PHYS 313: Quantum Mechanics I

Problem set \# 3 (due September 27)
All problems are mandatory, unless marked otherwise. Each problem is 10 points.
In this and following homeworks Pauly matrices are defined as: $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Townsend, Ch. 3: 3.5(a),3.9
Q1 Find the eigenvalues and eigenvectors of $\hat{\sigma}_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
(You probably already know the answers, but nevertheless please derive them properly.)
Q2 One of the basic gates in quantum computing is a Hadamard gate, action of which is given by the following matrix $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.
(a) Find the output of the Hadamard gates if the input qubit is in $| \pm z\rangle,| \pm x\rangle$ or $| \pm y\rangle$ states.
(b) Find the eigenvectors and eigenvalues of H.

Q3 Let's do some quantum computing!
(a) Assuming that H is the Hadamard gate, and X, Y and Z are the Pauli gates, represented by the Pauli matrices $\hat{\sigma}_{x, y, z}$, show that $X=H Z H$.
(b) Sometimes people use the notation of the \sqrt{Z} gate to describe the $\pi / 2$ phase gate $S=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 2}\end{array}\right)$. Confirm that this is not an unreasonable notation by proving that $S^{2}|\psi\rangle=Z|\psi\rangle$.

