and particle
concentration is 6.3× 1011 (1/cc).
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Figure 4.7: Simulation results of transmission vs atom-light interactions (measured in prop-
agation distance)
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Figure 4.8: Experimental results of transmission vs atom-light interactions (measured in
particle concentration). Power to the cell is 50 µW .
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Figure 4.9: Simulation results of contrast vs atom-light interactions (measured in propagation
distance)
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Figure 4.10: Experimental results of contrast vs atom-light interactions (measured in particle
concentration) with a full beam. Power to the cell is 50 µW .
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Figure 4.11: Simulation results of linewidth vs atom-light interactions (measured in propa-
gation distance)
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Figure 4.12: Experimental results of linewidth vs atom-light interactions (measured in par-
ticle concentration). Power to the cell is 50 µW .
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Unlike our simulation results, however, here linewidth increases with concentration. This

can be seen when comparing Figures 4.11 and 4.12. The increase in width is likely due

to the ground state decay rate, γbc, truly being a function of concentration (n) and not a

constant as it was in simulation. It is clear that we see significantly broader linewidths and

smaller contrasts experimentally than in simulation. This is not surprising given that we are

operating in a different regime of drive and (especially) probe Rabi frequency.

Figures 4.13 and 4.14 show summaries of experimental trends for contrast and linewidth,

respectively.
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Figure 4.13: Contrast vs power for varying particle concentration with a beam waist of 1.2ω0

4.2.2 Contrast and linewidth vs intensity for varying beam waist

Figures 4.15 and 4.16 show the data collected as detailed in Section 4.1.4. The x-axis of the

plots was converted to a percentage of full intensity from the power measurements in order

to show a better comparison of changes in waist size (which have comparable intensities, but
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Figure 4.14: Linewidth vs power for varying particle concentration with a beam waist of
1.2ω0

different total power). We see that contrast decreases with smaller waist sizes. By comparing

Figure 4.15 with Figure 4.4, we can see that this is in the region where contrast decreases with

power. The important observation here is in Figure 4.16, where it is evident that a smaller

waist size results in a finer linewidth. This data contains the largest contrast observed of

3.9% with a linewidth of 657 Hz (used in Figure 3.2 as an example of the Lorentzian fit).

Shown in Figure 4.17, our narrowest linewidth of 202 Hz with a contrast of 0.84% was

achieved with an iris set to allow 5% of total beam power to pass. This would correspond

with a waist size of 0.3ω0. The beam was attenuated to 20% intensity (actual power to the

cell being 10 µW ). Unfortunately, we found that the beam diffracted significantly at this

iris setting, and so the data cannot be compared with the given trends of beam waist.
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Figure 4.15: Contrast vs intensity for varying beam waist. Full power to the cell with a full
beam is 1 mW.
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Figure 4.16: Width vs power for varying beam waist. Full power to the cell with a full beam
is 1 mW.
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Figure 4.17: Fit of experimental EIT with a contrast of 0.84% and linewidth of 202 Hz. This
is the narrowest linewidth observed experimentally.

4.3 Error analysis

We have encountered multiple noise and error sources which have impacted data collection.

These have ranged from benign technical problems involving our heating element, to possibly

data altering errors due to faults in electronics. We have identified one of these sources as

the magnetic field generated by current through our heating element inside the magnetic

shield. This magnetizes the shield and has had an affect of widening the resonance linewidths

discussed in Section 4.2. We have also observed excessive noise in the data, though the source

is not yet known.

As explained in Section 4.1.1, we have 3 fields. These fields are a drive and 2 sidebands,

one of which acts as our probe. All 3 of these fields contribute to the transmission seen at

the photodiode, and thus affect our contrast measurements. This means that given contrasts

are smaller than actual probe contrasts by at least a factor of 2.
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Conclusions

We have simulated EIT in 3 state atoms with properties based on those of 87Rb. The drive

Rabi frequency ranged from 16.6 to 25 kHz with a fixed probe Rabi frequency of 0.1 Hz. EIT

with contrasts above 50% and linewidths of less than 100 Hz, suitable for use as a frequency

filter, were found in simulation for media lengths of up to 2 cm. We have demonstrated

EIT experimentally, though due to technical limitations both our drive and probe Rabi

frequencies are several orders of magnitude higher than simulation parameters, ranging from

approximately 5 to 30 MHz. Contrast and linewidth are determined by fitting the data to a

generalized Lorentzian. The smallest linewidth observed is 202 Hz, with a contrast of 0.84%.

The largest contrast observed is 3.9% with a linewidth of 657 Hz.
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