General Physics II Honors (PHYS 102H)

Problem set \# 5 (due March 8)

All problems are mandatory, unless marked otherwise. Each problem is 10 points.

Q1 Consider the square arrangement of four identical balls, shown in the picture. Each ball has mass m, and they are connected with non-conducting strings to form a perfect square. The balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. What is the maximum speed of balls 3 and 4 after the string connecting balls 1 and 2 is cut.
Suggestion: the actual solution of the problem is very simple, but it is crucial to correctly identify in which conditions the speed of the ball is the highest. Start with reasoning what forces act on each ball, and what trajectories each ball
 takes.

Q2 The circuit on the figure consists of two capacitors $C_{1}=6 \mathrm{nF}$ and $C_{2}=3 \mathrm{nF}$, and a battery providing voltage $\Delta V=9 \mathrm{~V}$. Capacitor C_{1} is first charged by closing switch S_{1}. Then switch S_{1} is opened, and switch S_{2} is closed, connecting the capacitor C_{1} with the originally uncharged capacitor C_{2}. Calculate the initial charge acquired by C_{1} and the final charge on each capacitor.

Q3 Wheatstone Bridge (see figure) is one of the most precise methods of measuring unknown resistor R_{x}. To do that, the value of R_{2} is adjusted until the voltage drop between points D and B is zero. If this condition is satisfied, find the value of R_{x} in terms of known values $R_{1,2,3}$.

