
Chapter 4:  One-Shots, Counters, and Clocks

I.  The Monostable Multivibrator (One-Shot)
The timing  pulse  is  one  of  the  most  common elements  of  laboratory  electronics. 

Pulses can control logical sequences with precise timing. For example, if your detector 
“sees” a charged particle or a photon, you might want to signal a clock to store the time 
that the event occurred. In that case, you will use the event to generate a standard pulse so 
that your clock always responds in the same way. Alternatively, you might need to reset 
your electronics after the event. Clearly you want the reset pulse to arrive as soon as 
possible after the data has been processed. This requires a precision time delay generator.

A simple type of delay generator is a D type flip-flop that charges up a capacitor after 
receiving a clock edge. The charged capacitor also serves as the clear input to the D flip-
flop, so that after a fixed time (roughly RC) the flip-flop resets back to its initial state. 
The net result is a single pulse that has a duration (or  pulse width) determined by the 
combination  of  the  resistor  and  capacitor.  The  exact  relationship  between  the  time 
constant and the pulse width is specified in the datasheet for each chip type.

If  the falling edge of this  pulse triggers other  electronics,  then you can introduce 
whatever delay you wish by choosing an appropriate pulse width. This device is called a 
monostable multivibrator, but the common name is the descriptive one-shot. 

Many one-shots have two clock inputs so that they can be triggered by either a rising 
edge or a falling edge. The typical one-shot will also have two outputs (Q and Q ) and an 
reset or clear input, which instantly sets the output to a standard condition regardless of 
the current state or clock level. 

You will find one-shots in all electronic circuits that use pulses and pulse sequences. 
They  are  not,  however,  the  best  sources  of  timed  pulses.  Two  effects  limit  their 
reliability: (1) a one-shot’s pulse length varies with temperature; (2) a one-shot’s pulse 
length varies with duty cycle. It they stay high too long they do not reset as fast as they 
would for short pulses. Thus, one-shots are generally a bad choice for generating square 
waves.  However,  they  can  be  very  handy  in  getting  signal  timings  just  right  in  an 
asynchronous digital circuit.

II.  Counters
Last week, you used a D-type flip flop to transfer the data from the D input to the Q 

output on the falling edge of a clock. With one more level of feedback, we can convert 
this into a device that changes state every time the clock edge falls. 



If you connect the inverted output to the 
input then every time the clock edge fall the 
flip-flop  will  reverse  its  output  (i.e. 
Qn1=Qn ).  This  is  shown in  Figure  5-1. 
With a square-wave clock input, the output 
will  change  on  each  falling  clock  edge 
generating  a  square  wave  at  half  the 
frequency.  This  is  called  a  divide-by  two 
circuit.

You  can  cascade  these  flip-flops  one 
after another to continue dividing the output 
frequency.  You  simply  drive  the  clock  of 
another flip-flop with the output of an earlier 
flip-flop. 

We can call the state of the first gate  b1 

and the state of the second gate b2 and create 
a  state table of the sequence of the states of the two gates for successive clock pulses. 
From Figure 5-2, you can see that the two bits are actually count in binary. By making a 
cascade of divide by two circuits you have created a counter.

This counter is conceptually simple but it takes time for the clock pulse to propagate 
down the line of flip-flops. If you imagine many flip-flops connected together in a ripple 
counter, then each will trigger only after a propagation delay. One triggers the next just 
like a series of falling dominos. This type of counter is dubbed ripple counter to describe 
this propagating trigger edge. 

In synchronous counters, however, all stages 
make  their  transitions  simultaneously.  This  is 
usually a much better choice if you have lots of 
stages (binary digits) in your counter. Of course, 
the  logic  is  more  difficult  because  you  only 
want  a  stage  to  flip  states  if  all  the  previous 
stages  were  set  to  1.  We  will  play  with 
synchronous counters next week. 

Shift Registers
You  can  also  construct  a  shift  register  by  cascading  D-type  flip-flop  without 

feedback. To make this device connect all of flip-flops use the same clock. The output of 
one flip-flop is the input of the next flip-flop. 

If data is presented to the first, it works its way down the line of gates at each clock 
tick. These are great devices to convert between serial data (one bit follows the next in 
time) and parallel data (several lines holding simultaneous information). It is an example 
of queuing circuit known as first in/first out or FIFO buffer.  It will store the data in time 
order and present at it at its output as requested by the clock.

Figure 5-1: D type flip-flop as a divide by
two counter.

Figure 5-2: State table for bits b1 of
synchronous counter.



III.  Timing with FPGAs and Verilog
FPGAs work best when they are used for synchronous circuits. In fact FPGAs do not 

include capacitors so you cannot use a one-shot in an FPGA circuit. While, this may 
seem like a problem, it does not pose any real difficulties since a high-frequency 
synchronous circuit can easily mimic a one-shot.

Synchronous circuits in Verilog
Synchronous FPGA circuits are implemented in Verilog with the always block. All 

the  code,  or  circuitry,  inside  an  always block  executes  on  trigger  indicated  at  the 
beginning of the always block. Here is generic Verilog code for an always block:

module always_block_example (inputs …, outputs …);
input input1, input2, …;
output output1, output2, …;

output reg [N:0] output_register;
reg [M:0] variable_register;

always@ (trigger)
begin
…
[put your always block code here]
…
end

endmodule

The  trigger  can  be  an  edge  trigger  such  as  always@ (posedge input1) or 
always@  (negedge  input1).  The  trigger  can  also  be  a  level  trigger  such  as 
always@ (input2), which means the always block will execute whenever there is a 
level change in the input2 value. You can even use an always block without a trigger 
(though this is a little dangerous, since you will then have an infinite loop, and the timing 
is not well defined):

always
begin
…
end

The  variables  that  are  manipulated  and  changed  inside  an  always block  must  be 
declared as type reg (i.e. a memory register of flip-flops). The always block can include 
the following statements:

Blocking assignment: a = b
The  blocking  assignment  is  executed  and  then  the  code  moves  on  to  the  next 
instruction (line of code).



Non-blocking assignment: a <= b
The non-blocking assignment is executed at the same time as any other sequential 
block of non-blocking assigments (i.e. all the non-blocking assignments are executed 
in parallel).

Conditional statement:
if (a == b)

begin
…
[the code here will execute if the "if" condition is satified]
…
end

Conditional statements can be included inside an always block and are a powerful 
way of manipulating registers or variables.

As a general rule, if you are making a circuit in which timing must be included or in  
which it could be an issue, then you should use an  always block. An  always block 
guarantees that you will be constructing a synchronous circuit. In other words, always 
use always.

Some important coding structures to avoid when using an always block:
1. Nested always blocks.
2. Registers or variables which are manipulated in several different always blocks. This 
means that several output wires are connected and trying to assign a voltage to the "D" 
input of a register flip-flop (remember last week's warning: "never tie outputs together").

Register initialization in Verilog
Variables and registers can be initialized in Verilog with an initial block. The initial 

block is placed at the beginning of a module and is only executed once. Here is an 
example of how to code an initial block:

module always_block_example (inputs …, outputs …);
input input1, input2, …;
output output1, output2, …;

output reg [N:0] output_register;
reg [M:0] variable_register;

initial
begin
output_register = N'b1011110…0011;
variable_register = M'b1111100…1101;
end

…



[the rest of your code goes here]
…

endmodule

A Verilog counter
A counter is easy to implement in Verilog. You use an always block and increment a 
register variable by one at each trigger, as in the following 4-bit counter example:

module counter_verilog(input_clock, counter_register);
input input_clock; // declares the input
output reg [3:0] counter_register; // declares the output to be a 4-bit

// register

initial // initial block to set the counter to zero
begin
// The next line sets counter register to zero
counter_register = 4'b0000;
end

always@ (posedge input_clock)
begin
// the following line increments the register by
// 1 at each clock trigger
counter_register <= counter_register + 4'b0001;
end

endmodule

Clocks for FPGAs
A synchronous circuit must be triggered by a clock which has a period longer than 

any of the timing delays in the circuit. A crystal oscillator is frequently used to provide a 
periodic square wave. The DE2 board is provided with two crystal oscillators, one at 50 
MHz and the other at 27 MHz, which are connected to the FPGA at pins PIN_N2 and 
PIN_D13,  repectively.  A  connection  for  an  external  clock  is  also  provided  via  pin 
PIN_P26  (see  p.  32-33  of  DE2 development  board  manual).  Alternatively,  the  TTL 
square wave of the function generator can be used as a clock signal.

If actual timekeeping is not important, the frequency of the clock does not have to be 
very stable, but must only have a period longer than the longest internal timing delay in 
the circuit. 

Design Exercises:

Design Exercise 4-1:  Using information from the datasheet for an 74LS123 pick 
resistors and capacitors to make a pulse of roughly 1 ms and 30 μs.

Design Exercise 4-2:  Layout a circuit that uses two one-shots to generate a 30 µs pulse 
that starts 1 ms after a trigger.



Design Exercise 4-3:  Use a single always block to construct a Quartus II FPGA project 
which will generate a 4 clock cycle output pulse that starts 23 clock cycles after an 
external input trigger goes from low to high. You can assume that the triggering pulse is 
longer than a single clock cycle.

Design Exercise 4-4: Construct a Quartus II FPGA project for a divide-by-8 circuit 
which will convert a 1 MHz square wave to a 125 kHz rectangular wave.


	Chapter 4:  One-Shots, Counters, and Clocks
	I.  The Monostable Multivibrator (One-Shot)
	II.  Counters
	Shift Registers


