
Chapter 1: Digital logic

I.  Overview
In PHYS 252, you learned the essentials of circuit analysis, including the concepts of 

impedance, amplification, feedback and frequency analysis. Most of the circuits we used 
were  linear circuits,  where the output of a circuit  component was proportional to the 
input.  For example,  a good amplifier  might  make an input voltage level larger  but it 
should not change the shape of the signal. The best amplifiers (which we did not attempt 
to build) only amplify the input signal and do not add any noise or distortion to the signal. 
They also have a large dynamic range, which means that they can amplify small signals 
or large signals while maintaining a linear proportionality between the output and the 
input. This is difficult and requires careful attention to the circuit layout. In most cases 
researchers will simply buy well-engineered commercial amplifiers rather than build their 
own.

Digital  circuits are at the other end of the spectrum from linear circuits. A digital  
output has only two possible values.  Rather than denoting these two output voltages by 
their actual values (e.g. 0V or 5V), the output voltages, or states, are denoted by a number 
of conventions:

• High or low

• H or L

• True or False

• T or F

• 0 or 1

Digital  circuits  are far less sensitive to the circuit  components and the component 
layout  than  analog  designs.  They  primarily  depend  on  logic,  rather  than  currents  or 
voltages for operation and so one can quickly learn to build rather sophisticated digital 
circuits. However, the increasing speed of microprocessors has also made digital circuit 
design less necessary. In this course we will survey some of the most important concepts 
in  digital  circuit  design:  logic  gates,  timing,  A/D and D/A converters,  memory,  bus 
design  and  digital  signal  processing.  As  the  course  progresses,  we  will  move  from 
building simple digital circuits to using computer programming to create sophisticated 
and flexible interfaces between the digital and analog world.
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II.  Digital Logic and Boolean Algebra

Variables
Some  variables  have  only  a  single  binary  digit,  and therefore  can  take  only  two 

possible  values,  TRUE  (1)  or  FALSE  (0).  We  will  call  these  logical  (or  Boolean) 
variables. 

This  type  of variable  is  extremely useful  for controlling equipment  and computer 
programs.  For  example,  if  you  want  a  variable  that  represents  whether  a  piece  of 
equipment is turned on (1) or turned off (0), you might assign a logical variable to it.  
Similarly,  if  a  shutter  is  open (1)  or  closed  (0),  you  might  want  to  assign  a  logical  
variable to it. Now, you could use Boolean algebra to make sure that you only try to take 
data when your equipment was turned on and your shutter was open. 

Operators
Since there are only two possible states for a logical  variable,  there are only two 

possible logical unary (single operand) operators. The identity operator does not change 
the logical value, so

0 input →0 output

1 input →1 output.

The inverter reverses the logical input, so

0 input →1 output

1 input →0 output.

This second operator is usually called NOT, and is represented by a bar over a variable, 
so that  NOT(A) is written as A . Note that using an inverter twice produces the identity 
operator again, so 

A  = A.

The electronic symbol for a device that performs 
the  NOT  operations  (called  a  gate)  is  just  an 
amplifier (a triangle pointing to the output) with a 
small  circle  to  denote  inversion  on  the  output. 
Figure  1-1  shows the  truth  table  and schematic 
diagram for a NOT gate. A truth table shows all 
possible input values with their respective output 
values. When you are designing logical circuits, 
you will find that a truth table is usually the best 
way to summarize your logic.
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Figure 1-1: NOT gate truth table and 
diagram. 



Of  course,  truth  tables  and  Boolean 
algebra  are  pretty  trivial  for  the  unary 
operators. They become useful when your 
operators accept more inputs.

First,  let’s  look  at  two  important 
Boolean  operators  that  take  two  inputs, 
AND  and  OR.  AND  gives  true  if  both 
inputs  are  true,  while  OR  gives  true  if 
either  input  is  true.  AND  is  written  as 
logical multiplication

A AND B ≡ A×B ≡ AB 

since multiplying anything by 0 results in 
0. Logically,  this means that if even one 
input is false (0), the output of an AND 
gate  is  also  false  (0).  The  OR  gate  is 
written as a logical addition

 A OR B ≡ A+ B. 

This  makes  sense  logically  if  you 
think that this produces a false (0) only if 
both  inputs  are  false  (0).  Note  that  for 
both AND and OR, the easy interpretation 
results  from  considering  what  makes  it 
false. 

If  you invert  the output of these gates, 
you have NAND and NOR gates, which are 
the  fundamental  building  blocks  of  digital 
circuits. For a NAND gate, a 0 on any input 
produces a 1 on the output. For a NOR gate, 
all  inputs  must  be  0  to  produce  a  1  on 
output. By “fundamental,” we mean that any 
logic combination of  any  number of inputs 
can  be  constructed  from  combinations  of 
two-input  NOR gates  or  two-input  NAND 
gates. 

A NAND gate is usually pictured as an 
AND gate with a little circle on the end (just 
like  the  NOT  gate)  to  signify  inversion. 
When  you  draw  an  AND  or  a  NAND  gate,  it  is  crucial  to  make  the  gate  face 
perpendicular to the input lines. Figure 1-2 shows the truth table and diagram for a two-
input NAND gate. A NOR gate is pictured as an OR gate with a little circle on the end to 
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Figure 1-2: NAND gate truth table and 
diagram. 

 

 

Figure 1-3: NOR gate truth table and 
diagram. 

 
 

Figure 1-4: XOR gate truth table and 
diagram. 



signify inversion. The OR gate looks similar to the AND gate, but its inputs enter into a 
curved face. Figure 1-3 shows the truth table and diagram for a two input NOR gate. 

In addition to the OR and AND gates there is a final common two input gate called an 
exclusive OR (or XOR).  This gate gives a true if either of the inputs are true but not it  
both inputs are true.  It is drawn as an OR gate with an extra curved line on the input 
lines. Figure 1-4 shows the truth table and diagram for a two-input NAND gate.

Operator Synthesis
You can build any other gate from them the two-input NOR and the two-input NAND 

gates.  For  example,  if  you  want  to  build  an  inverter,  you  simply  tie  the  two inputs 
together on either a two-input NOR or a two-input NAND, since they both then have the 
same truth table:

If you want to use more than two inputs, you can always build them from AND or OR 
gates since both multiplication and addition are associative. These properties are shown 
in both ways of writing the formulas as:

)(

))OR( OROROR

)(

)AND( ANDANDAND

CBACBA

CBACBA

BCAABC

CBACBA

++=++
=

=
=

However, if you want to use our basic NAND and NOR gates, then we must first note 
that inversion distributes itself in a funny way. Inverting the output of a gate is equivalent 
to inverting both inputs and simultaneously changing the gate from an AND to an OR or 
from an OR to an AND. 

BABA
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From this property, you can write a three-input AND in terms of our fundamental two-
input NAND gates: 

( )BCABCACBAABC =+=++=

with an inverter on one of the inputs. Note that since a double bar on top is the identity 
operator,  you  could  have  written  the  third  expression  directly,  using  the  associative 
property, as: 

- 4 -



( ) ( )BCABCAABC == .

This notation does have the problem that it can be very confusing to keep track of all the 
over-bars.

TTL Gates
TTL  (Transistor-Transistor  Logic)  gates  were  the  first  robust,  fast,  commonly 

available  digital  circuit  elements.  TTL  and  CMOS  (Complementary  Metal  Oxide 
Semiconductor) remain the two most common types of discrete logic chips. Although 
they have different  input  and output  impedances,  they both have the same input  and 
output voltage levels. The standard voltage levels for TTL logic are Low = ground, and 
High = 5 Volts. All integrated circuits (ICs) must have a ground (GND) and a power 
supply (VCC) in addition to its connections for input and output. 

Many TTL inputs will “float high” if you do not connect them to anything. This will 
change a NAND gate into an inverter, if only one input is connected, but it will render a 
NOR gate useless. Sometimes an unconnected input oscillates between high and low due 
to stray capacitive loads. These oscillations can be initiated by a radio station signal or as 
you move your hand over a circuit due to static charges. In general, unconnected inputs 
produce suspect outputs and make for circuit-debugging headaches. It is a good general 
rule to terminate any unused inputs by connecting them to another input, to GND, or to 
VCC, according to your gate type and usage.

III.  Binary Numbers & Math
The  common  and  relatively  simple  operation  in  computing  is  integer  arithmetic 

(addition and subtraction). This can be used to update a counter, compute a location in 
memory, or perform a requested mathematical operation. 

The essence of digital  circuitry is  that  a digital  signal is forced to be one of two 
values,  which  are  symbolically  represented  as  0  or  1.  Given  the  digital  nature  of 
computers and other electronic devices, it is most convenient to represent numbers using 
only 0s and 1s.  This is called a binary representation (or base two).  

A.  Binary Numbers

In  our  normal  math  we use  ten  digits  for  a  decimal (base  ten)  representation  of 
numbers. We make up a multi-digit number using the following scheme:

2×103 + 9×102 + 8×101 + 4×100 = 2000 + 900 + 80 + 4 = 2984

The base for a number  is  often indicated by a subscript  such as “298410”,  where the 
subscript is always in base ten.  Decimal is assumed if no subscript is shown.  
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We can  use  a  similar  algorithm to  convert  back  from a  binary  representation  to 
decimal representation.  

101102 = 1×24 + 0×23 + 1×22 + 1×21 + 0×20 = 16 + 0 + 4 + 2 + 0 = 22

To convert binary to decimal representation one divides by two repeatedly and writes 
down the remainders. To convert 1310 to binary

13/2 = 6 remainder 1

6/2 = 3 remainder 0

3/2 = 1 remainder 1

1/2 = 0 remainder 1

From which we can conclude the 1310 = 10112. Note that the digits come out in the order 
right to left. 

A single binary digit is known at a  bit. With  n bits one can represent 2n different 
numbers. The highest binary number one can represent in n bits is given by 2n-1 (since 0 
is one of the numbers). In a binary number, the leftmost digit is the most significant bit 
(MSB) and the rightmost digit is the least significant bit (LSB). 

Hexadecimal numbers
Note that it took 5 bits to represent a relatively small number like 22 in binary. 

Binary numbers have too many digits to write out for anything but the smallest 
numbers, so they are usually abbreviated in  hexadecimal notation (base sixteen) 
or occasionally in  octal (base eight). In hexadecimal notation, four binary digits 
are grouped together and represented by a single “digit” between 0 and 15. To 
force the digit to a single place, we will use a,  b,  c,  d,  e, and f  for the digits 10 
through  15.  A  standard  notation  in  computer  programming  is  to  denote  a 
hexadecimal number with a 0x preceding it. Thus,

0x16 = 1×161 + 6×160 = 16 + 6 = 22

and 

0x2f = 2×161 + 15×160 = 32 + 15 = 47

Two hexadecimal digits can be combined to form an eight-bit  byte. A byte can 
represent numbers from 0 and 255 (0xff).
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B.  Binary Addition
As the semester  progresses  we will  start  to  use binary and hexadecimal  numbers 

extensively.  We will be doing conversions between bases and doing arithmetic in these 
alternate bases. To start with, let us consider addition of multi-digit binary numbers.  Our 
goal  is  to  try  to  understand  the  logic  of  the  process  in  enough  detail  that  we  can 
generalize it into a digital circuit. 

The  general  process  looks  like  normal  addition.  Here  are  some  examples  that 
encompass all portions of the operation. 

   01012 + 00102 = 01112

   01012 + 00012 = 01102

   01112 + 00012 = 10002

The main differences between decimal and binary addition are that the binary one, on 
average, carries half the time and there are only a limited number of possible operands 
and resultants for each place in the operation (i.e. only 1s or 0s).  

If  we just  look at  a  particular  digit,  there  are  up  to  three  bits  that  are  inputs  to 
addition. These are the ith digit of the first number, the ith digit of the second number and 
an additional bit that tells us if there was a “carry” from adding the previous digits.  The 
resulting answer can have values of 002, 012, 102, or 112. For the first two cases there 
would not be a carry to the next digit.  In the last two cases, there would be a carry, which 
is represented by the MSB.  

C.  Karnaugh Maps
A Karnaugh map is useful for trying to define the logic for circuits with up to four 

inputs and a single output. An example of a three-input map is shown in Figure 2-1. A 
Karnaugh map is made with the following steps: 

1. Make a truth table.  Put  in L or  H or X (“don’t  care”)  for  the inputs  and the 
resulting outputs one expects.

2. Set up the map. Put up to two inputs on each of the two axis. As you fill in the 
values make sure that no more than on input bit changes from one row to the next 
and from one column to the next. 

3. Fill in the map based on the truth table

To use a map to make up a logical expression: 

1. An entire row or column indicates a simple AND of  a single variable. 

2. An adjacent pair of cells with “H” indicates an AND relationship with a pair of 
the row and column variables. 
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3. An adjacent pair of cells with “L” indicates an OR. 

4. Once all  the of either the “H” or “L” cells  are encompassed in simple logical 
expressions  they are  put  together  with  ORs or  ANDs to  make  a  final  logical 
expression. 

This simple methods of maping a sets of  ANDs and Ors will work and make a valid 
expression. It will likely not be the most efficient way of making the expression (i.e. will 
use extra gates). All of the logical operators make a different pattern on the map. You can 
play with these patterns to come up with mode efficient solutions. 

D.  Negative True Inputs
As time goes by this semester we will see a number of reasons for inputs coming into 

a  circuit  to  have  their  “true”  value  as  a  ground.  For  example,  switches  which  are 
monitoring equipment often are closed to ground in their normal state and are open when 
off (e.g. a window switch for a security system). Another reason is that a ground state  
usually uses less power so it is a better “resting” state for outputs that rarely are used to 
“assert” a 0. These are called negative true inputs. 

These sorts of inputs seem to fly in the face of our definitions.  To make it more 
intuitive, we simply pretend that they have been inverted before they reach our circuits. 
We use  the  standard  inverted  notation  for  these  negative  true  inputs  (e.g.  C ).  This 
situation is so common in practice that that we will see that most chips actually expect  
negative true inputs on certain parts of the circuit. 

E.  Assertion-Level Logic Notation
The routine use of negative true inputs can make the purpose of a circuit harder to 

interpret.  We  saw  previously  that  we  can  make  a  number  of  transformations  using 
inversion to, for example, see how an OR and be use to replace an AND in a circuit. We 
can use these inversion properties to make the logic easier to interpret when negative true 
inputs are present by putting inversions at the inputs. 

This is illustrated in the example shown in Figure 2-1. Both circuits  implement a 
circuit  that performs the operations  Q  =  (R+L)S with negative true inputs. The upper 
circuit  uses only standard gates.  Note how the use of negative true inputs makes  the 
implementation hard to understand by simple inspection because the  R+L operation is 
replaced by LR .  

The figure below clarifies the situation by using inversions at the input to make them 
look like normal positive-true inputs. Then the gates actually look like the operations we 
intend to perform. It makes it a lot easier for someone looking the schematic to decipher 
how it functions. This method of trying to emphasize the logic instead of using standard 
gate symbols is known as assertion level logic. 

The price one pays with assertion level logic is that the gates are not the standard 
gates that one finds on chips. To build a circuit from such a schematic involves using an 
extra step (application of DeMorgan’s Theorem) to get the final gates needed to actually 
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build the device. Therefore, assertion level logic is usually used to show people what you 
have built rather than for construction diagrams. 
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Figure 1-5: Here are two circuits that perform the operations Q 
= (L+R)S with negative true inputs. The upper figure shows an 

example of a circuit that performs using standard gates. 
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Design Exercise 1-1: Construct the truth table for a three input NAND.

Design Exercise 1-2: Construct a circuit for a three input NAND, using three two-input 
NAND gates.

Design Exercise 1-3: Construct a truth table for a two input inverted XOR (called XNOR
).

Design Exercise 1-4: Construct a circuit for a two input inverted XOR, using two-input 
NAND gates.

Design Exercise 1-5: Convert 11 and 5 to binary,  add them together, and convert the 
resultant back to decimal. Did you get 16?

Design Exercise 1-6: Design a truth table for a circuit to add two binary digits and a 
carry bit. It will have three digital inputs and produce two digital outputs (the resulting 
digit and a carry bit). This is the truth table for a generalized 1-bit 2-input adder that can 
be implemented within a multi-bit 2-input adder. 

Design Exercise 1-7: Design a Karnaugh map for the resulting digit.  

Design Exercise 1-8: Design a Karnaugh map for the carry bit.

Design Exercise 1-9: Design a circuit to make one of the outputs from adding two binary 
digits. The circuit should produce a single output that contains the resulting digital sum 
(without carry). You can use any of the standard one and two-input logical gates in your  
design (e.g. AND, OR, NAND, NOR, XOR, and NOT).

Design Exercise 1-10: Design a circuit to make the other output from adding two binary 
digits and a carry bit. The circuit should produce the resulting carry bit.  You can use any 
of the standard one and two-input logical gates in your design (e.g. AND, OR, NAND, 
NOR, XOR, and NOT).
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