Physics 351: Electronics II Introduction to Digital Circuits

Prerequisites: PHYS 252.
Introduction to digital electronics: Theory, design, and application of digital circuits ... or how to understand and make circuits like these:

Small print: If you don't have any experience with analog electronics you should talk to me after class.

Instructors

A. Dayle Hancock

Office: Small 239, telephone: 221-3503
e-mail: adhancock@wm.edu web: http://physics.wm.edu/~hancock/351 Office hours Monday 1-2pm, Wednesday 1-2pm

Charlie Fancher
Office: Small 320B
e-mail: ctfancher@email.wm.edu

Course Objectives

Primary: Design and test both basic and advanced digital circuits for digital logic, signal acquisition, and digital signal processing.

Secondary: Learn experimental research skills.

Covered topics:

- Binary numbers, logic gates, and Karnaugh maps.
- Memory, flip-flops, and clocked latches.
- Clocks, timing, and one-shots.
- Counters, registers, and state machines.
- Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC).
- Optical and magnetic isolation.
- Field Programmable Gate Arrays (FPGA).
- Verilog language FPGA programming.
- Digital Signal Processing (DSP).
- Microprocessors.

FPGAs for Physicists

Field Programmable Gate Array (FPGA) chips for physicists
> Contain 2,000-100,000 logic gates + memory.
> Reprogrammable via a computer (Quartus II v7-9).
> Stand alone circuitry (with flash memory).
> Parallel processing.

> Useful for complex circuits and Digital Signal Processing (DSP).

Note: Quartus II is available on lab computers

DSP design project (I)

A central component of the course is an FPGA-based digital signal processing (DSP) project. The general guidelines for the projects are:
$>$ Teams of 2-3 students (depends on lab section distribution).
> Each team has a budget of \$150 USD.
$>$ All teams have the same project.
$>$ This section of the course is a design and construction competition.

The purpose of the one month team project is to help you develop practical circuit design skills, as well as the following more general research skills:

- Complex device design.
- Project budgeting.
- Formal project proposal writing.
- Finding, selecting, and purchasing device components.
- Device construction.
- Troubleshooting and debugging.
- Oral and web presentations of the device.

DSP design project

The design project:

- Digital DSP VOICE RECORDER with playback
$\rightarrow 1$ analog input (i.e. microphone).
$\rightarrow 1$ analog output (i.e. speaker).

\rightarrow FPGA core.
\rightarrow Comments: more memory handling, more involved analog.

DSP design project (III)

$>$ Easier project than last year, with more project time scheduled.
> The project will be based on an FPGA.
$>$ The specific project requirements will be announced next week.
$>$ The project is the most important part of the course.
$>$ It will be graded according to the following weights:

Formal project proposal 10\%
Device construction 15\%
Device performance 15\%
Web presentation of device 5\%
Project lab book
5\%
Total
50\%

Evaluation

Notebooks: 40\%
Participation: 10\%
DSP project: 50\%
Total = 100\%

Note: There is no final exam for the course

Due Dates

> Lab books

In addition to lab notes, the lab books should include all design exercises.
Lab books are due by 5pm on Fridays after lab \& will be returned by the next lab period:

Introduction to Digital Logic

Digital Variables

A digital circuit has only 2 possible values HIGH (H or 1) and LOW (L or 0)
\rightarrow Does not need to be precision designed.
\rightarrow Not very sensitive to electronic noise.
Here are a few voltage-logic conventions:

Convention	Supply	LOW	HIGH	Speed
TTL	+5 V	$<0.7 \mathrm{~V}$	$>2.0 \mathrm{~V}$	$\sim 5 \mathrm{nS}$
LVTTL	+3.3 V	$<0.7 \mathrm{~V}$	$>2.0 \mathrm{~V}$	$\sim 5 \mathrm{nS}$
CMOS	$+3-15 \mathrm{~V}$	$<20 \%$ Supply	$>80 \%$ Supply	$\sim 10 \mathrm{nS}$
GaAs	undefined	undefined	undefined	$\sim 100 \mathrm{pS}$

Digital vs. Analog

Digital

$>$ Easy to design (linear logic flow).
\rightarrow No feedback!
$>$ Insensitive to electronic noise.
$>$ Easy to design and make very complex circuits.
$>$ Insensitive to specific components.
$>$ Reliable isolation circuitry.
$>$ Tends to consume a lot of power.
$>$ Slower than analog equivalent.
$>$ Very bad if a single bit is corrupted (std. error rate 1 part per 10^{10}).
\rightarrow Error correction is important.

Analog

$>$ Harder to design and read a circuit, especially with feedback.
$>$ Noise is critical.
$>$ Complex circuits are hard to design.
$>$ Sensitive to specific components and quality of assembly.
$>$ Isolation circuitry reduces accuracy.
$>$ Can be low power.
$>$ Very fast.
$>$ Some circuits must be analog.

Transistor-Transistor-Logic (TTL)

In this course, we will use almost exclusively the TTL family of logic chips.
Characteristics:
$>$ Very reliable
$>$ Widely available.
$>$ Silicon-based with bipolar transistors.
$>$ Supply: + 5 V , High $>2 \mathrm{~V}$, Low $<0.7 \mathrm{~V}$
>1 output can drive 10 inputs (fanout =10).
$>$ Never leave an input (or output) floating: it will tend to wander between H and L .

CAUTION: If any of your voltages are close to the range $0.7-2.0 \mathrm{~V}$, then you should check your circuit and the components.

Boolean Operators

Identity

1 input $\rightarrow 1$ output
0 input $\rightarrow 0$ output

(also called a buffer)

Inverter

1 input $\rightarrow 0$ output
0 input $\rightarrow 1$ output

Note: Boolean (adj.) refers to something that is 2-valued (named after G. Boole, 1815-1864).

2-input operators

AND

\rightarrow Outputs H only if both inputs are H .
\rightarrow Written as a product:

$$
Y=A B
$$

INPUTS		OUTPUT
A	B	$\mathrm{AB}=\mathrm{Y}$
L	L	L
L	H	L
H	L	L
H	H	H

OR

\rightarrow Outputs H only if either input is H .
\rightarrow Written as a sum:
$\mathrm{Y}=\mathrm{A}+\mathrm{B}$

INPUTS		OUTPUT
A	B	$\mathrm{A}+\mathrm{B}=\mathrm{Y}$
L	L	L
L	H	H
H	L	H
H	H	H

More operators

NAND

INPUTS		OUTPUT
A	B	$\overline{A B}=Y$
L	L	H
L	H	H
H	L	H
H	H	L

A little bit of analog

Analog realization of a NOR gate

Boolean logic identities

Associative

$$
A B C=(A B) C=A(B C) \quad A+B+C=(A+B)+C=A+(B+C)
$$

Commutative

$$
A B=B A
$$

$$
A+B=B+A
$$

Others

$$
\begin{array}{lll}
A A=A & A 1=A & A 0=0 \\
A+A=A & A+1=1 & A+0=A \\
A+A B=A & A+B C=(A+B)(A+C) & \\
A+\bar{A}=1 & A \bar{A}=0 & A+\bar{A} B=A+B
\end{array}
$$

DeMorgan's Theorem
$\overline{A+B}=\bar{A} \bar{B}$

$$
\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}
$$

Exclusive OR

XOR

\rightarrow Outputs H if either input is H , but not both.
\rightarrow Written as a plus sign with a circle around it: $\mathrm{Y}=A \oplus B$

INPUTS		OUTPUT
A	B	$A \oplus B=Y$
L	L	L
L	H	H
H	L	H
H	H	L

The NAND and NOR gates

DeMorgan's theorem corollary:

Any logic gate or operation can be constructed exclusively of NAND gates (or NOR gates).

Note: a NAND gate with the inputs tied together is a NOT gate.

Hardware

Name	Expression	Inputs	Part \#
AND	AB	2 (also 3\&4)	$74 \times \times 08$
NAND	$\overline{\mathrm{AB}}$	2 (also 3\&4)	$74 \times \times 00$
OR	$\mathrm{A}+\mathrm{B}$	2 (also 3\&4)	$74 \times \times 32$
NOR	$\overline{\mathrm{A}+\mathrm{B}}$	2 (also 3\&4)	$74 \times \times 02$
Invert	$\overline{\mathrm{A}}$	1	$74 \times \times 04$
Buffer	A	1	$74 \times \times 365$
XOR	$\mathrm{A} \oplus B$	2 (also 3\&4)	$74 \times \times 86 / 386$
XNOR	$\overline{\mathrm{A} \oplus \mathrm{B}}$	2 (also 3\&4)	$74 \times \times 266$

Note: We will use mostly Low Speed TTL (xx = LS).

Example: 74LS00

Quad NAND gate chip

> 4 gates per chip.
$>$ Requires +5 V of power at Vcc .
$>$ Requires a ground connection at GND.
$>$ Never float an input (i.e. it will wander between 0 and 1).
$>$ Each gate consists of about 20 components.

Karnaugh Maps (I)

Logic table \rightarrow Karnaugh Map \rightarrow digital logic circuit

$>$ Up to 4 inputs, 1 output.
$>$ Always gives a solution, though not the most efficient one.

Example:

- 3 person vote.
- 2-person majority produces H output.

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Karnaugh Maps (II)

$>$ Arrange inputs on either one of the two table axes.
$>$ Up to 2 inputs per axis.
$>$ Order of inputs is important: only one input change per row or column.
(note: column order is circular.)

Karnaugh Maps (II)

$>$ Arrange inputs on either one of the two table axes.
$>$ Up to 2 inputs per axis.
$>$ Order of inputs is important: only one input change per row or column.
$>$ Group together the adjacent "ones": these correspond to AND gates.

> Alternatively, group adjacent "zeros": these correspond to OR gates.
$>$ Write down the corresponding AND gates: $A B, B C, A C$

Solution: AB + BC + AC

Karnaugh Maps (III)

	A	0	0	1	1
	B	0	1	1	0
C	D				
0	0	1	1	0	1
0	1	0	1	0	0
1	1	0	1	1	0
1	0	1	1	1	0

Karnaugh Maps (III)

	A	0	0	1	1
C	D	0	1	1	0
0	0	1	1	0	1
0	1	0	1	0	0
1	1	0	1	1	0
1	0	1	1	1	0

Karnaugh Maps (III)

Solution: $\bar{A} B+B C+\bar{A} \bar{D}+\bar{B} \bar{C} \bar{D}$

Binary Numbers

Base 10 (i.e. decimal numbers)

$$
73691=1 \times 10^{0}+9 \times 10^{1}+6 \times 10^{2}+3 \times 10^{3}+7 \times 10^{4}=73691_{10}
$$

We can represent any integer in a digital circuit if we use base-2 representation.

Base 2 (i.e. binary numbers)

$$
\begin{aligned}
10011101 & =1 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}+0 \times 2^{5}+0 \times 2^{6}+1 \times 2^{7}=10011101_{2} \\
& =1+0+4+8+16+0+0+128=157_{10}
\end{aligned}
$$

Binary Numbers

Base 10 (i.e. decimal numbers)

$$
73691=1 \times 10^{0}+9 \times 10^{1}+6 \times 10^{2}+3 \times 10^{3}+7 \times 10^{4}=73691_{10}
$$

We can represent any integer in a digital circuit if we use base-2 representation.

Base 2 (i.e. binary numbers)

$$
\begin{aligned}
\text { 10010101 } & =1 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}+0 \times 2^{5}+0 \times 2^{6}+1 \times 2^{7}=10011101_{2} \\
1 \text {-bit } & =1+0+4+8+16+0+0+128=157_{10} \\
8 \text {-bits } & =1 \text { byte }
\end{aligned}
$$

Binary Numbers

Base 10 (i.e. decimal numbers)

$$
73691=1 \times 10^{0}+9 \times 10^{1}+6 \times 10^{2}+3 \times 10^{3}+7 \times 10^{4}=73691_{10}
$$

We can represent any integer in a digital circuit if we use base-2 representation.

Base 2 (i.e. binary numbers)

$$
\begin{aligned}
\text { 10011101 } & =1 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}+0 \times 2^{5}+0 \times 2^{6}+1 \times 2^{7}=10011101_{2} \\
1 \text {-bit } & =1+0+4+8+16+0+0+128=157_{10} \\
8 \text {-bits } & =1 \text { byte }
\end{aligned}
$$

Base 16 (i.e. Hexadecimal numbers)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Decimal \rightarrow Binary

$>$ To convert from decimal to binary
\rightarrow Divides by 2 repeatedly \& write the remainders
$>$ To convert 13_{10} to binary

$$
13 / 2=6 \text { remainder } 1
$$

$6 / 2=3$ remainder 0
$3 / 2=1$ remainder 1
$1 / 2=0$ remainder 1
> The digits come out in right to left order
$\rightarrow 13_{10}=1101_{2}$

Binary Addition

> Examples

$$
\begin{aligned}
& 0101_{2}+0010_{2}=0111_{2} \\
& 0101_{2}+0001_{2}=0110_{2} \\
& 0111_{2}+0001_{2}=1000_{2}
\end{aligned}
$$

$>$ Differences between decimal \& binary addition...
$>$ In binary we carry half the time, on average.
$>$ There are only a limited number of possible operands \& resultants (1s or 0s).
$>$ Makes digital implementation fairly simple.

