
Flip-FlopsFlip-Flops
Outline:Outline:

2.2. Timing noiseTiming noise

 Signal races, glitches

 FPGA example (“assign”  bad)

• Synchronous circuits and memorySynchronous circuits and memory

 Logic gate example

4.4. Flip-Flop memoryFlip-Flop memory

 RS-latch example

• D and JK flip-flopsD and JK flip-flops

 Flip-flops in FPGAs

• Synchronous circuit design with FPGAsSynchronous circuit design with FPGAs

  FPGA example (“always”  good).

  Parallel circuit design with FPGAs.

Timing noiseTiming noise

Amplitude NoiseAmplitude Noise

 A digital circuit is very immune to amplitude noise, since it can only have
two values (Low or High, True or False, 0 or 1). Digital electronics circuits
typically have error rates smaller than 1 part in 109 (no error correction).

Timing NoiseTiming Noise

 Just like an analog circuit, a digital circuit can experience timing noise.
Fortunately, good clocks are cheap and easily available, and a good
design will eliminate the effects of timing noise.

 Timing issues/errors can easily produce amplitude noise (bit errors).

Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted
(illogical) outputs.

Example: 3-input NAND gate

A

B

C
Y

AB

A

B

C

ideal Y

TimeTime

Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted
(illogical) outputs.

Example: 3-input NAND gate

A

B

C
Y

AB

A

B

C

AB

resulting Y

TimeTime

2x
gate
delay

If gate delays are too long
output pulse could disappear

Signal RaceSignal Race
The timing delays produced by wires and logic gates can produce unwanted
(illogical) outputs.

Example: 3-input NAND gate

A

B

C
Y

AB

A

B

C

AB

actual Y

TimeTime

2x
gate
delay

Pulse is shorter than expected and delayed

Signal Race with GlitchSignal Race with Glitch

LHH

HLH

HHL

LLL

YBA

XOR

[diagram courtesy of Altera Inc.]

A

B

A

B

BA

AB

Y

TimeTime

A

B

A

B

AB

BA

Y

resulting

resulting

resulting

Inverter delay

Inverter delay
+ component differences

[Figure adapted from Principles of Electronics: Analog & Digital by L. R. Fortney]

Signal Race with GlitchSignal Race with Glitch

LHH

HLH

HHL

LLL

YBA

XOR

[diagram courtesy of Altera Inc.]

A

B

A

B

BA

AB

Y

TimeTime

A

B

A

B

AB

BA

Y

real

real

real

[Figure adapted from Principles of Electronics: Analog & Digital by L. R. Fortney]

Glitches with FPGAsGlitches with FPGAs

glitches

Quartus II will simulate glitches

Asynchronous DesignAsynchronous Design

Asynchronous designAsynchronous design requires very careful attention to signal delays to
avoid producing glitches and other spurious signals.

GlitchesGlitches will produce false data and can produce very wrong results

e.g. a glitch on the most-significant-bit will produce a factor of 2 error.

Asynchronous design can produce very fast digital circuits, but is generally
avoided due to more difficult design.

Synchronous DesignSynchronous Design

The use of memorymemory and a clockclock can eliminate signal racessignal races and glitches.

A

B

C
Y

AB
clock

clock

flip
flop

flip
flop

Basic flip-flop operationBasic flip-flop operation

The flip-flop will record and output the value at the input if the clock is HIGH.
If the clock goes LOW, then the flip-flop does not change its value or output.

Glitches are eliminated if 1. The clock HIGH and LOW times are
longer than any gate delays.

2. The inputs are synchronized to the clock.

in out

Synchronous TimingSynchronous Timing

A

B

C
Y

AB
clock

clock

flip
flop

flip
flop

A

B

C

Flip-flop AB

resulting Y

2x
gate
delay

TimeTime

clock

Flip-flop C

Guaranteed minimum
signal pulse

D-type Edge-Triggered Flip-FlopD-type Edge-Triggered Flip-Flop
 Generally, the flip-flop changes state on a clock signal “edge”, not the level.
The flip-flop takes the value just beforejust before the clock “edge”.

[Texas Instruments 74LS74 flip-flop datasheet]

Note: A flip-flop saves information (i.e. 1 bit); it does not modify it.

clock

D

Q

ts th

For 74LS74: minimum ts = 20 ns
 minimum th = 5 nsD

clock

Q

Q

R or CLR

S or PRE

input output

D-type Edge-Triggered Flip-FlopD-type Edge-Triggered Flip-Flop
 Generally, the flip-flop changes state on a clock signal “edge”, not the level.
The flip-flop takes the value just beforejust before the clock “edge”.

[Texas Instruments 74LS74 flip-flop datasheet]

Note: A flip-flop saves information (i.e. 1 bit); it does not modify it.

clock

D

Q

ts th

For 74LS74: minimum ts = 20 ns
 minimum th = 5 nsD

clock

Q

Q

R or CLR

S or PRE

input output

rising-edge
trigger

Synchronous Timing (revisited)Synchronous Timing (revisited)

A

B

C
Y

AB
clock

clock

flip
flop

flip
flop

A

B

C

Flip-flop AB

resulting Y

TimeTime

clock

Flip-flop C

How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 0 & S = 0:

 S = 0 & assume Q = 0  Q = 1.

 S = 0 & assume Q = 1  Q = 1.

 R = 0 & assume Q = 0  Q = 1.

 R = 0 & assume Q = 1  Q = 1.

How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 0 & S = 0:

 S = 0 & assume Q = 0  Q = 1.

 S = 0 & assume Q = 1  Q = 1.

 R = 0 & assume Q = 0  Q = 1.

 R = 0 & assume Q = 1  Q = 1.

consistent R=0 & S=0  Q=1 & Q=1

How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 0 & S = 1:R = 0 & S = 1:

 S = 1 & assume Q = 0  Q = 1.

 S = 1 & assume Q = 1  Q = 0.

 R = 0 & assume Q = 0  Q = 1.

 R = 0 & assume Q = 1  Q = 1.



How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 0 & S = 1:R = 0 & S = 1:

 S = 1 & assume Q = 0  Q = 1.

 S = 1 & assume Q = 1  Q = 0.

 R = 0 & assume Q = 0  Q = 1.

 R = 0 & assume Q = 1  Q = 1.



consistent R=0 & S=1  Q=0 & Q=1

How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 1 & S = 0:R = 1 & S = 0:

 The opposite of R = 0 & S = 1 by symmetry.





How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 1 & S = 1:R = 1 & S = 1:

 S = 1 & assume Q = 0  Q = 1.

 S = 1 & assume Q = 1  Q = 0.

 R = 1 & assume Q = 0  Q = 1.

 R = 1 & assume Q = 1  Q = 0.







How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 1 & S = 1:R = 1 & S = 1:

 S = 1 & assume Q = 0  Q = 1.

 S = 1 & assume Q = 1  Q = 0.

 R = 1 & assume Q = 0  Q = 1.

 R = 1 & assume Q = 1  Q = 0.







consistent R=1 & S=1  Q=0 & Q=1

consistent R=1 & S=1  Q=1 & Q=0

How does a flip-flop work?How does a flip-flop work?

Basic flip-flop: the SR latch Logic table

Q0 = value before
 S&R changes

R = 1 & S = 1:R = 1 & S = 1:

 S = 1 & assume Q = 0  Q = 1.

 S = 1 & assume Q = 1  Q = 0.

 R = 1 & assume Q = 0  Q = 1.

 R = 1 & assume Q = 1  Q = 0.







consistent R=1 & S=1  Q=0 & Q=1

consistent R=1 & S=1  Q=1 & Q=0

Two settings are possibleTwo settings are possible

  i.e. flip-flop keeps its state.i.e. flip-flop keeps its state.

SR Latch Switch DebouncerSR Latch Switch Debouncer
 SR latch flip-flops are not used much for memory, but they are
used for debouncing switches.

Switch Bounce:Switch Bounce:

 When a switch is toggled it will not go smoothly from HIGH to LOW, or
vice versa.

time

Volts Volts

time

“bouncing switch” “debounced switch”

+5V

R

R

Clocked D-type LatchClocked D-type Latch

Logic tableS

R

Clock Circuit Analysis:Clock Circuit Analysis:
 C = 1 & D = 1  S = 0 & R = 1.
 C = 1 & D = 0  S = 1 & R = 0.

 C = 0 & D = 1  S = 1 & R = 1.
 C = 0 & D = 0  S = 1 & R = 1.

Clocked D-type LatchClocked D-type Latch

Logic tableS

R

Clock Circuit Analysis:Clock Circuit Analysis:
 C = 1 & D = 1  S = 0 & R = 1.
 C = 1 & D = 0  S = 1 & R = 0.

 C = 0 & D = 1  S = 1 & R = 1.
 C = 0 & D = 0  S = 1 & R = 1.

Clock HIGH:Clock HIGH: D sets the flip-flop state

Clock LOW:Clock LOW: flip-flop state is locked

Clocked D-type LatchClocked D-type Latch

Logic table

Clock Circuit Analysis:Clock Circuit Analysis:
 C = 1 & D = 1  S = 0 & R = 1.
 C = 1 & D = 0  S = 1 & R = 0.

 C = 0 & D = 1  S = 1 & R = 1.
 C = 0 & D = 0  S = 1 & R = 1.

Clock HIGH:Clock HIGH: D sets the flip-flop state

Clock LOW:Clock LOW: flip-flop state is locked

D

clock

Q

Q

input output

Master-Slave D-type Flip-FlopMaster-Slave D-type Flip-Flop

Note: The flip-flop triggers on a the falling edge of the clock.

74LS74 D-type edge-triggered flip-flop74LS74 D-type edge-triggered flip-flop

Note:Note: The flip-flop triggers on the rising edge of the clock.

[Texas Instruments 74LS74 flip-flop datasheet]

Both PRE and CLR behave like S and R
inputs, respectively, on the SR latch.

IMPORTANT:IMPORTANT: Both PRE and CLR must
be high for normal D-type operation.

74LS74 D-type edge-triggered flip-flop74LS74 D-type edge-triggered flip-flop

Note:Note: The flip-flop triggers on the rising edge of the clock.

[Texas Instruments 74LS74 flip-flop datasheet]

Both PRE and CLR behave like S and R
inputs, respectively, on the SR latch.

IMPORTANT:IMPORTANT: Both PRE and CLR must
be high for normal D-type operation.

D

clock

Q

Q

input output

CLR

PRE

JK-type flip-flopJK-type flip-flop

J
clock

Q

Q

input output

K
input

C

Qn11

110

001

Qn00

Qn+1KJ

Logic table
for clock falling edge

JK-type flip-flops are used in counters.

Flip-flops in FPGAsFlip-flops in FPGAs

LUTLUT

in
pu

ts
in

pu
ts

MemoryMemory
(a few bits)

CLOCK triggersCLOCK triggers
clockclock

signalssignals

globalglobal

locallocal ou
tp

ut
s

ou
tp

ut
s

feedbackfeedback

Architecture of a single Logic ElementArchitecture of a single Logic Element

Frequently a D-type Flip-FlopFrequently a D-type Flip-Flop

FPGAs are already set-up for synchronous circuit designsFPGAs are already set-up for synchronous circuit designs

Flip-flops in FPGAsFlip-flops in FPGAs

LUTLUT

in
pu

ts
in

pu
ts

MemoryMemory
(a few bits)

CLOCK triggersCLOCK triggers
clockclock

signalssignals

globalglobal

locallocal ou
tp

ut
s

ou
tp

ut
s

feedbackfeedback

Architecture of a single Logic ElementArchitecture of a single Logic Element

Frequently a D-type Flip-FlopFrequently a D-type Flip-Flop

FPGAs are already set-up for synchronous circuit designsFPGAs are already set-up for synchronous circuit designs

Synchronous programming in Verilog (I)Synchronous programming in Verilog (I)

Synchronous programming in Verilog (I)Synchronous programming in Verilog (I)

Clock Clock
variablevariable

output registeroutput register
(i.e. flip-flop memory)(i.e. flip-flop memory)

Synchronous programming in Verilog (I)Synchronous programming in Verilog (I)

Clock Clock
variablevariable

output registeroutput register
(i.e. flip-flop memory)(i.e. flip-flop memory)

Read as “always at the positive clock edge do the Read as “always at the positive clock edge do the
following … ”following … ”

““always” is the core command for synchronous programming, it always” is the core command for synchronous programming, it
should be used as frequently as possible. should be used as frequently as possible.

““assign” should be used as little as possible. It is only useful for DC-assign” should be used as little as possible. It is only useful for DC-
type signals (signals that don’t change).type signals (signals that don’t change).

Synchronous programming in Verilog (II)Synchronous programming in Verilog (II)

Quartus II circuit simulationQuartus II circuit simulation

Synchronous programming in Verilog (II)Synchronous programming in Verilog (II)

No more glitchesNo more glitches

ClockClock
LineLine

Quartus II circuit simulationQuartus II circuit simulation

How did the FPGA implement the circuit?How did the FPGA implement the circuit?

Tools > Netlists > Technology Map Viewer

How did the FPGA implement the circuit?How did the FPGA implement the circuit?

Tools > Netlists > Technology Map Viewer

D-type edge-triggeredD-type edge-triggered
flip-flopsflip-flops

Always use Always use
“always”“always”

A. Stummer, U. of Toronto._

Parallel programming in VerilogParallel programming in Verilog

 The “always” structure is used for exploiting the parallel
processing features of the FPGA.

 Parallel processing must almost always be synchronous if
several processes exchange data.

Parallel and Sequential processing examples:

SequentialSequential

always@ (negedge clock)

begin

a = b;

c = a;

end

ParallelParallel

always@ (negedge clock)

begin

a <= b;

c <= a;

end

Parallel programming in VerilogParallel programming in Verilog

 The “always” structure is used for exploiting the parallel
processing features of the FPGA.

 Parallel processing must almost always be synchronous if
several processes exchange data.

Parallel and Sequential processing examples:

SequentialSequential

always@ (negedge clock)

begin

a = b;

c = a;

end

ParallelParallel

always@ (negedge clock)

begin

a <= b;

c <= a;

end

c = b a = b

c = a (previous value)

executedexecuted
simultaneouslysimultaneously

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

