PHYS 313: Quantum Mechanics I

Problem set \# 7 (updated) (due November 15)
All problems are mandatory, unless marked otherwise. Each problem is 10 points.
Townsend, Ch. 7: 7.7, 7.9, 7.13, 7.14
Q1 A particle of mass m is trapped in the harmonic potential, a at time $t=0$ it is found in a state
$\psi(x)=C\left(1+\sqrt{\frac{4 m \omega}{\hbar}} x\right) e^{-\frac{m \omega}{2 \hbar} x^{2}}$.
(a) Find the normalization constant C.
(b) If the energy of this particle is measured, what are the possible outcomes and what are their probabilities?
(c) At a later time T the wave function is $\psi(x, T)=C_{1}\left(1+i \sqrt{\frac{4 m \omega}{\hbar}} x\right) e^{-\frac{m \omega}{2 \hbar} x^{2}}$. What is the smallest possible value of T ? What is C_{1} / C ?
Hint: You may find useful to recall the first few known eigenstates of an oscillators:
$\psi_{0}(x)=\sqrt[4]{\frac{m \omega}{\pi \hbar}} e^{-\frac{m \omega}{2 \hbar} x^{2}}, E_{0}=\frac{1}{2} \hbar \omega$
$\psi_{1}(x)=\sqrt[4]{\frac{m \omega}{\pi \hbar}} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}, E_{1}=\frac{3}{2} \hbar \omega$
$\psi_{2}(x)=\sqrt[4]{\frac{m \omega}{4 \pi \hbar}}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 \hbar} x^{2}}, E_{2}=\frac{5}{2} \hbar \omega$

Q2 Not so simple harmonic oscillator. Imagine a one-sided oscillator (like a spring that can stretch but not compress):
$V(x)= \begin{cases}m \omega^{2} x^{2} / 2 & x \geq 0 \\ +\infty & x<0\end{cases}$
What are the energies and the wavefunctions corresponding to stationary states of a particle in such a potential? Note, that this problem is about reasoning, you don't need to do actual calculations.

