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Control of tearing modes in toroidal fusion experiments using
‘‘designer’’ error fields

Richard Fitzpatrick and Enrico Rossi
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

~Received 17 October 2000; accepted 20 February 2001!

It is demonstrated that a magnetic island chain formed by a saturated tearing instability in a toroidal
magnetic fusion device can lock to a special class of externally generated magnetic perturbation in
a stabilizingphase. The theoretical apparatus needed to design such perturbations is outlined. These
special perturbations—which are termed ‘‘designer’’ error fields—could be used to control the
amplitudes of tearing modes in toroidal magnetic fusion experiments without the requirement of fast
phase modulation. This type of control would be far more feasible in a reactor environment than
conventional active feedback control via external magnetic perturbations. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1365956#
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I. INTRODUCTION

Recent experimental results strongly suggest that fur
progress in obtaining thermonuclear reactor grade plasma
either tokamaks or reversed-field pinches~RFPs! is depen-
dent on the development of some reliable method for c
trolling the amplitudes of relatively low mode-number tea
ing modes, resonant within the plasma.1–5 Tearing modes are
naturally unstable in toroidal magnetic fusion devices:6 they
are driven by radial gradients in the plasma current dens7

and plasma pressure,8 and generally saturate at relatively lo
amplitudes ~i.e., B̃/B&1%).9–12 As the name suggests
‘‘tearing modes’’ tear and reconnect magnetic field lines
produce helical chains of magnetic islands inside the plas
Such island chains degrade plasma confinement because
heat and particles are able to travel radially from one side
an island chain to the other by flowing along magnetic fi
lines, which is a relatively fast process, instead of having
diffuse across magnetic flux surfaces, which is a relativ
slow process.13

Currently, one of the most promising options for contro
ling tearing mode amplitudes in toroidal fusion devices
active feedback by means of externally applied, helical m
netic perturbations. Active control has already been imp
mented in a handful of tokamak experiments,14–16with some
degree of success. Unfortunately, it is highly doubt
whether an active magnetic feedback system would be
sible in a reactor environment. As is well known, a magne
island chain naturally locks to a resonant magnetic pertu
tion in a helical phase such that the perturbation has a de
bilizing effect on the chain. In fact, the stabilizing phase
dynamically unstable. The typical time scale for the deve
opment of the so-calledphase instability,17 which causes an
island chain in a stabilizing phase relation with a reson
perturbation to switch to a destabilizing relation, is only
few milliseconds. Thus, an active feedback system mus
capable of modifying the phase of the applied magnetic p
turbation on such a time scale in order to maintain a sta
lizing phase relation. This inevitably implies that the co
that generate the feedback signals must be locatedinsideany
2761070-664X/2001/8(6)/2760/11/$18.00
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of the conducting structures surrounding the plasma
otherwise, the signals would be shielded from the plasma
eddy currents. Unfortunately, placing feedback coils t
close to a thermonuclear plasma is essentially impossible
reactor environment—the necessary shielding to protect
coils from the neutron and heat flux emanating from t
plasma, not to mention the mechanical support structure
quired to prevent the coils from being ripped off during
plasma disruption, would simply not fit in the availab
space.

Suppose, for the sake of argument, that it were poss
to design an external magnetic perturbation with the singu
property that a magnetic island chain would lock to it in
stabilizingphase. We could control the amplitude of the
land chain, using such a perturbation, without the need
fast phase modulation, because there would be no nee
overcome the phase instability. This type of magnetic fe
back would be feasible in a reactor environment, since
coils needed to generate the perturbation could be pla
outside the conducting structures surrounding the plasm
where they could be properly shielded. Our aim in this pa
is to demonstrate that the novel scenario just outlined is
tually a real possibility.

This paper is organized as follows. In Secs. II and III, w
take the rigorous perturbation analysis of Thyagar
~1981!,11 which describes the nonlinear saturation of anm,n
magnetic island chain, and extend it slightly to deal with
general toroidal pinch equilibrium~rather than just a toka
mak equilibrium!, island evolution on a resistive time scal
and nonlinear coupling of the island chain tolm,ln magnetic
perturbations~for l .1!. We note, in passing, that Norri
~1989!18 has published a paper criticizing Thyagaraja’s a
proach. We fully concur with Thyagaraja’s rebuttal of the
criticisms.19 In Sec. IV, we demonstrate that as a teari
mode gradually becomes more unstable, and its satur
amplitude consequently increases, its island flux surfaces
dergo a sequence of nonlinear distortions in which they
skewed radially, and, to a lesser extent, elongated in the
rection of increasing helical angle. Finally, in Sec. V, w
0 © 2001 American Institute of Physics
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show that the nonlinear effects that are responsible for th
distortions profoundly modify the island dynamics in th
presence of a special class of externally generated mag
perturbation. A perturbation of this class is made up p
dominantly of lm,ln ~where l .1! helical magnetic fields,
with a much smallerm,n component. It is possible to adjus
the relative amplitudes and phases of these componen
such a manner that anm,n island chain of sufficiently large
amplitude will lock to the perturbation in a stabilizing phas
We call such a perturbation a ‘‘designer’’ error field. Her
we use the term ‘‘error field,’’ rather loosely, to refer to
static, externally generated, magnetic perturbation.

Incidentally, we note that Chuet al.20 have previously
published a paper investigating the effect oflm,ln external
magnetic perturbations on the growth of anm,n magnetic
island. Both the method adopted and the results obtaine
the Chu paper differ substantially from those reported he

II. PRELIMINARY ANALYSIS

A. Plasma equilibrium

Consider a large aspect ratio,21 zero-b,22 plasma equilib-
rium whose unperturbed magnetic flux surfaces map out~al-
most! concentric circles in the poloidal plane. Such an eq
librium is well approximated as a periodic cylinder. Suppo
that the minor radius of the plasma isa. Standard cylindrical
polar coordinates (r ,u,z) are adopted. The system is a
sumed to be periodic in thez direction, with periodicity
length 2pR0 , whereR0 is the simulated plasma major ra
dius. It is convenient to define a simulated toroidal anglef
5z/R0 .

The equilibrium magnetic field is written B
5@0,Bu(r ),Bf(r )#, where“∧B5s(r )B.

B. Newcomb’s equation

The magnetic perturbation associated with anm,n tear-
ing mode~i.e., a mode withm periods in the poloidal direc
tion, andn periods in the toroidal direction! can be written as

b~r ,t !5bm,n~r ,t !eiz, ~1!

wherez5mu2nf is a helical angle. Of course, the physic
perturbation is the real part of the above expression. In
paper, it is assumed thatm.0 and nÞ0. The linearized
magnetic flux functioncm,n(r ,t)[2 irb r

m,n satisfies New-
comb’s equation,23

d

dr S f
dcm,n

dr D2gcm,n50, ~2!

where

f ~r !5
r

m21n2e2 , ~3!

g~r !5
1

r
1

r ~neBu1mBf!

~m21n2e2!~mBu2neBf!

ds

dr

1
2mnes

~m21n2e2!22
rs2

m21n2e2 , ~4!
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and e5r /R0 . As is well known, Eq.~2! is singular at the
m/n rational surface, minor radius r s , which satisfies
F(r s)50, whereF(r )[mBu(r )2ne(r )Bf(r ). This singu-
larity is resolved by the presence of a thin nonlinear/nonid
region~i.e., a magnetic island chain! centered on the rationa
surface.

C. Asymptotic behavior of cm,n in the vicinity of the
rational surface

Let x5(r 2r s)/r s . The most general solution of Eq.~2!
in the vicinity of the rational surface that is consistent w
the physical requirement thatbr

m,n be continuous across th
island region is written as

cm,n~x!5Cm,nS 11~Am,n2l02l1!x1l0x lnuxu

1
l0~l02l1!

2
x2 lnuxu D1DCm,n

uxu
2

1O~x2!,

~5!

where

l05S r 2s8

rs22mne/~m21n2e2! D
r s

, ~6!

l15S m22n2e2

m21n2e2D
r s

, ~7!

and 8[d/dr. Here, Cm,n represents thereconnected mag-
netic fluxat them,n rational surface, whereasDCm,n is a
measure of them,n helical current flowing in the vicinity of
this surface. The quantityAm,n has no particular physica
significance. Note thatCm,n, DCm,n, andAm,n are all com-
plex quantities.

D. Island region

Let us assume the existence of anm,n helical quasiequi-
librium in the immediate vicinity of the rational surface. Th
is equivalent to the assumption that all quantities in this
gion are functions ofr, z, andt alone. The equations govern
ing the quasiequilibrium are

“"B50, ~8!

“"V50, ~9!

“∧B5m0J, ~10!

J∧B50, ~11!

E1V∧B5hJ, ~12!

whereE, B, J, andV are the electric field, magnetic field
current density, and plasma velocity, respectively, andh is
the ~constant! parallel electrical resistivity in the vicinity of
the rational surface. Note that plasma inertia, viscosity, a
pressure are all neglected in this calculation. Without loss
generality, we can write
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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B5C“c∧n̂1Bin̂, ~13!

V5C“x∧n̂1Vin̂, ~14!

wherec, x, Bi , andVi are functions ofr, z, andt only. Here,
C(r )5(m21n2e2)21/2, whereas n̂(r )5C(0,ne,m). Note
thatB"“c5V"“x50, soc andx are themagnetic flux func-
tion and velocity streamfunction, respectively. Incidentally,
we are able to express theB and V fields in above forms
because all of the Fourier harmonics included in our cal
lation share the same helicity: i.e., the same ratio of polo
to toroidal mode numbers.

It is easily demonstrated that

Ei5C ]c

]t
, ~15!

and

m0Ji52S C ]2c

]r 2 1
C
r

]c

]r
12

]C
]r

]c

]r
1

C21

r 2

]2c

]z2 D
1C2

2mne

r
Bi , ~16!

whereEi5n̂"E, andJi5n̂"J. It is also possible to show tha

Bi5CG~c!, ~17!

m0Ji5CH~c!, ~18!

H5G
dG

dc
. ~19!

Now, we can write

c~r ,z,t !5c0~r !1(
l 51

`
c lm,ln~r ,t !

l
eil z, ~20!

H~r ,z,t !5H0~r !1(
l 51

`
Hl~r ,t !

l
eil z, ~21!

wherec0(r )52* r s

r F(r 8)dr8 andH0(r )5s(neBu1mBf).

Taylor expansion ofc0 andH0 aboutr 5r s yields

c0~x!52r sF
~0!S x2

2
1F ~1!

x3

6
1O~x4! D , ~22!

H0~x!5H ~0!@11H ~1!x1O~x2!#, ~23!

with

F ~0!5S Bu

ne
@rs~m21n2e2!22mne# D

r s

. ~24!

Finally, the scalar product ofn̂ with the perturbed Ohm’s
law gives
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
-
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2C ]dc

]t
1n̂"~V∧B!5

Ch

m0
dH, ~25!

wheredc5c2c0 anddH5H2H0 .
The complete set of island equations@i.e., Eqs. ~16!,

~19!, and~25!# takes the form

2
]dc

]t
1

1

r S ]x

]r

]c

]z
2

]x

]z

]c

]r D
5

h

m0
$H2H ~0!@11H ~1!x1O~x2!#%, ~26!

H52
]2c

]r 2 2
1

r

]c

]r
1

2n2e2

r ~m21n2e2!

]c

]r
2

~m21n2e2!

r 2

]2c

]z2

1
2mne

r ~m21n2e2!
G, ~27!

H5G
dG

dc
. ~28!

E. Normalized boundary conditions

Let

C l5C lm,ln, ~29!

DC l5DC lm,ln, ~30!

Al5Alm,lnC lm,ln. ~31!

Our fundamental normalizations are

ĉ~X,z!5
c

C1
, ~32!

X5
x

m1/2, ~33!

whereC1(t) is assumed to bereal, and

m5
C1

r sF
~0! !1 ~34!

is our expansion parameter. Let

C l5m1/2C1Ĉl , for l .1, ~35!

DC l5m1/2 ln m21/2C1DĈl , for l .0, ~36!

Al5m1/2 ln m21/2C1Âl , for l .1. ~37!

Here,Ĉl , DĈl , andÂl are all designed to beO(1) quanti-
ties.

Equations~5!, ~20!, and~22! yield the following expres-
sion for the normalized magnetic flux function at the boun
ary of the island region:
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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ĉ~X,z!52H S X2

2
2cosz D1m1/2 ln m21/2l0X cosz1m1/2F ~l02l1l21l221!

X3

6
2l0X ln uXucosz2~Ã!rX cosz

1~Ã! iX sinz2(
l 52

`
~Ĉl !r

l
cosl z1(

l 52

`
~Ĉl ! i

l
sin l zG1m ln m21/2S l0~l02l1!

X2

2
cosz2uXu(

l 51

`
~DĈl !r

2l
cosl z

1uXu(
l 51

`
~DĈl ! i

2l
sin l z2X(

l 52

`
~Âl !r

l
cosl z1X(

l 52

`
~Âl ! i

l
sin l z1l0X(

l 52

`
~Ĉl !r

l
cosl z2l0X(

l 52

`
~Ĉl ! i

l
sin l z D

1O~m!J . ~38!
,

l-

e
r

ns,
e

-
re-
or-

in
of

s

Here, the subscriptsr and i refer to real and imaginary parts
respectively. Moreover,Ã5Am,n2l02l1;O(1), and

l25S rs

rs22mne/~m21n2e2! D
r s

. ~39!

F. Normalized island equations

Let

Ĵ~ ĉ !5
r s

2mH

C1
, ~40!

x̂52
m0x

h
, ~41!

B̂i~ ĉ !5
r smG

C1
. ~42!

Equations~26!–~28! reduce to the following set of norma
ized island equations:

2m ln m21/2l4dĉ2m1/2S ]x̂

]X

]ĉ

]z
2

]ĉ

]X

]x̂

]z
D

5 Ĵ2~l21m1/2l0X!1O~m!, ~43!

Ĵ52
]2ĉ

]X2 1l3@12m1/2~12l1!X#B̂i2m1/2l1

]ĉ

]X
1O~m!,

~44!

m Ĵ5B̂i

dB̂i

dĉ
, ~45!

wheredĉ5dc/C1 , and

l35S 2mne

m21n2e2D
r s

, ~46!

with

l45
2tR

m1/2 ln m21/2

dm1/2

dt
. ~47!

Here,tR5r s
2m0 /h is the resistive evolution time scale in th

vicinity of the rational surface. In accordance with Ruthe
ford ~1973!9 and Thyagaraja~1981!,11 we assume thatl4

;O(1).
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III. ASYMPTOTIC MATCHING

A. Introduction

Our task, in this section, is to solve the island equatio
~43!–~45!, and asymptotically match this solution to th
boundary condition~38!. Let us, first of all, adopt the follow-
ing expansions:

ĉ5ĉ01m1/2 ln m21/2ĉ11m1/2ĉ21m ln m21/2ĉ3

1O~m!, ~48!

Ĵ5 Ĵ01m1/2 ln m21/2Ĵ11m1/2Ĵ21m ln m21/2Ĵ31O~m!,
~49!

B̂i5B̂i01O~m!. ~50!

Note thatB̂i05(l221)/l3 . Incidentally, it is clear from Eq.
~45! that B̂i15B̂i25B̂i350. In the following, the terms on
the right-hand side of Eq.~48! will be referred to as zeroth
order, first-order, second-order, and third-order terms,
spectively. We shall develop our matched island solution
der by order.

B. Zeroth-order matching

To zeroth-order, Eqs.~43! and ~44! yield

Ĵ05l252
]2ĉ0

]X2 1l3B̂i0 . ~51!

It follows that

]2ĉ0

]X2 521. ~52!

Matching to Eq.~38! at O(1) gives

ĉ052S X2

2
2cosz D . ~53!

As is well known, the above flux function maps out a cha
of magnetic islands, centered on the rational surface,
maximum radial width,

W54m1/2r s . ~54!

The separatrix lies atĉ0521. Moreover, the island O point
and X points lie atz5 j 2p andz5(2 j 21)p, respectively,
wherej is an integer.~See Fig. 1.! Note that
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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dĉ05cosz. ~55!

C. First-order matching

To first order, Eqs.~43! and ~44! yield

Ĵ152
]2ĉ1

]X2 50. ~56!

Matching to Eq.~38! at O(m1/2 ln m21/2) gives

ĉ152l0X cosz. ~57!

This higher-order term gives rise to a slight distortion in t
island structure, displacing the X points radially in o
direction, and the O points in the opposite direction.~See
Fig. 2.!

D. Flux-surface averaging

It is helpful to define a set of island coordinates:

§5sgn~X!, ~58!

V52ĉ, ~59!

z5mu2nf. ~60!

To lowest order, the island separatrix lies atV51. Theflux-
surface average operator^¯& is defined as

FIG. 1. Island flux surfaces calculated from Eq.~101!, using the parameters
listed in Table I. The stability index for the fundamental harmonic takes
valueE150.
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
^ f ~§,V,z!&

55 R f ~§,V,z!

u~]ĉ/]X!zu

dz

2p
, for V>1,

E
2z0

z0 @ f ~§,V,z!1 f ~2§,V,z!#

2u~]ĉ/]X!zu

dz

2p
, for V,1,

~61!

whereX(§,V,z0)50. It is easily demonstrated that

K ]x̂

]X

]ĉ

]z
2

]ĉ

]X

]x̂

]z L 50, ~62!

irrespective of the form ofx̂.

E. Higher-order matching

Flux-surface averaging of Eq.~43! yields

Ĵ~ ĉ !5l21m1/2l0

^X&

^1&
2m ln m21/2l4

^dĉ&

^1&
. ~63!

Let

Ĵ~2!5 Ĵ21m1/2 ln m21/2Ĵ3 . ~64!

It follows that

Ĵ~2!5l0

^X&~1!

^1&~1!
2m1/2 ln m21/2l4

^cosz&~0!

^1&~0!
, ~65!

e
FIG. 2. Island flux surfaces calculated from Eq.~101!, using the parameters
listed in Table I. The stability index for the fundamental harmonic takes
valueE155.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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where the subscript~0!/~1! on a flux-surface average ind
cates that the average in question must be calculated wiĉ
evaluated to zeroth/first order.

As is easily demonstrated, to first order,

X5§A2~V1cosz!2m1/2 ln m21/2l0 cosz, ~66!

U]ĉ

]X
U

z

5A2~V1cosz!. ~67!

It follows that

Ĵ~2!5l0

^X&~0!

^1&~0!
2m1/2 ln m21/2~l0

21l4!
^cosz&~0!

^1&~0!
. ~68!

F. Second-order matching

Equation~68! yields

Ĵ25l0

^X&~0!

^1&~0!
. ~69!

At large uXu, this expression reduces to

Ĵ25l0S X2
cosz

X D1m1/2 ln m21/2l0
2 cosz1O~m1/2!

1OS 1

X2D . ~70!

The second term on the right-hand side should properly
included in the largeuXu expansion ofĴ3 .

According to Eq.~44!,

Ĵ252
]2ĉ2

]X2 2l3~12l1!XBi02l1

]ĉ0

]X

52
]2ĉ2

]X2 1@l1l22l211#X. ~71!

Hence, at largeuXu,

]2ĉ2

]X2 52@l02l1l21l221#X1
l0 cosz

X
1OS 1

X2D .

~72!

Integrating, and matching to Eq.~38! at O(m1/2), we obtain

ĉ252@l02l1l21l221#
X3

6
1l0X lnuXucosz

1~Ã!rX cosz2~Ã! iX sinz1(
l 52

`
~Ĉl !r

l
cosl z

2(
l 52

`
~Ĉl ! i

l
sin l z. ~73!

G. Third-order matching

Equation~68! yields

J352l5

^cosz&~0!

^1&~0!
, ~74!

wherel55l0
21l4 . At large uXu, this expression reduces t
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
e

Ĵ3;OS 1

X2D . ~75!

According to Eq.~44!,

Ĵ31l0
2 cosz52

]2ĉ3

]X2 2l1

]ĉ1

]X
. ~76!

Here, we have included the (m1/2 ln m21/2) contribution from
the largeuXu expansion ofĴ2 . Hence,

]2ĉ3

]X2 52 Ĵ32l0~l02l1!cosz. ~77!

Let

ĉ385ĉ31l0~l02l1!
X2

2
cosz2X(

l 52

`
~Âl !r

l
cosl z

1X(
l 52

`
~Âl ! i

l
sin l z1l0X(

l 52

`
~Ĉl !r

l
cosl z

2l0X(
l 52

`
~Ĉl ! i

l
sin l z. ~78!

It follows that

]2ĉ38
]X2 52 Ĵ3 . ~79!

According to Eq.~38!, at largeuXu,

ĉ385uXu(
l 51

`
~DĈl !r

2l
cosl z2uXu(

l 51

`
~DĈl ! i

2l
sin l z. ~80!

At this stage, we have matched all terms in Eq.~38!, except
for those involvingDĈl .

H. Evaluation of L l

It is clear from Eq.~74! that Ĵ35 Ĵ3(X,cosz). Hence, it
follows from symmetry, and Eq.~80!, that

~DĈl ! i50, ~81!

for all l .0. In other words, theDĈl are real quantities. Le

DĈl5 lL ll5 , ~82!

for all l .0. Furthermore, let

Ĵ3

l5
5

J̃0~X!

2
1(

l 51

`

J̃l~X!cosl z, ~83!

ĉ38
l5

5
P0~X!

2
1(

l 51

`

Pl~X!cosl z. ~84!

It follows from Eq. ~79! that

d2Pl

dX2 52 J̃l , ~85!

for l 50,...,̀ . Hence,

dPl

dXU
X→`

2
dPl

dXU
X→2`

522E
0

`

J̃l~X!dX5L l . ~86!
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Here, we have made use of the fact thatĴ3 is an even func-
tion of X. Note that we requireL050 for self-consistent
matching. It follows that

L l522E
0

`

J̃l~X!dX52
2

p E
0

`E
2p

p Ĵ3~V!

l5
cosl z dzdX.

~87!

Finally, changing to island coordinates, we obtain

L l54E
21

` ^cosz&~0!^cosl z&~0!

^1&~0!
dV. ~88!

Computation of the above integral gives theL l values listed
in Table I. Note thatL050, in accordance with our earlie
requirement.

I. Evaluation of DC l

Equations~36!, ~47!, ~54!, and~82! yield

DC l5 lL lC1Fl0
2S W

4r s
D lnS 4r s

W D1
tR

2

d~W/r s!

dt G , ~89!

for l .0, assuming thatC1 is real. Let us now relax this
restriction. Suppose that

C15Ĉ1e2 iw1, ~90!

whereĈ1 and w1 are both real. As is easily demonstrate
the generalization of Eq.~89! is

DC l5 lL lĈ1e2 i l w1Fl0
2S W

4r s
D lnS 4r s

W D1
tR

2

d~W/r s!

dt G ,
~91!

for l .0. For the casel 51, the above formula is similar to
that obtained previously by Thyagaraja.11 However, the ex-
tension of this formula to coverl .1 is a new result.

IV. NONLINEAR ISLAND COUPLING

A. Introduction

Our aim in this section is to investigate the growth a
saturation of ann,m tearing mode in light of Eq.~91!. In
particular, we shall be interested in quantifying the coupl
of the m,n harmonic—which we shall refer to as thefunda-

TABLE I. Data calculated for anm52, n51 tearing mode in a large aspec
ratio ~i.e., es→0!, zero-b tokamak equilibrium characterized bys5s0@1
2(r /a)2#2.768. The values of the safety factor at the center and edge of
plasma areq050.85 and qa53.2, respectively. Also,r s50.7787a, c
51.15a, andl0528.515.

l
Poloidal

mode number
Toroidal

mode number L l El Al

0 ¯ ¯ 10.0000 ¯ ¯

1 2 1 11.6454 12.826 1.964
2 4 2 11.7058e21 25.148 1.502
3 6 3 23.3174e22 210.06 1.009
4 8 4 11.2816e22 214.52 0.6193
5 10 5 26.4520e23 218.81 0.3580
6 12 6 13.7622e23 223.00 0.1987
7 14 7 22.4113e23 227.15 0.1071
8 16 8 11.6539e23 231.25 5.646e22
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g

mental, or l 51, harmonic—to the variouslm,ln harmonics
~wherel .1!—which we shall refer to asovertone, or l .1,
harmonics—via nonlinear effects in the island region.

B. Perturbed magnetic field

The perturbed magnetic field in theouter region ~i.e.,
everywhere apart from the island region! can be written as

dB5C“dc∧n̂, ~92!

where

dc~r ,u,f,t !5(
l 51

`
C l~ t !ĉ lm,ln~r !

l
eil z. ~93!

Here, ĉ lm,ln(r ) represents the normalizedlm,ln tearing
eigenfunction. In other words,ĉ lm,ln(r ) is a real, continuous
solution to Newcomb’s equation~2!, which is well behaved
as r→0, and satisfiesĉ lm,ln(r s)51 andĉ lm,ln(c)50. Here,
we have assumed the presence of a conducting shell loc
outside the plasma, at minor radiusr 5c. This prescription
uniquely specifiesĉ lm,ln(r ). In general,ĉ lm,ln(r ) possesses
a gradient discontinuity atr 5r s . The real quantity,

El5S r
dĉ lm,ln~r !

dr D
r s2

r s1

~94!

can be identified as the standardlinear stability index6 for the
lm,ln tearing mode. In this paper, it is assumed thatE1.0
and El,0 ~for l .1!. In other words, the fundamental ha
monic is linearly unstable, whereas the overtone harmon
are linearly stable.

C. Asymptotic matching

Equation~91! encapsulates the nonlinear physics in t
inner region: i.e., the island region. Standard asympto
matching between the inner and outer regions yields6

DC l5ElC l , ~95!

for all l .0.
For the fundamental harmonic,l 51, Eqs.~91! and ~95!

reduce to the well-knownRutherford island evolution
equation,9

L1

2
tR

d~W/r s!

dt
5E12l0

2L1S W

4r s
D lnS 4r s

W D . ~96!

The second term on the right-hand side of the above form
is a nonlinear saturation term similar in form to that fir
obtained heuristically by Whiteet al. ~1977!10 and rigorously
by Thyagaraja~1981!.11

According to Eq.~96!, a linearly unstablem,n tearing
mode for which

0,E1,
l0

2L1

e
, ~97!

grows algebraically on aresistivetime scale, and eventually
saturatesat an island widthW0 , satisfying

e
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S W0

4r s
D lnS 4r s

W0
D5

E1

l0
2L1

. ~98!

Of course, we requireW0!r s in order for the ‘‘thin island’’
ordering adopted in the earlier part of this paper~i.e., m!1!
to remain valid.

For the overtone harmonics,l .1, Eqs. ~91! and ~95!
reduce to

C l

Ĉ1

52
lE1

~2El !

L l

L1
e2 i l w1, ~99!

whereĈ1 andw1 are defined in Eq.~90!. The above expres
sion specifies the amplitude and phase of the overtone
monics generated, from the fundamental harmonic, via n
linear coupling in the island region. In general, t
amplitudes of thel .1 harmonics are significantly smalle
than that of thel 51 harmonic, sincelE1L l!(2El)L1 ~for
l .1!. It follows, from Eq.~93!, that the perturbed magneti
field in the outer region consists of anl 51 field, plus a
relatively small admixture ofl .1 fields.

D. Island flux surfaces

The magnetic flux function in the island region is writte
@see Eq.~20!# as

c5c01dc. ~100!

Let ĉ5c/Ĉ1 . It follows that for asaturatedisland chain,

ĉ~X,z8!52S X2

2
2cosz8D2

E1

l0L1
X cosz8

2(
l 52

`
E1

~2El !

L l

L1
cosl z8, ~101!

wherez85z2w1 . Note that the second term on the righ
hand side of the above expression corresponds to theĉ1

correction calculated in Sec. III C.
It can be seen that the island flux functionĉ(X,z), de-

fined in Eq.~101!, is parametrized byE1—the linear stability
index of the fundamental harmonic. For a weakly unsta
tearing mode that saturates at a relatively low amplitude,E1

is small, and the nonlinear corrections toĉ @i.e., the second
and third terms on the right-hand side of Eq.~101!# are un-
important. However, as the mode becomes more unst
and, consequently, saturates at a higher amplitude,E1 in-
creases, and the nonlinear corrections toĉ become more
significant.

As an illustration of the effect of these nonlinear corre
tions, let us consider a saturatedm52, n51 tearing mode in
a large aspect ratio~i.e.,es→0!, zero-b tokamak equilibrium
characterized bys(r )5s0@12(r /a)2#2.765. The values of
the ‘‘safety factor’’ at the center and edge of this equilibriu
areq050.85 andqa53.2, respectively. Furthermore, the r
dius of the 2, 1 rational surface isr s50.7787a, the radius of
the conducting shell isc51.15a, and the saturation param
eter l0 takes the value28.515. The values of the linea
stability indices,El , for the fundamental and overtone ha
monics are listed in Table I. Note, thatE1.0 andEl,0 ~for
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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l .1!, as previously assumed. In the following, we shall tre
E1 as avariable parameter, while assuming that all of th
other parameters listed in Table I remain fixed. This tre
ment is justified, to some extent, becauseE1 is far more
sensitive to slight local~to the rational surface! changes in
the current profile than any of the other parameters. For
stance, we note that the overtone harmonic stability indic
El ~for l .1!, listed in Table I, lie fairly close to their
vacuum values,22lm ~i.e., the values obtained by com
pletely neglecting the effect of the plasma current!.

Figure 1 shows island flux surfaces calculated using f
mula ~101!, and the parameters listed in Table I, for a low
amplitude, saturated tearing mode characterized byE150. In
this case, the nonlinear corrections are negligible, and
flux surfaces map out a conventional chain of symme
magnetic islands. Figure 2 shows the corresponding flux
faces for a higher-amplitude tearing mode characterized
E155. It can be seen that the nonlinear corrections have
effect of radially skewingthe island chain, such that it i
flattened on the inner side of the rational surface, and
tended on the outer side. This ‘‘skew’’ in the island structu
is generated by the ‘‘current gradient’’ term~i.e., the second
term on the right-hand side! in Eq. ~101!. In order to visual-
ize the much smaller distortions in island structure genera
by the overtone harmonic term~i.e., the third term on the
right-hand side! in Eq. ~101!, we have suppressed th
‘‘skew’’ term in Fig. 3, and increasedE1 to 10. It can be
seen that the overtone harmonic distortion acts toelongate

FIG. 3. Island flux surfaces calculated from Eq.~101!, using the parameters
listed in Table I. The ‘‘skew’’ term has been neglected. The stability ind
for the fundamental harmonic takes the valueE1510.
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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the island flux surfaces along the direction of“z.
We conclude that as a tearing mode gradually beco

more unstable, and its saturated amplitude consequentl
creases, its island flux surfaces undergo a sequence of
linear distortions in which they are skewed radially, and, t
lesser extent, elongated in the direction of an increasing
lical angle. As we shall see, the nonlinear effects that
responsible for these distortions can profoundly modify
island dynamics in the presence of a particular class of
ternally generated magnetic perturbation.

V. MULTIHARMONIC ERROR FIELDS

A. Introduction

In the previous section, we demonstrated that a satur
m,n tearing mode is weakly coupled to overtone magne
perturbations—i.e., perturbations whose mode numbers
lm,ln ~for l .1!—via nonlinear physics in the island regio
It seems plausible, therefore, that such a mode sho
respond—albeit, weakly—to an externally generatedl .1
magnetic perturbation—i.e., anl .1 ‘‘error field.’’ Obvi-
ously, anm,n mode will also respond strongly to anl 51
error field. Let us investigate the dynamics of anm,n mag-
netic island chain in the presence of a stationary error fi
that is a superposition ofl 51 and l .1 magnetic perturba
tions.

B. Error-field characteristics

Suppose that, in the absence of plasma, the error-
takes the form

dBvac5C“dcvac∧n̂. ~102!

Let

F l5R R ldcvac~c,u,f!e2 i l ~mu2nf!
du

2p

df

2p
~103!

be~l times! the lm,ln Fourier harmonic of the error-field flux
function, dcvac, evaluated just inside the conducting sh
~i.e., atr 5c!. It is simplest to imagine that the error field
either generated externally, and filters through thin gaps
the shell, or is produced via a helical displacement of
shell. We can write

F l5F̂le
2 ia1, ~104!

whereF̂l anda l are both real.

C. Asymptotic matching

In the presence of the error-field, standard asympt
matching yields24

DC l5ElC l1AlF l , ~105!

for l .0, where

Al5
ĉ lm,ln~a!l 2~m21n2es

2!

klm~ lnec!i lm~ lnea!2klm~ lnea!i lm~ lnec!
. ~106!

Here,

i m~ne!5uneuI m11~ uneu!1mIm~ uneu!, ~107!
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km~ne!52uneuKm11~ uneu!1mKm~ uneu!, ~108!

where I m and Km represent standard modified Bessel fun
tions. Furthermore,ea5a/R0 andec5c/R0 .

For l 51, Eqs.~91! and ~105! can be combined to give
the error-field modified Rutherford island evolution equ
tion:

L1

2
tR

d~W/r s!

dt
5E12l0

2L1S W

4r s
D lnS 4r s

W D
1

A1F̂1

Ĉ1

cosw, ~109!

wherew5w12a1 is the island phase relative to that of th
l 51 error field. Note that, to lowest order, only thel 51
component of the error field has any influence on the isla
width.

Now, the net toroidal electromagnetic torque exerted
the island region by the error field takes the form24

dTf EM5
2p2R0

m0

n

m21n2es
2 (

l 51

`

ImH DC lC l*

l J . ~110!

Equations~91!, ~105!, and ~109! can be combined with the
above expression to give

dTf EM5
2p2R0

m0

n

m21n2es
2 A1F̂1Ĉ1H sinw

2(
l 52

` A lF̂l

A1F̂1

Ẽ1

~2El !

L l

L1
sin~ lw2d l !J , ~111!

whered l5a l2 la1 , and

Ẽ15E11
A1F̂1

Ĉ1

cosw. ~112!

Note that thel .1 components of the error field contribute
the torque.

According to the above analysis, thel .1 components of
the external error field are able to penetrate freely into
island region, and beyond~i.e., into the plasma core!. The
reason for this is that the presence ofl .1 flux in the island
region gives rise to a shape distortion of the island flux s
faces, but does not drive magnetic reconnection~see Sec.
IV !. Of course, flux surface shape distortions take place
the ~effectively instantaneous! hydromagnetic time scale
whereas reconnection proceeds on a much slower time s
Note, however, that this result is strongly dependent on
orderings made in Sec. II. In particular, on the assumpt
that the amount ofl .1 flux in the island region issmall
compared to the amount ofl 51 flux @see Eq.~35!#.

D. Island dynamics

Since we are neglecting both plasma flow and viscos
in this paper, we expect the island chain to simply lock to
error field in astablephase characterized bydTf EM50. The
simplest method of distinguishing stable and unstable pha
is to write an island equation of motion that incorporat
phenomenological inertia and damping terms. For instanc25
E license or copyright; see http://pop.aip.org/pop/copyright.jsp
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i
d2w

dt2
1n

dw

dt
1S sinw1E1(

l 52

`

lal sin~ lw2d l !D 50.

~113!

Here, i and n are positive constants, and the term in lar
parentheses represents the normalized toroidal electrom
netic torque. Incidentally, we are assuming that the sec
term on the right-hand side of Eq.~112! is small, for the sake
of simplicity, so that we can make the approximationẼ1

.E1 . It is helpful to associate alocking potentialwith the
normalized torque. This is achieved by writing the abo
equation in the form

i
d2w

dt2
1n

dw

dt
1

dVlock

dw
50. ~114!

The potentialVlock(w) is given by

Vlock~w!52cosw2E1(
l 52

`

al cos~ lw2d l !. ~115!

The island dynamics is now trivial: the island chain locks
the error field at a phase that corresponds to a localminimum
of the above potential. Note that as the chain becomes in
sically more unstable~i.e., asE1 gets bigger!, and, therefore,
grows to a larger saturated amplitude, the contribution of
l .1 harmonics of the error field to the locking potent
increases.

It is fairly straightforward to reconstruct the error fie
that generates the locking potential specified in Eq.~115!.
For instance, the normalized radial error field~in vacuum!
just inside the shell takes the form

dB̂r vac~w0!5sinw02(
l 52

`

al l ~2El !
A1L1

AlL l
sin~ lw02d l !,

~116!

where w05z2a1 . Here, the field is conveniently norma
ized such that itsl 51 component has amplitude unity.

E. Example calculation

Consider anm52, n51 tearing mode in a large aspe
ratio ~i.e., es→0!, zero-b tokamak equilibrium that is char
acterized bys(r )5s0@12(r /a)2#2.765, q050.85, andqa

53.2. TheL l , El , andAl values for such a mode are liste
in Table I. Let us investigate the dynamics of the associa
2,1 saturated magnetic island chain moving in the follow
locking potential:

Vlock~w!52cosw2E1~21.4612 cos 2w10.5 cos 3w!.
~117!

Note that this potential is generated from an error field t
contains justthreehelical harmonics: namely,l 51, 2, and 3.
Figure 4 plots the above potential for the case of a sma
medium-, and large-amplitude island chain—i.e., forE150,
E151, andE153, respectively.

For the small-amplitude case,E150, thel .1 harmonics
of the error field make no contribution to the locking pote
tial, which is consequently a pure sinusoid with a minimu
at w50. Hence, we expect the island chain to lock atw50.
Note, from Eq.~109!, that the error field has a destabilizin
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effect on the chain whenever2p/2,w,p/2, and a stabiliz-
ing effect otherwise. It is clear, therefore, that the isla
chain locks to the error field in themost destabilizing phase.
Of course, this is a well-known result.

For the medium amplitude case,E151, nonlinear cou-
pling in the island region allows thel .1 harmonics of the
error field to contribute to the locking potential. The modi
cation of the potential is profound. The low-amplitude loc
ing point,w50, becomes unstable~i.e., w50 is now a maxi-
mum, rather than a minimum, of the potential!, and there are
two new locking points located in thestabilizing region, i.e.,
uwu.p/2. For the large-amplitude case,E153, the situation
is, more or less, the same, except that the locking points h
rotated even farther into the stabilizing region.

We conclude that the locking potential~117! has a num-
ber of remarkable properties. At low amplitude, a reson
island chain locks to this potential in the mostdestabilizing
phase-which is the conventional result. However, as
chain grows to larger amplitude, the potential is modified
nonlinear effects in such a manner that the locking point~i.e.,
the minimum of the potential! gradually rotates, until it is
located in astabilizing phase. Of course, the parameters
Eq. ~117! have been carefully chosen to produce just such
effect.

Figure 5 shows the normalized, radial, vacuum magn

FIG. 4. The locking potential,Vlock(w), calculated from Eq.~117! for E1

50, 1, and 3.

FIG. 5. The normalized, radial, vacuum magnetic perturbation, calculate
r 5c, which generates the locking potential~117!.
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perturbation, calculated just inside the shell, which gener
the locking potential~117!. This perturbation can be writte
as

dB̂r vac~w0!5sinw01189.75 sin 2w011456.8 sin 3w0 .
~118!

It can be seen that the perturbation consists predominant
an l 53 field, with a smalll 52 component. Moreover, th
l 51 component, whose amplitude is normalized to unity
very much smaller in size than the other components.
reason that thel .1 components of the perturbation a
much larger than thel 51 component is partly becausel
.1 fields decay more rapidly into the plasma than anl 51
field, and partly because the nonlinear coupling ofl 51 and
l .1 harmonics in the island region is comparatively weak
should be noted that the 2, 1 tearing mode specified in Ta
I is not particularly unstable:E152.826 corresponds to
saturated island width ofW/r s;0.5%. For a more unstabl
mode—destabilized, for instance, by the perturbed boots
current8—which attains a saturated amplitude ofW/r s

;5%, we could reduce the amplitudes of thel 52 and l
53 components in Eq.~118! by an order of magnitude, an
the error field would still generate the locking potentia
shown in Fig. 4.

The magnetic perturbation shown in Fig. 5 is an exam
of what we term a ‘‘designer’’ error field. The relative am
plitudes and phases of the helical components of this fi
have been carefully chosen such that a resonant mag
island chain will lock to the field in astabilizing phasewhen
the chain grows to a sufficiently large amplitude. As d
cussed in the Introduction, it would be feasible to use s
error fields tocontrol the growth of tearing modes in toka
mak or RFP reactors.

VI. SUMMARY

We have demonstrated, for the first time, the possibi
that a magnetic island chain in a toroidal magnetic fus
device could lock to a special class of external magn
perturbation in astabilizingphase. As we have pointed out,
would be feasible to employ such perturbations to con
Downloaded 07 Nov 2008 to 129.2.40.233. Redistribution subject to ASC
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tearing mode amplitudes in a reactor environment. O
analysis is, by no means, comprehensive. Undoubtedly, a
more research will be needed in order to transform the id
contained in this paper into reality. Nevertheless, our ini
results are extremely exciting!
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