PHYS 313: Quantum Mechanics I

Problem set \# 2 (due September 20)
All problems are mandatory, unless marked otherwise. Each problem is 10 points.
Townsend, Ch. 2: 2.4, 2.6, 2.7, 2.8, 2.9
Q1 This problem is mainly to train your matrix manipulation muscles. Using the expressions for states $|+\vec{n}\rangle$ and $|-\vec{n}\rangle$ in z basis (defined in 1.3 and 1.6, correspondingly), show that

$$
|+\vec{n}\rangle\langle+\vec{n}|+|-\vec{n}\rangle\langle-\vec{n}|=\hat{1}
$$

where $\hat{1}$ is an identity operator.
Q2 In class we have calculated the matrices for \hat{J}_{z}, \hat{J}_{z} and \hat{J}_{z} operators in z-basis:

$$
\hat{J}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \hat{J}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \hat{J}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) Very soon we will "discover" that these operators represent component of the angular momentum operator $\hat{\vec{J}}$, and will define the total angular momentum operator value as $\hat{J}^{2}=\hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2}$. Calculate the matrix representation of \hat{J}^{2}, using the matrices above. (b) We will also introduce raising and lowering operators $\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}$. Even though you don't know yet why these operators are useful, you should be able to find their matrix representation. Please do so, and show that $\hat{J}_{+}^{\dagger}=\hat{J}_{-}$.

