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a b s t r a c t

We study both monolayer and bilayer graphene transport properties taking into account the presence
of correlations in the spatial distribution of charged impurities. In particular we find that the
experimentally observed sublinear scaling of the graphene conductivity can be naturally explained
as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the
presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer
graphene, correlations among impurities induce a crossover of the scaling of the conductivity at higher
carrier densities. We show that in the presence of correlation among charged impurities the
conductivity depends nonlinearly on the impurity density ni and can increase with ni.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The scaling of the conductivity s as a function of gate-voltage,
proportional to the average carrier density n, is invaluable in
characterizing the properties of graphene [1]. The functional
dependence of sðnÞ at low temperatures contains information
[2,3] about the nature of disorder in the graphene environment
(i.e., quenched charged impurity centers, lattice defects [4], inter-
face roughness [5], ripples [6,7], resonant scattering centers
[8–11], etc.) giving rise to the dominant scattering mechanism.
At finite temperatures electron–phonon scattering contributes to
the resistivity [12–14]. However, in graphene the electron–pho-
non scattering is very weak and it becomes important only at
relatively high temperatures (\400 K), as evidenced also from
the fact that around room temperature the temperature depen-
dence of s appears to be dominated by activation processes
[15,16]. The quantitative weakness of the electron–phonon inter-
action in graphene gives particular impetus to a thorough under-
standing of the disorder mechanisms limiting graphene
conductivity since this may enable substantial enhancement of
room temperature graphene-based devices for technological
applications. This is in sharp contrast to other high-mobility 2D
systems such as GaAs-based devices whose room-temperature
mobility could be orders of magnitude lower than the corre-
sponding low-temperature disorder-limited mobility due to
strong carrier scattering by phonons [17]. Therefore, a complete
understanding of the disorder mechanisms controlling sðnÞ in

graphene at T¼0 is of utmost importance both from a funda-
mental and a technological prospective.

The experimental study of sðnÞ in gated graphene goes back to the
original discovery of 2D graphene [1,18] and is a true landmark in the
physics of electronic materials. Essentially, all experimental work on
graphene begins with a characterization of sðnÞ and the mobility,
m¼ s=ðneÞ. A great deal is therefore known [1,18–22] about the
experimental properties of sðnÞ in graphene. The most important
features of the experimentally observed sðnÞ [18–24] in monolayer
graphene (MLG) are: (1) a non-universal sample-dependent mini-
mum conductivity sðn$ 0Þ % smin at the charge neutrality point
(CNP) where the average carrier density vanishes; (2) a linearly
increasing, sðnÞpn , conductivity with increasing carrier density on
both sides of the CNP up to some sample-dependent characteristic
carrier density; (3) a sublinear sðnÞ for high carrier density, making it
appear that the very high density sðnÞ may be saturating.

To explain the above features of sðnÞ a model has been
proposed [2,25–29] with two distinct scattering mechanisms:
the long-range Coulomb disorder due to random background
charged impurities and static zero-range (often called ‘‘short-
range’’) disorder. The net graphene conductivity with these two
scattering sources is then given by s% r&1 ¼ ðrcþrsÞ

&1, where rc

and rs are resistivities arising, respectively, from charged impur-
ity and short-range disorder. It has been shown that [2,25–29]
rc ( 1=n and rs ( constant in graphene, leading to sðnÞ going as

sðnÞ ¼ n
AþCn

ð1Þ

where the density-independent constants A and C are known [2]
as functions of disorder parameters; A, arising from Coulomb
disorder, depends on the impurity density (ni) (and also weakly
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on their locations in space) and the background dielectric con-
stant (k) whereas the constant C, arising from the short-range
disorder [2,27], depends on the strength of the white-noise
disorder characterizing the zero-range scattering. Eq. (1) clearly
manifests the observed sðnÞ behavior of graphene for na0 since
sðn5A=CÞ ( n, and sðnbA=CÞ ( 1=C with sðnÞ showing sublinear
ðCþA=nÞ&1 behavior for n( A=C.

The above-discussed scenario for disorder-limited graphene
conductivity, with both long-range and short-range disorders
playing important qualitative roles at intermediate ðnitnrA=CÞ
and high ðn4A=CÞ carrier densities respectively, has been experi-
mentally verified by several groups [19–22,24]. There is, however,
one serious issue with this reasonable scenario: although the
physical mechanism underlying the long-range disorder scattering
is experimentally established [2,19,20] to be the presence of
unintentional charged impurity centers in the graphene environ-
ment, the physical origin of the short-range disorder scattering is
unclear and has so far eluded direct imaging experiments. As a
matter of fact the experimental evidence suggests that point
defects (e.g. vacancies) are rare in graphene and should produce
negligible short-range disorder. There have also been occasional
puzzling conductivity measurements [e.g., Refs. [30,31]] reported
in the literature which do not appear to be explained by the
standard model of independent dual scattering by long- and short-
range disorders playing equivalent roles.

Recently a novel theoretical model has been proposed [32]
that is able to semiquantitatively explain all the major features of
sðnÞ observed experimentally assuming only the presence of
charged impurities. The key insight on which the model relies is
the fact that in experiments, in which the samples are prepared at
room temperature and are often also current annealed, it is very
likely that spatial correlations are present among the charged
impurities. In particular this model is able to explain the linear
(sublinear) scaling of sðnÞ in MLG at low (high) n without
assuming the presence of short-range scattering centers.

In this work we first review the transport model proposed in
Ref. [32], and then extend it to the case of bilayer graphene (BLG).
We find that, as in MLG, the presence of spatial-correlations
among impurities is able to explain a crossover of the scaling of
sðnÞ from low n to high n in BLG, as observed in experiments, and
that, because of the spatial correlations, s depends non-mono-
tonically on the impurity density ni.

The remainder of this paper is structured as follows. In Section 2
we present the model and the results for the structure factor SðqÞ
that characterizes the impurity correlations. With the structure
factor calculated in Section 2 we provide the transport theory in
Sections 3 and 4. In Section 3, we study the density-dependent
conductivity sðnÞ of monolayer graphene in the presence of corre-
lated charged impurities. We calculate sðnÞ at higher carrier density
using the Boltzmann transport theory. We also evaluate sðnÞ using
the effective medium theory [26] and the Thomas–Fermi–Dirac
theory to characterize the strong carrier density inhomogeneities
present close to the charge neutrality point. In Section 4, we apply
the Boltzmann transport theory and the effective medium theory for
correlated disorder to bilayer graphene and discuss the qualitative
similarities and the quantitative differences between monolayer and
bilayer graphene. We briefly review the experimental situation in
Section 5. We then conclude in Section 6.

2. Structure factor SðqÞ of correlated disorder

In this section we describe the model used to calculate the
structure factor SðqÞ for the charged impurities. We then present
results for SðqÞ obtained using this model via Monte Carlo
simulations. The Monte Carlo results are then used to build a

simple continuum approximation for SðqÞ, which captures all the
features of SðqÞ that are relevant for the calculation of sðnÞ.

2.1. Model for the structure factor SðqÞ

To calculate SðqÞ we follow the procedure presented in Ref. [34],
adapted to the case of a honeycomb structure. The approach was
applied to study the effects of impurity scattering in GaAs hetero-
junctions and successfully explained the experimental observation
of high-mobilities (e.g. greater than 107 cm2/(V s)) in modulation-
doped GaAs heterostructures. The possible charged impurity posi-
tions on graphene form a triangular lattice specified by rLM ¼
aLþbM. The vectors a¼ ð1;0Þa0 and b¼ ð

ffiffiffi
3

p
=2;1=2Þa0 defined in

the x–y plane, with a0 ¼ 4:92 Å, which is two times the graphene
lattice constant since the most densely packed phase of impurity
atoms (e.g. K as in Ref. [20]) on graphene is likely to be an m)m
phase withm¼2 for K [35]. The structure factor, including the Bragg
scattering term, is given by the following equation:

SðqÞ ¼
1
Ni

X

i,j

eiq*ðri&rjÞ

* +

ð2Þ

where ri,rj are the random positions on the lattice rLM of
the charged impurities and the angle brackets denote averages
over disorder realizations. Introducing the fractional occupation
f %Ni=N of the total number of available lattice sites N by the
number of charged impurities Ni, and the site occupation factor ELM
equal to 1 if site rl is occupied or zero if unoccupied, we can rewrite
Eq. (2) as

SðqÞ ¼
1
f

X

LM

/ELME0Seiq*rLM ð3Þ

in which the sum is now over all the available lattice sites (not only
the ones occupied by the impurities). By letting CLM %/ELME0S=f 2

we can rewrite Eq. (3) as

SðqÞ ¼ f
X

LM

CLMe
iq*rLM ð4Þ

We then subtract the Bragg scattering term from this expression
considering that it does not contribute to the resistivity obtaining

SðqÞ ¼ f
X

LM

ðCLM&1Þeiq*rLM ð5Þ

It is straightforward to see that for the totally random case, the
structure factor is given by SðqÞ ¼ 1&f and niC4:8f ) 1014 cm&2.
For the correlated case we assume that two impurities cannot be
closer than a given length r0ori % ðpniÞ

&1=2 defined as the correla-
tion length. This model is motivated by the fact that two charged
impurities cannot be arbitrarily close to each other and there must
be a minimum separation between them.

2.2. Monte Carlo results for SðqÞ

Using Monte Carlo simulations carried out on a 200)200
triangular lattice with 106 averaging runs and periodic boundary
conditions we have calculated the structure factor given by Eq. (5). In
the Monte Carlo calculation a lattice site is chosen randomly and
becomes occupied only if it is initially unoccupied and has no nearest
neighbors within the correlation length r0. This process is repeated
until the required fractional occupation for a given impurity density is
obtained. Once the configuration is generated, the CLM can be
numerically determined after doing the ensemble average. In the
numerical calculations, we use only statistically significant CLM, i.e.,
9rLM&r009r3r0, since CLM is essential unity for 9rLM&r00943r0.

In Fig. 1, we present a contour plot of the structure factor SðqÞ
obtained from the Monte Carlo simulations for two different
values of the impurity density. For r0a0 the structure factor is

Q. Li et al. / Solid State Communications 152 (2012) 1390–1399 1391



suppressed at small momenta. Moreover the suppression of SðqÞ
at small momenta is more pronounced, for fixed r0, as ni is
increased as it can be seen comparing the two panels of Fig. 1.
The magnitude of SðqÞ at small q mostly determines the d.c.
conductivity and therefore, from the results of Fig. 1, is evident
that the presence of spatial correlations among the charged
impurities will strongly affect the value of the conductivity.

2.3. Continuum model for SðqÞ

Given that the value of the d.c. conductivity depends almost
entirely on the value of SðqÞ at small momenta, as discussed in
Sections 3 and 4, it is convenient to introduce a simple continuum
model being able to reproduce for small q the structure factor
obtained via Monte Carlo simulations. A reasonable continuum
approximation to the above discrete lattice model is given by the
following pair distribution function gðrÞ (r is a 2D vector in the
graphene plane)

gðrÞ ¼
0 9r9rr0
1 9r94r0

(
ð6Þ

for the impurity density distribution. In terms of the pair
correlation function gðrÞ the structure factor is given by

SðqÞ ¼ 1þni

Z
d2reiq*r½gðrÞ&1, ð7Þ

For uncorrelated random impurity scattering, as in the standard
theory, gðrÞ ¼ 1 always, and SðqÞ % 1. With Eqs. (6) and (7), we have

SðqÞ ¼ 1&2pni
r0
q
J1ðqr0Þ ð8Þ

where J1ðxÞ is the Bessel function of the first kind. Fig. 2 shows SðqÞ
obtained both via Monte Carlo simulations and by using the simple

continuum analytic model [Eq. (8)] for a few values of r0 and ni. We
can see that the continuum model reproduces extremely well the
dependence of the structure factor on q for small momenta, i.e. the
region in momentum space that is relevant for the calculation of s.

3. Monolayer graphene conductivity

In this section, we explore how the spatial correlations among
charged impurities affect monolayer graphene transport proper-
ties. To minimize the parameters entering the model we assume
the charged impurities to be in a 2D plane placed at an effective
distance d from the graphene sheet (and parallel to it).

We first study the density-dependent conductivity in mono-
layer graphene transport for large carrier densities (nbni) using
the Boltzmann transport theory, where the density fluctuations of
the system can be ignored. We then discuss sðnÞ close to the
charge neutrality point, where the graphene landscape breaks up
into puddles [33,36–40] of electrons and holes due to the effect of
the charged impurities, using the effective medium theory devel-
oped in Ref. [26].

3.1. High density: Boltzmann transport theory

Using the Boltzmann theory for the carrier conductivity at
temperature T¼0 we have

s¼
e2

h
gEFtðEF Þ

2_
ð9Þ

where EF is the Fermi energy, g¼4 is the total degeneracy of
graphene, and t is the transport relaxation time at the Fermi
energy obtained using the Born approximation. The scattering
time at T¼0 due to the disorder potential created by charged

Fig. 1. (Color online) (a) Density plot of the structure factor SðqÞ obtained from Monte Carlo simulations for a0 ¼ 4:92 Å and r0 ¼ 5a0. (a) ni ¼ 0:95) 1012 cm&2;
(b) ni ¼ 4:8) 1012 cm&2.

Fig. 2. (Color online) (a) and (b) show the calculated structure factor SðqÞ for two values of impurity density ni. (a) ni ¼ 0:95) 1012 cm&2; (b) ni ¼ 4:8) 1012 cm&2. The solid
lines show SðqÞ using Eq. (8). Dot-dashed and dashed lines show the Monte Carlo results for two different directions of q from x-axis, y¼ 0 and y¼ 301, respectively.
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impurities taking into account the spatial correlations among
impurities is given by [15,41,42]

_
tðEpkÞ

¼ 2pni

Z
d2k0

ð2pÞ2
Vð9k&k09Þ
eð9k&k09Þ

" #2

Sðk&k0Þ

)gðykk0 Þ½1&cos ykk0 ,dðEpk0&EpkÞ ð10Þ

where VðqÞ ¼ 2pe2=kqe&qd is the Fourier transformation of the 2D
Coulomb potential created by a single charged impurity in an
effective background dielectric constant k, eðqÞ is the static
dielectric function, Esk ¼ s_vFk is the carrier energy for the
pseudospin state ‘‘s’’, vF is graphene Fermi velocity, k is the 2D
wave vector, ykk0 is the scattering angle between in- and out-
wave vectors k and k0, gðykk0 Þ ¼ ½1þcos ykk0 ,=2 is a wave function
form-factor associated with the chiral nature of MLG (and is
determined by its band structure). The two dimensional static
dielectric function eðqÞ is calculated within the random phase
approximation (RPA) [41], and given by

eðqÞ ¼
1þ

4kFrs
q

if qo2kF

1þ
prs
2

if q42kF

8
>><

>>:
ð11Þ

After simplifying Eq. (10), the relaxation time in the presence
of correlated disorder is given by

_
t¼

pni_vF

4kF

" #
r2s

Z
dyð1&cos2 yÞ

sin y
2 þ2rs

$ %2 S 2kF sin
y
2

" #
ð12Þ

where kF is the Fermi wavevector (kF ¼ EF=ð_vF Þ), and rs is the
graphene fine structure constant (rs ¼ e2=ð_vFkÞC0:8 for gra-
phene on a SiO2 substrate). For uncorrelated random impurity
scattering (i.e., r0 ¼ 0, gðrÞ ¼ 1, and SðqÞ % 1) we recover the
standard formula for Boltzmann conductivity by screened random
charged impurity centers [27–29], where the conductivity is a
linear function of carrier density.

By approximating the structure factor Sð2kF sin y=2Þ that
appears in (12) by a Taylor expansion around kF sin y=2¼ 0 it is
possible to obtain an analytical expression for sðnÞ that allows us
to gain some insight on how the spatial correlation among
charged impurities affect the conductivity in MLG. Expanding
the first kind of Bessel function J1ðxÞ in Eq. (8) around x( 0 to the
third order

J1ðxÞC
x
2
&

x3

16
ð13Þ

from Eq. (12) we obtain

_
tC

4pni_vF

kF
r2s G1ðrsÞð1&pnir

2
0ÞþG2ðrsÞ

pnik
2
F r

4
0

2

" #

ð14Þ

where the dimensionless functions G1ðxÞ and G2ðxÞ are given
by [43]

G1ðxÞ ¼
p
4
þ6x&6px2þ4xð6x2&1ÞgðxÞ

G2ðxÞ ¼
p
16

&
4x
3
þ3px2þ40x3 1&pxþ4

5
ð5x2&1ÞgðxÞ

& '
ð15Þ

where

gðxÞ ¼

sech&1ð2xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1&4x2

p if xo1
2

sec&1ð2xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2&1

p if x4
1
2

8
>>>><

>>>>:

ð16Þ

Using Eqs. (9) and (14), and recalling that kF ¼
ffiffiffiffiffiffi
pn

p
, we find

sðnÞ ¼ An

1&aþBa2n=ni

ð17Þ

where

A¼
e2

h
1

2nir2s G1ðrsÞ

a¼ pnir
2
0

B¼
G2ðrsÞ
2G1ðrsÞ

: ð18Þ

Note ao1 in our model because the correlation length cannot
exceed the average impurity distance, i.e., r0ori ¼ ðpniÞ

&1=2.
Eq. (17) indicates that at low carrier densities the conductivity
increases linearly with n at a rate that increases with r0

sðnÞ ( An
ð1&aÞ

ð19Þ

whereas at large carrier densities the dependence of s on n
becomes sublinear

sðnÞ ( 1&
nc

n
ð20Þ

where nc ¼ ð1&aÞni=ðBa
2Þ (Oð1=nir

4
0Þ. Note that the above equation

is valid for
ffiffiffiffiffiffi
pn

p
r051, where we expand the structure factor as a

power series of
ffiffiffiffiffiffi
pn

p
r0. The crossover density nc, where the

sublinearity (n4nc) manifests itself, increases strongly with
decreasing r0. This generally implies that the higher mobility
annealed samples should manifest stronger nonlinearity in sðnÞ,
since annealing leads to stronger impurity correlations (and hence
larger r0). This behavior has been observed recently in experiments
in which the correlation among charged impurities was controlled
via thermal annealing [44]. Contrary to the standard-model with
no spatial correlation among charged impurities, in which the
resistivity increases linearly in ni, Eq. (17) indicates that the
resistivity could decrease with increasing impurity density if there
are sufficient inter-impurity correlations. This is due to the fact
that, for fixed r0, at higher densities the impurities are more
correlated causing SðqÞ to be more strongly suppressed at low q
as shown in Figs. 1 and 2. In the extreme case, i.e., r0 ¼ a0 and
ri ¼ r0, the charged impurity distribution would be strongly corre-
lated, indeed perfectly periodic, and the resistance, neglecting
other scattering sources, would be zero. From Eq. (17) we find
that the resistivity reaches a maximum when the condition

ri=r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1&pBnr20Þ

q
ð21Þ

is satisfied. Eq. (21) can be used as a guide to improve the mobility
of graphene samples in which charged impurities are the dominant
source of disorder.

Fig. 3(a) and (b) presents the results for sðnÞ obtained inte-
grating numerically the r.h.s. of Eq. (12) and keeping the full
momentum dependence of the structure factor. The solid lines
show the results obtained using the SðqÞ given by the continuum
model, Eq. (8), the symbols show the results obtained using the
SðqÞ obtained via Monte Carlo simulations. The comparison
between the two results shows that the analytic continuum
correlation model is qualitatively and quantitatively reliable. It
is clear that, for the same value of r0, the dirtier (cleaner) system
shows stronger nonlinearity (linearity) in a fixed density range
consistent with the experimental observations [44] since the
correlation effects are stronger for larger values of ni.

Fig. 4(a) presents the resistivity r¼ 1=s in monolayer gra-
phene as a function of impurity density ni with correlation length
r0 ¼ 5a0 for different values of carrier density. It is clear that the
impurity correlations cause a highly nonlinear resistivity as a
function of impurity density and that this nonlinearity in rðniÞ is
much stronger for lower carrier density. In Fig. 4(b) we show the
value of the ratio ri=r0 for which r is maximum as a function of

Q. Li et al. / Solid State Communications 152 (2012) 1390–1399 1393



ffiffiffi
n

p
r0 The analytical expression of Eq. (21) is in very good

agreement with the result obtained numerically using the full
momentum dependence of SðqÞ.

3.2. Low density: effective medium theory

Due to the gapless nature of the band structure, the presence
of charged impurities induces strong carrier density inhomogene-
ities in MLG and BLG. Around the Dirac point, the 2D graphene
layer becomes spatially inhomogeneous with electron–hole pud-
dles randomly located in the system. To characterize these
inhomogeneities we use the Thomas–Fermi–Dirac (TFD) theory
[33]. Ref. [26] has shown that the TFD theory coupled with the
Boltzmann transport theory provides an excellent description of
the minimum conductivity around the Dirac point with randomly
distributed Coulomb impurities. We further improve this techni-
que to calculate the density landscape and the minimum
conductivity of monolayer graphene in the presence of correlated
charged impurities. To model the disorder, we have assumed that
the impurities are placed in a 2D plane at a distance d¼1 nm from
the graphene layer. Figs. 5(a) and (b) show the carrier density
profile for a single disorder realization for the uncorrelated case
and correlated case (r0 ¼ 10a0) for ni ¼ 0:95) 1012 cm&2. We can
see that in the correlated case the amplitude of the density
fluctuations is much smaller than in the uncorrelated case. The
TFD approach is very efficient and allows the calculation of
disorder averaged quantities such as the density root mean
square, nrms, and the density probability distribution P(n).
Figs. 5(c)–(e) show P(n) at the CNP, and away from the Dirac
point (ni ¼ 0:95) 1012 cm&2). In each figure both the results for

the uncorrelated case and the one for the correlated case are
shown. P(n) for the correlated case is in general narrower than
P(n) for the uncorrelated case resulting in smaller values of nrms as
shown in Fig. 5(f) in which nrms=ni as a function of r0=ri is plotted
for different values of the average density, /nS, and two different
values of the impurity density, ni ¼ 0:95) 1012 cm&2 (‘‘low
impurity density’’) for the solid lines, and ni ¼ 4:8) 1012 cm&2

(‘‘high impurity density’’) for the dashed lines.
To describe the transport properties close to the CNP and take

into account the strong disorder-induced carrier density inhomo-
geneities we use the effective medium theory (EMT), where the
conductivity is found by solving the following integral equation
[2,26,45–49]:

Z
dn

sðnÞ&sEMT

sðnÞþsEMT
PðnÞ ¼ 0 ð22Þ

where sðnÞ is the local Boltzmann conductivity obtained in
Section 3.1. Figs. 6(a) and (b) show the EMT results for sðnÞ. The
EMT results give similar behavior of sðnÞ at high carrier density as
shown in Fig. 3, where the density fluctuations are strongly
suppressed. However, close to the Dirac point, the graphene
conductivity obtained using TFD-EMT approach is approximately
a constant, with this constant minimum conductivity plateau
strongly depending on the correlation length r0. Figs. 6(c) and (d)
show the dependence of smin on the size of the correlation length
r0. smin increases slowly with r0 for r0=rio0:5, but quite rapidly
for r0=ri40:5. The results in Fig. 6(c) and (d) are in qualitative
agreement with the scaling of smin with temperature, propor-
tional to r0, observed in experiments [44].

Fig. 3. (Color online) Calculated sðnÞ in monolayer graphene with SðqÞ obtained from the Monte Carlo simulations, symbols, and SðqÞ given by Eq. (8), solid lines for (a)
ni ¼ 0:95) 1012 cm&2 and (b) ni ¼ 4:8) 1012 cm&2. The different lines correspond to different values of r0, from top to bottom r0 ¼ 10a0 ,8a0 ,7a0 ,5a0 ,0 in (a) and
r0 ¼ 5a0 ,4a0 ,3a0 ,0 in (b).

Fig. 4. (Color online) (a) Calculated resistivity r in monolayer graphene as a function of impurity density ni for different carrier densities with r0 ¼ 5a0. (b) The relationship
between ri=r0 and

ffiffiffi
n

p
r0 in monolayer graphene, where the conductivity is minimum. The dashed line is obtained using Eq. (21).
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4. Bilayer graphene conductivity

In this section we extend the theory presented in the previous
section for monolayer graphene to bilayer graphene. The most
important difference between MLG and BLG comes from the fact
that, in BLG, at low energies, the band dispersion is approximately
parabolic with effective mass mC0:033me (me being the bare
electron mass) [50] rather than linear as in MLG. As a consequence
in BLG the scaling of the conductivity with doping, at high density,
differs from the one in MLG. We restrict ourselves to the case in
which no perpendicular electric field is present so that no gap is
present between the conduction and the valence band [51–55].

To characterize the spatial correlation among charged impu-
rities we use the same model that we used for MLG.

4.1. High density: Boltzmann transport theory

Within the two-band approximation, the BLG conductivity at
zero temperature T¼0 is given by

s¼
e2nt
m

ð23Þ

where t is the relaxation time in BLG for the case in which the
charged impurities are spatially correlated. t is given by Eq. (10)
with Esk ¼ s_2k2=2m for the pseudo-spin state ‘‘s’’, Eð9k&k09Þ the
static dielectric screening function of BLG [56], and
gðykk0 Þ ¼ ½1þcos 2ykk0 ,=2 the chiral factor for states on the lowest
energy bands of BLG.

The full static dielectric constant of gapless BLG at T¼0 is
given by [56]

eðqÞ ¼ ½1þVðqÞPðqÞ,&1 ¼ ½1þVðqÞD0½gðqÞ&f ðqÞyðq&2kF Þ,,&1 ð24Þ

where PðqÞ is the BLG static polarizability, D0 ¼ 2m=p_2 the
density of states, and

f ðqÞ ¼
2k2F þq2

2k2Fq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2&4k2F

q
þ ln

q&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2&4k2F

q

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2&4k2F

q

gðqÞ ¼
1

2k2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4þ4k4F

q
&ln

k2F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4F þq4=4

q

2k2F

2

4

3

5 ð25Þ

To make analytical progress, we calculate the density-dependent
conductivity using the dielectric function of BLG within the

Fig. 5. (Color online) The carrier density in monolayer graphene for a single disorder realization obtained from the TFD theory (a) for the uncorrelated case and (b) for the
correlated case with r0 ¼ 10a0. ni ¼ 0:95) 1012 cm&2. Carrier probability distribution functions P(n) are shown in (c)–(e) for /nS¼ 0, 1.78, 7:7) 1012 cm&2, respectively. In
(f) the ratio nrms=ni is shown as a function of r0=ri for ni ¼ 0:95) 1012 cm&2, solid lines, and ni ¼ 4:8) 1012 cm&2, dashed lines. We use /nS¼ 7:7, 3.14, 0.94, 0) 1012 cm&2

for the solid lines (from top to bottom) and /nS¼ 8:34, 4.10, 1.7, 0) 1012 cm&2 for the dashed lines.
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Thomas–Fermi approximation

eðqÞ ¼ 1þ
qTF
q

ð26Þ

where qTF ¼ 4me2=k_2 and qTFC1:0) 109 m&1 for bilayer gra-
phene on SiO2 substrate, which is a density-independent constant
and is larger than 2kF for carrier density no8) 1012 cm&2. The
relaxation time including correlated disorder is then simplified as

_
t ¼

nip_2q20
m

Z 1

0
dx

1
xþq0

& '2x2ð1&2x2Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
1&x2

p Sð2kFxÞ ð27Þ

where q0 ¼ qTF=ð2kF Þ. To incorporate analytically the correlation
effects of charged impurities, we again expand SðxÞ around x( 0

Sð2kFxÞC1&aþ
1
2
n
ni
a2x2&

1
12

n2

n2
i

a3x4 ð28Þ

Combining Eqs. (23), (27), and (28) we obtain for sðnÞ at T¼0
in the presence of correlated disorder

s¼
e2

h
2n
ni

1

ð1&aÞG1½q0,þ n
2ni

a2G2½q0,& n2

12n2
i

a3G3½q0,
& ' ð29Þ

where

G1ðq0Þ ¼ q20

Z 1

0

1

ðxþq0Þ
2

x2ð1&2x2Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
1&x2

p dx

G2ðq0Þ ¼ q20

Z 1

0

1

ðxþq0Þ
2

x4ð1&2x2Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
1&x2

p dx

G3ðq0Þ ¼ q20

Z 1

0

1

ðxþq0Þ
2

x6ð1&2x2Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
1&x2

p dx ð30Þ

For each value of r0 and carrier density n, the resistivity of BLG for
correlated disorder is also not a linear function of impurity
density, and its behavior is close to that in MLG. The maximum
resistivity of BLG is found to be at

ri=r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1&pBBpnr20&CBp2n2r40Þ

q
ð31Þ

with BB ¼ G2½q0,=ð2G1½q0,Þ and CB ¼&G3½q0,=ð12G1½q0,Þ, which are
functions weakly depending on carrier density n.

It is straightforward to calculate the asymptotic density
dependence of BLG conductivity from the above formula and we
will discuss sðnÞ in the strong (q0b1) and weak q051 screening
limits separately.

In the strong screening limit q0b1, G1½q0,Cp=8, G2½q0,C
7p=64 and G3½q0,C13p=128. For randomly distributed charged
impurity, we can express the conductivity as a linear function of
carrier density sðnÞ ( n [57]. In the presence of correlated charged
impurity we find

sðnÞ ¼ ABn

1&aþa2 7n
16ni

þa3 13n2

192n2
i

ð32Þ

where a¼ pnir
2
0, and ABCðe2=hÞð16=pniÞ. In the strong screening

limit q0b1 ) n5ni from (32) we obtain sðnÞ ( ABn=ð1&aÞ. With
the increase of carrier density, the calculated conductivity in BLG
also shows the sublinear behavior as in MLG due to the third and
fourth terms in the denominator of Eq. (32).

In the weak screening limit, q051, we have G1½q0,Cpq20=4,
G2½q0,Cpq20=8 and G3½q0,C7pq20=64. The conductivity of BLG in
the limit q051 is a quadratic function of carrier density for
randomly distributed Coulomb disorder

sðnÞ ¼ e2

h
32n2

niq2TF
ð33Þ

Fig. 6. (Color online) (a) and (b) show the results for sð/nSÞ in monolayer graphene obtained from the EMT for ni ¼ 0:95) 1012 cm&2 and ni ¼ 4:8) 1012 cm&2

respectively. The different lines correspond to different values of r0, from top to bottom r0 ¼ 10a0 ,8a0 ,7a0 ,5a0 ,0 in (a) and r0 ¼ 5a0 ,4a0 ,3a0 ,0 in (b). (c) and (d) show the
value of smin in monolayer graphene as a function of r0=ri .
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For the correlated disorder, the calculated conductivity of BLG
shows the sub-quadratic behavior

sðnÞ ¼ Abn
2

1&aþa2
n
4ni

&a3
7n2

192n2
i

ð34Þ

with

Ab ¼
e2

h
32

niq2TF

In Fig. 7(a) and (b), we show sðnÞ within Boltzmann transport
theory obtained numerically taking into account the screening via
the static dielectric function given by Eq. (24). We show the
results for several different correlation lengths r0 and two
different charged impurity densities, (a) ni ¼ 0:95) 1012 cm&2

and (b) ni ¼ 4:8) 1012 cm&2. From Fig. 7(a) and (b) we see that
the conductivity increases with r0 as in MLG. However the details
of the scaling of s with doping differ between MLG and BLG. In
BLG sðnÞ $ na where 1oao2 also depends on n. The effect of
spatial correlations among impurities in BLG is to increase a at
low densities and reduce it at high densities.

In Fig. 8(a), we present the resistivity of BLG as a function of
impurity density for various carrier density with r0 ¼ 5a0. The
spatial correlation of charged impurity leads to a highly non-
linear function of rðniÞ as in MLG. We also present the relation
between the value of ri=r0 and where the maximum resistivity of
BLG occurs

ffiffiffi
n

p
r0 in Fig. 8(b). The results are quite close to those of

MLG shown in Fig. 4.

4.2. Low density: effective medium theory

As in MLG, also in BLG, because of the gapless nature of the
dispersion, the presence of charged impurities induces large
carrier density fluctuations [55,57–59] that strongly affect the
transport properties of BLG.

Fig. 9(a) shows the calculated density landscape for BLG for a
single disorder realization, and Fig. 9(a) shows a comparison of
the probability distribution function P(n) for BLG and MLG [57].
Within the Thomas–Fermi approximation, approximating the low
energy bands as parabolic, in BLG, with no spatial correlation
between charged impurities, P(n) is a Gaussian whose root mean
square is independent of the doping and is given by the following
equation [55]:

nrms ¼
ffiffiffiffi
ni

p

rsc

2
p f ðd=rscÞ

& '1=2
ð35Þ

where f ðd=rscÞ ¼ e2d=rsc ð1þ2d=rscÞGð0;2d=rscÞ&1 is a dimensionless
function, rsc % ½ð2e2mnÞ=ðk_2Þ,&1 $ 2 nm is the screening length,
and Gða,xÞ is the incomplete gamma function. For small d=rsc,
f ¼&1&g&logð2d=rscÞþOðd=rscÞ (where g¼ 0:577216 is the Euler
constant), whereas for dbrsc f ¼ 1=ð2d=rscÞ2þOððd=rscÞ&3Þ. As for
MLG, also for BLG we find that the presence of spatial correlations
among impurities has only a minor quantitative effect on P(n). For
this reason, and the fact that with no correlation between the
impurities, P(n) has a particularly simple analytical expression, for
BLG we neglect the effect of impurity spatial correlations on P(n).

As in MLG the effect of the strong carrier density inhomogene-
ities on transport can be effectively taken into account using the

Fig. 7. (Color online) Calculated sðnÞ in bilayer graphene with SðqÞ obtained from the Monte Carlo simulations (symbols) and SðqÞ given by Eq. (8) (solid lines) for two
different impurity densities (a) ni ¼ 0:95) 1012 cm&2 and (b) ni ¼ 4:8) 1012 cm&2. The different lines correspond to different values of r0. In (a) we use
r0 ¼ 10a0 ,8a0 ,7a0 ,5a0 ,0 (from top to bottom), and in (b) r0 ¼ 5a0 ,4a0 ,3a0 ,0 (from top to bottom).

Fig. 8. (Color online) (a) The resistivity r in bilayer graphene is shown as a function of impurity density ni for different carrier densities with r0 ¼ 5a0. (b) The relationship
between ri=r0 and

ffiffiffi
n

p
r0 in bilayer graphene, where the conductivity is minimum. The dashed lines are obtained using Eq. (31).
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effective medium theory. Using Eq. (22), sðnÞ given by the
Boltzmann theory, and P(n) as described in the previous para-
graph, the effective conductivity sEMT for BLG can be calculated
taking into account the presence of strong carrier density fluctua-
tions. Fig. 10(a) shows the scaling of swith doping obtained using
the EMT for several values of r0 and ni ¼ 4:8) 1012 cm&2. Taking
into account the carrier density inhomogeneities that dominates
close to the charge neutrality point, the EMT returns a non-zero
value of the conductivity smin for zero average density, value that
depends on the impurity density and their spatial correlations. In
particular, as shown in Fig. 10(b), in analogy to the MLG case, smin

grows with r0.

5. Discussion of experiments

Although the sublinearity of sðnÞ can be explained by includ-
ing both long- and short-range scatterers (or resonant scatterers)
in the Boltzmann transport theory [60], it cannot explain the
observed enhancement of conductivity with increasing annealing
temperatures as observed in Ref. [44]. Annealing leads to stronger
correlations among the impurities since the impurities can move
around to equilibrium sites. Our results show that by increasing
r0, at low densities, both the conductivity and the mobility of MLG
and BLG increase. Moreover, our results for MLG [32] show that as
r0 increases the crossover density at which sðnÞ from linear
becomes sublinear decreases. All these features have been
observed experimentally for MLG [44]. In addition, our transport
theory based on the correlated impurity model also gives a
possible explanation for the observed strong nonlinear sðnÞ in
suspended graphene [21,22] where the thermal/current annealing
is used routinely. No experiment has so far directly studied the

effect of increasing the spatial correlations among charged impu-
rities in BLG and tested our predictions for BLG.

Although we have used a minimal model for impurity correla-
tions, using a single correlation length parameter r0, which
captures the essential physics of correlated impurity scattering,
it should be straightforward to improve the model with more
sophisticated correlation models if experimental information on
impurity correlations becomes available [44]. Intentional control
of spatial charged impurity distributions or by rapid thermal
annealing and quenching should be a powerful tool to further
increase mobility in monolayer and bilayer graphene devices [44].

6. Conclusions

In summary, we provide a novel physically motivated expla-
nation for the observed sublinear scaling of the graphene con-
ductivity with density at high dopings by showing that the
inclusion of spatial correlations among the charged impurity
locations leads to a significant sublinear density dependence in
the conductivity of MLG in contrast to the strictly linear-in-
density graphene conductivity for uncorrelated random charged
impurity scattering. We also show that the spatial correlation of
charged impurity will also enhance the mobility of BLG. The great
merit of our theory is that it eliminates the need for an ad hoc
zero-range defect scattering mechanism which has always been
used in the standard model of graphene transport in order to
phenomenologically explain the high-density sublinear behavior
sðnÞ of MLG. Even though the short-range disorder is not needed
to explain the sublinear behavior of sðnÞ in our model we do not
exclude the possibility of short-range disorder scattering in real
MLG samples, which would just add as another resistive channel
with constant resistivity. Our theoretical results are confirmed

Fig. 9. (Color online). (a) nðrÞ of BLG at the CNP for a single disorder realization with ni ¼ 1011 cm&2 and d¼1 nm. (b) Disorder averaged P(n), at the CNP for BLG (MLG) red
(blue) for ni ¼ 1011 cm&2 and d¼1 nm. For MLG Pðn¼ 0Þ $ 0:1, out of scale. The corresponding nrms is 5:5) 1011 cm&2 for BLG and 1:2) 1011 cm&2 for MLG.

Fig. 10. (Color online) (a) BLG conductivity as a function of n obtained using the EMT for ni ¼ 4:8) 1012 cm&2 for r0 ¼ ð4;3,2;1,0Þ ) a0 from top to bottom. (b) BLG smin as a
function of r0=ri for ni ¼ 4:8) 1012 cm&2.
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qualitatively by the experimental measurements presented in
Ref. [44] in which the spatial correlations among charged impu-
rities were modified via thermal annealing with no change of the
impurity density. Our results, combined with the experimental
observation of Ref. [44], demonstrate that in monolayer and
bilayer graphene samples in which charged impurities are the
dominant source of scattering the mobility can be greatly
enhanced by thermal/current annealing processes that increase
the spatial correlations among the impurities.
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