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We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-
dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions
about both the 2D system and the superconductor. Using our general results we show that a simple
heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum
disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency
superconducting pairing. Our results allow the identification of a new class of systems among van der
Waals heterostructures in which odd-frequency superconductivity should be present.
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Low-dimensional heterostructures hold the promise for
new technologies [1–5] as well as granting us access to
many unconventional quantum states including novel
forms of superfluidity [6], manipulation of spin textures
[7,8], and unconventional superconductivity (SC) [4,9–15].
In addition, theoretical analyses have shown that Majorana
bound states can appear in heterostructures incorporating
superconducting materials [16–28]. Given the variety of
possible exotic states in low-dimensional heterostructures
and that the fabrication of layered heterostuctures has
rapidly advanced in recent years [5] it is important to
continue developing our understanding of their electronic
properties. One important facet of this understanding is the
classification of the possible symmetries of the proximity-
induced superconductivity in these structures.
The symmetries of a superconductor can be characterized

by investigating the properties of the anomalous Green’s
function Fαβðr1; t1; r2; t2Þ ¼ hTcαðr1; t1Þcβðr2; t2Þi, where
cσðri; tiÞ is the fermionic annihilationoperator for an electron
at position ri time ti with spin σ, T is the time ordering
operator, and the angle brackets denote the expectation
value. Given the fermionic nature of the quasiparticles
Fαβðr1; t1; r2; t2Þ ¼ −Fβαðr2; t2; r1; t1Þ. Conventionally this
is taken to imply that if the quasiparticle pair is in a spin
singlet state then the pairing amplitude is even in paritywhile
if it is a spin triplet the pairing amplitude is odd in parity.
However, if the pairing amplitude is odd in time, or,
equivalently, odd in frequency, spin triplet pairs can be even
in parity and spin singlet pairs can be odd in parity as
was originally proposed for superfluid 3He by Berezinskii
[29] and later for superconductivity by Balatsky and
Abrahams [30].
The study of odd-frequency SC has been hindered by

the scarcity of experimental systems in which it can be

realized. Soon after the original suggestion that in general an
odd-frequency pairing term could be present it was realized
that it would be challenging to get such a term via electron-
phonon interactions and that a spin-dependent electron-
electron interaction would be necessary [31]. This fact
greatly restricts the number of systems in which odd-
frequency SC can be realized. However, in recent years it
has become apparent that odd-frequency SC can be obtained
in a variety of different types of heterostructures
[9,12,14,15,32–39]. The recent impressive explosion of
realizable heterostructures has made the piecemeal approach
unfeasible: a theoretical treatment able to provide the general
conditions in which odd-frequency SC should be present in
heterostructures has become necessary. In this work we
present such a general treatment. Our general treatment also
makes possible the identification of novel, somehow unex-
pected, engineered systems in which such pairing should be
present, as exemplified by the heterostructure formed by one
monolayer of molybdenum disulfide (MoS2) placed on
superconducting Pb, which we discuss in the second part
of the Letter. In particular, showing what are the necessary
elements that a van der Waals heterostructure must have to
exhibit odd-frequency SC adds this important class of
systems to the odd-frequency playbook. Our work also
makes it possible to select among such systems the ones
in which a direct observation—for example, via scanning
tunneling microscopy (STS) and angle resolved photoemis-
sion spectroscopy (ARPES)—of the signatures due to odd-
frequency SC is more readily achievable.
The Hamiltonian (H) describing the most general het-

erostructure formed by a two-dimensional (2D) electron
gas (2DEG) and a superconductor can be written as
H ¼ H2D þHSC þHt where
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H2D ¼
X

k;σ;σ0
c†k;σ½h0ðkÞσ0 þ hðkÞ · σ&σ;σ0ck;σ0 ; ð1Þ

HSC¼
X

kσσ0
d†kσh

SC
σσ0ðkÞdkσ0þ

X

kσσ0
d†kσΔkσσ0d

†
−kσ0þH:c:; ð2Þ

Ht ¼ t
X

k;σ

d†k;σck;σ þ H:c: ð3Þ

are the Hamiltonians describing the 2DEG, the super-
conductor, and the tunneling between the two systems,
respectively. In Eqs. (1)–(3) σ0 is the identity matrix in spin
space; σ ¼ ðσ1; σ2; σ3Þ is the vector of Pauli matrices in
spin space; c†k;σ (d†k;σ) and ck;σ (dk;σ) are the creation and
annihilation operators, respectively, acting on the fermionic
states in the 2DEG (SC) layer with momentum k and spin
σ; h0ðkÞ is the spin-independent part of H2D and hðkÞ is
the field that describes its spin-dependent part due to an
exchange field and/or spin-orbit coupling; hSCσ;σ0ðkÞ
describes the quasiparticle spectrum of the normal state
of the superconductor; Δk;σ;σ0 is the superconducting gap;
and t is the tunneling between the 2D system and the SC.
We assume that the tunneling conserves both spin and
momentum given that this is the most common situation
and that we wish to identify the most general condition to
realize odd-frequency SC without having to resort to spin-
active interfaces that are often difficult to realize exper-
imentally. To keep the treatment general we make no
assumptions on the form of hðkÞ, hSCσ;σ0ðkÞ, and Δk;σ;σ0 .
The anomalous Green’s function associated with the

superconductor described by Eq. (2) is given by
F̂SC
k;iωn

¼ ½Δ̂†
−k − ½iωn þ ĥSCð−kÞ'&Δ̂−1

k ½iωn − ĥSCðkÞ&&−1.
We can parametrize this matrix in terms of singlet and
triplet parts,

F̂SC
k;iωn

¼ ðsSCk;iωn
σ0 þ dk;iωn

· σÞiσ2; ð4Þ

where ωn is the Matsubara frequency, and sSCk;iωn
and the

three-component complex vector dk;iωn
[40] give the

singlet and triplet superconducting amplitudes, respec-
tively. The leading order contributions to the proximity-
induced superconducting pairing in the 2DEG are given by

F̂2D
k;iωn

¼ t2Ĝ2D
k;iωn

F̂SC
k;iωn

ðĜ2D
−k;−iωn

ÞT; ð5Þ

where

Ĝ2D
k;iωn

¼ ½iωn − h0ðkÞ&σ0 þ hðkÞ · σ
½iωn − h0ðkÞ&2 − jhðkÞj2

ð6Þ

is the Green’s function associated with the 2DEG.
It is convenient to separate the anomalous Green’s func-

tion F̂2D
k;iωn

into two parts F̂2D
k;iωn

¼ Ak;iωn
ðFodd

k;iωn
þ Feven

k;iωn
Þ

where Ak;iωn
is generally a function even in ωn [41], and

Fodd
k;iωn

and Feven
k;iωn

are the odd- and even-frequency 2 × 2

matrices describing the spin structure of the induced
superconducting pairs, respectively.
Let h(ðkÞ≡ hðkÞ ( hð−kÞ. Then for Feven

k;iωn
we find

Feven
k;iωn

¼ ðSevenk;iωn
σ0 þDeven

k;iωn
· σÞiσ2;

where Sevenk;iωn
, Deven

k;iωn
are the singlet and triplet components,

respectively, given by

Sevenk;iωn
¼
!
ω2
n þ h20ðkÞ−

1

4
ðjhþðkÞj2 − jh−ðkÞj2Þ

"
sSCk;iωn

−
!
h0ðkÞh−ðkÞ þ

i
2
hþðkÞ×h−ðkÞ

"
· dk;iωn

;

Deven
k;iω ¼

!
ω2
n þ h20ðkÞ þ

1

4
ðjhþðkÞj2 − jh−ðkÞj2Þ

"
dk;iωn

− ih0ðkÞhþðkÞ× dk;iωn
−
1

2
hþðkÞðhþðkÞ · dk;iωn

Þ

þ 1

2
h−ðkÞðh−ðkÞ · dk;iωn

Þ

−
!
h0ðkÞh−ðkÞ−

i
2
hþðkÞ×h−ðkÞ

"
sSCk;iωn

: ð7Þ

The first line (three lines) of the expression for Sevenk;iωn

(Deven
k;iωn

) shows that, as expected, a singlet (triplet) pairing is
induced, via the proximity effect, in the 2DEG by a singlet
(triplet) superconductor, regardless of the value of h. The
last line for the expression of Sevenk;iωn

(Deven
k;iωn

) shows that if
h− ≠ 0, by the proximity effect, then in the 2DEG we have
even-frequency superconductivity with both singlet and
triplet pairing even if the substrate superconductor only has
singlet or triplet pairing. It also shows that the strength of
the pairing in the 2DEG with spin structure different from
that of the substrate is proportional to h−ðkÞ and is
augmented when h− × hþ ≠ 0. This result shows how
the presence of spin-orbit coupling, which gives rise to
h− ≠ 0, qualitatively affects the nature of the conventional
(even-frequency) superconducting pairing induced by
proximity. We then find that the interplay of the field h
in the 2DEG and the superconducting pairing in the
substrate gives rise to an odd-frequency pairing term,

Fodd
k;iωn

¼ iωnðSoddk;iωn
σ0 þDodd

k;iωn
· σÞiσ2;

with Soddk;iωn
, Dodd

k;iωn
being the odd-frequency singlet and

triplet components, respectively, given by

Soddk;iωn
¼ −hþðkÞ · dk;iωn

;

Dodd
k;iω ¼ −hþðkÞsSCk;iωn

− ih−ðkÞ × dk;iωn
: ð8Þ

This result clearly shows that it is possible to get an odd-
frequency singlet term provided the substrate is a triplet
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superconductor with a d vector that is not perpendicular to
the even component of h, hþ. Notice that because h and d
belong to different layers they are not constrained to be in
any specific relation. Equation (8) also shows that an odd-
frequency triplet term is present if both hþ and the singlet
pairing in the substrate sSC are not 0, as shown previously
[9,32,33]. Equation (8) therefore shows that when hþ ≠ 0,
and h− ¼ 0, by the proximity effect, we have odd-
frequency superconductivity in the 2DEG that has the
“opposite” spin structure from the superconductivity in the
substrate: triplet if the substrate is a singlet superconductor,
singlet if the substrate is a triplet superconductor (with d
not orthogonal to hþ). A very interesting and novel result is
that even when hþ ¼ 0, i.e., no ferromagnetism is present
in the 2DEG, we can have odd-frequency superconductiv-
ity in the 2DEG, without having to assume the presence of a
spin-active interface, if the 2DEG has spin-orbit coupling,
so that h− ≠ 0, and the substrate is a triplet superconductor
with d not parallel to h− (again, we emphasize that because
h− and d belong to different layers they are not locked to
each other). This is a result that significantly enlarges the
set of engineered structures in which to look for odd-
frequency superconductivity by adding a whole new class
of heterostructures. As we show below, a system that falls
into this class is a heterostructure formed by a group-VI
dichalcogenide monolayer and a superconductor’s surface
with Rashba spin-orbit coupling.
TMDs, such as MoS2, have recently received a lot of

attention due to their unusual electronic properties and
potential for applications in electronics. MoS2 can be
exfoliated down to monolayer 2D crystals [4,42–44].
These monolayers have been shown to possess a direct band
gap of 1.8 eV [4,45]; they can be gated [4], and have
exhibited electron mobilities as high as 200 cm2V−1 s−1 [4].
Furthermore, the d-electron states exhibit a valley degree of
freedom that is coupled to the electron spin [46–48]. In the
context of our problem, this material is of great interest not
only because it is a two-dimensional material that is readily
available, easily manufactured, and incorporated into heter-
ostructures, but also because of its strong spin-orbit coupling.
Consider the heterostructure shown in Fig. 1 composed

of a TMD monolayer on top of a superconductor. The
low-energy electronic states of a TMD monolayer
are well described by the following valley-dependent
Hamiltonian [46]:

ĤTMD
k;λ ¼

!
aγðλkxτ1 þ kyτ2Þ þ

u
2
τ3 − μτ0

"
⊗ σ0

−
λα
2
ðτ3 − τ0Þ ⊗ σ3; ð9Þ

where τi are Pauli matrices acting on the orbital space of the
TMD monolayer, a is the lattice constant, γ is the effective
hopping integral, u is the energy gap between the valence
and conduction bands, α is the strength of the spin-orbit

coupling, λ ¼ (1 is the valley index (λ ¼ 1 denotes the K
valley and λ ¼ −1 denotes the K0 valley; see Fig. 1), k ¼
ðkx; ky; 0Þ is a vector describing small deviations from the
K or K0 point in k space, and μ is the chemical potential.
For MoS2, a ¼ 3.193 Å, γ ¼ 1.10 eV, u ¼ 1.66 eV, and
2α ¼ 0.15 eV [46].
The Hamiltonian in Eq. (9) possesses four eigenstates at

the K and K0 points, as shown in Fig. 1: two spin-
degenerate conduction states separated by an eV-scale
gap from two spin-polarized valence states. For our
analysis the most interesting case is when MoS2 is hole
doped. For this reason in the following we use an effective
two-band model in which we include only the valence
bands. Considering the large gap between the valence and
conduction bands this does not introduce any inaccuracy.
For small k the valence band Hamiltonian can be written in
spin space as

ĤTMD
k;λ ¼ −

#
a2γ2

u
k2 þ u

2
þ μ

$
σ0 þ λασ3: ð10Þ

Notice that, taking into account the valley index λ, for
the parity operator, P, acting on a function, fðk; λÞ, we
have Pfðk; λÞ ¼ fð−k;−λÞ. Using the notation used in
Eqs. (7) and (8) we then find that in this case
h0ðkÞ ¼ −f½ða2γ2=uÞk2& þ ½ðu=2Þ þ μ&g, hþðk; λÞ ¼ 0,
and h−ðk; λÞ ¼ 2λαẑ, where ẑ is the unit vector normal
to the TMD monolayer. Starting from the general Eqs. (7)
and (8) we then find

FIG. 1. (a) Unit cell for a monolayer transition metal dichalco-
genide (TMD). A single monolayer is composed of three
covalently bonded layers trigonally coordinated with a layer of
transition metal sandwiched between two layers of chalcogen.
(b) Schematic of a heterostructure formed by exfoliating a TMD
monolayer onto a superconductor. (c) Sketch of the band
structure of a TMD monolayer with the d-electron bands
appearing at the K and K0 points with a band gap of 1.8 eV
separating a pair of spin-degenerate conduction bands from a pair
of spin-polarized bands. Notice that the polarization is different in
the two inequivalent valleys (K and K0).
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Sevenk;λ;iωn
¼ ðω2

n þ ξ2k þ α2ÞsSCk;λ;iωn
− 2λαξkẑ · dk;λ;iωn

;

Deven
d;λ;iω ¼ ðω2

n þ ξ2k − α2Þdk;λ;iωn
þ 2α2ðẑ · dk;λ;iωn

Þẑ

− 2λαξksSCk;λ;iωn
ẑ ð11Þ

and

Soddk;λ;iωn
¼ 0;

Dodd
k;λ;iω ¼ −i2λαẑ × dk;λ;iωn

: ð12Þ

In accordance with Eq. (8) we find that, given that hþ ¼ 0,
to get odd-frequency superconductivity in the TMD we
need a substrate with nonzero triplet superconducting
pairing. In general this situation is realized in noncentro-
symmetric superconductors. Additionally, this condition
can be realized at the surface of centrosymmetric singlet
superconductors with spin-orbit coupling since the surface
breaks inversion symmetry leading to the appearance of a
Rashba spin-orbit term that in turn induces a superconduct-
ing triplet component [49]. This is expected to be the case
for the surface of superconducting Pb.
Considering the case in which the superconductor in

Fig. 1(b) has Rashba spin-orbit coupling, the Hamiltonian
matrix describing the single particle spectrum of the
superconductor is ĥSCðkÞ ¼ ϵk̄σ̂0 þ ηẑ · ðσ × k̄Þ, where η
is the Rashba spin-orbit coupling in the superconductor
surface, ϵk̄ is the dispersion of the normal state quasipar-
ticles in the absence of spin-orbit coupling, and k̄ is the
momentum measured from the Brillouin zone center.
Considering that the dominant pairing is intraband we
obtain [41,49]

F̂SC
k̄;iωn

¼ Δ
ðsSCk̄;iωn

Þ2 − jdk̄j2
ðsSCk̄;iωn

σ0 þ dk̄ · σÞiσ2; ð13Þ

where Δ is the substrate’s superconducting gap,
sSCk̄;iωn

¼Δ2þω2
nþ ϵ2k̄þη2k̄2, and dk̄ ¼ 2ϵk̄ηð−k̄y; k̄x; 0Þ.

The key point of Eq. (13) is that thanks to the Rashba
spin-orbit coupling induced by the breaking of the inver-
sion symmetry at the surface of the Pb substrate a triplet
term appears in the F̂SC and in addition the d vector for
such a triplet component is perpendicular to the field h− in
the TMD monolayer. The interplay of such a triplet
component with the spin-orbit coupling of the TMD
monolayer gives rise to odd-frequency SC in the TMD.
With the above definitions we can follow the same

steps leading to Eqs. (8) and (7) and obtain the leading
order contribution to the proximity-induced anomalous
Green’s function in the TMD layer as F̂TMD

k;λ;iωn
¼

ATMD
k;λ;iωn

ðFodd
k;λ;iωn

þ Feven
k;λ;iωn

Þ, where

ATMD
k;λ;iωn

¼ Δt2

½ðiωn − ξkÞ2 − α2&2½ðsSCkþKλ;iωn
Þ2 − jdkþKλ

j2&
:

For the even-frequency singlet and triplet components of
F̂TMD we find

Sevenk;λ;iωn
¼ðω2

nþ ξ2kþα2ÞsSCkþKλ;iωn
;

Deven
k;λ;iω¼−ðω2

nþξ2k−α2ÞdkþKλ
−2λαξksSCkþKλ;iωn

ẑ: ð14Þ

Given that hþ ¼ 0 [see Eq. (12)], the odd-frequency singlet
component vanishes whereas for the triplet component we
find

Dodd
k;λ;iω ¼ i4λαηϵkþKλ

ðkþKλÞ; ð15Þ

where Kλ is the momentum vector at the K (K0) point for
λ ¼ 1 (λ ¼ −1). Equation (15) shows that in the TMD the
odd-frequency triplet component has a d vector pointing in
the direction of the momentum. One can verify that this
corresponds to an equal-spin spin triplet amplitude given by
FTMD
↑↑=↓↓ ∼ iωnηαϵk̄λðk̄y ( ik̄xÞ, which is proportional to the

product of the spin-orbit couplings in the two materials.
Consistent with the general case, we see that the emergence
of this term requires the spin-orbit couplings in the two
media to be nonparallel.
Our results add a new class of systems, van der Waals

(VDW) heterostructures, to the odd-frequency playbook.
van der Waals systems have many advantages: (i) the
2DEG in which odd-frequency pairing is present lives in a
layer with an exposed surface, a fact that allows for ideal
STS and ARPES measurements; (ii) as shown by the
example of the MoS2=Pb heterostructure, it is possible
to realize VDW systems with no ferromagnetic layers, or
spin-active interfaces that exhibit odd-frequency SC;
(iii) the 2DEG in which odd-frequency pairing is present
can be just one atom thick; this fact removes many of the
complications associated with the interpretation of STS and
ARPES data done in heterostructures in which each layer is
several nanometers thick; (iv) because the top layer is just
one atom thick the electrons are truly confined in 2D; this
fact, combined with the fact that according to our results the
top layer can be a semiconductor, rather than a ferromag-
netic metal as in previous proposals, ensures that the
density of states (DOS) of the normal state is quite low
and therefore allows for an easier observation of the
features in the DOS due to the presence of odd-frequency
pairing.
In conclusion, in thisworkwe investigated the symmetries

of proximity-induced superconducting pairing amplitudes
in a 2DEG coupled to a superconductor. We arrived at a
general expression relating the induced pairing amplitudes to
the components of the anomalous Green’s function of the
superconducting substrate and the elements of the 2DEG
Hamiltonian matrix, ĥðkÞ ¼ h0ðkÞσ̂0 þ hðkÞ · σ. We have
shown that the interplay of the spin-orbit coupling in the
2DEG and the superconducting pairing of the substrate
can give rise, via the proximity effect, to unusual
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superconducting pairings in the 2DEG. We find that even
when no ferromagnetism is present in the 2DEG, and there is
no spin-active interface, odd-frequency superconductivity
can be induced in the 2DEG provided the 2DEG has spin-
orbit coupling and the substrate has some triplet super-
conductivity. We then showed that this condition can be
realized in aMoS2=Pb heterostructure. This result, combined
with the general equations that we obtain, adds a new class of
systems, VDW heterostructures, to the odd-frequency
playbook.
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Supplemental Material for “General Conditions for proximity-induced odd-frequency
superconductivity in two-dimensional electronic systems”

I. EXPRESSION OF Ak;iωn

The expression of the anomalous Green’s function F̂ 2D
k;iωn

in the 2DEG has a prefactor Ak;iωn
. The full expression

of Ak;iωn
is

Ak;iωn
=

t2[(−iωn − h0(−k))2 − |h(−k)|2]−1

[(iωn − h0(k))2 − |h(k)|2]
. (1)

In general, Ak;iωn
has both even- and odd- frequency terms making the expression for the odd-frequency components of

the anomalous Green’s function quite complicated. However, many physically relevant 2DEGs satisfy the conditions:
h0(k) = h0(−k) and |h(k)| = |h(−k)|. In these systems Ak;iωn

is strictly even in frequency and parity allowing us

to characterize the symmetries of the anomalous Green’s function F̂ 2D
k;iωn

in terms of the symmetries of F odd
k;iωn

and
F even
k;iωn

as presented in the main text. For this reason in the main text we assume that the 2DEG satisfies these, very
general, conditions.

II. SUPERCONDUCTING PAIRING ON THE SURFACE OF A S-WAVE SUPERCONDUCTOR WITH

RASHBA SPIN-ORBIT COUPLING

The Hamiltonian of a superconductor (SC) can be written as HSC = H0 +Hint where

H0 =
∑

k,σ,σ′

d†
k,σ(ĥ

SC
k )σσ′dk,σ′

Hint =
1

2

∑

k,k′,σ,σ′

U0d
†
k,σd

†
−k,σ′d−k′,σ′dk′,σ

(2)

where d†
k,σ and dk,σ are the creation and annihilation operators, respectively, acting on the fermionic states in the SC

layer with momentum k and spin σ, ĥSC
k

is the Hamiltonian matrix describing the normal state of the SC, and U0 is
the strength of the attractive interaction which gives rise to superconductivity.

For the special case of a SC with Rashba spin-orbit coupling the normal state Hamiltonian matrix is given by

ĥSC
k = ϵkσ0 + ηẑ · (σ × k) (3)

where ϵk is the single particle dispersion of the SC layer in the normal state in the absence of spin-orbit coupling, η is
the parameter describing the strength of the Rashba spin-orbit coupling, σ0 is the 2×2 identity matrix in spin space,
σ = (σ1,σ2,σ3) is the vector of Pauli matrices in spin space, and ẑ is the unit vector perpendicular to the SC surface.
Transforming the total Hamiltonian to the single particle eigenbasis (E± = ϵk∓η|k|) and considering only intraband

pairing it is straightforward to derive the equations of motion for the Green’s functions in this basis, Gk,±(τ) =

−⟨Tτdk,±(τ)d
†
k,±(0)⟩ and Fk,±(τ) = ±⟨Tτdk,±(τ)d−k,±(0)⟩. Transforming the resulting anomalous Green’s function

to the spin basis we have:

F̂SC
k;iωn

=
∆

(sSC
k;iωn

)2 − |dk|2
(sSC

k;iωn

σ0 + dk · σ)iσ2 (4)

where ∆ = i
2
U0

∑
k,ζ=± eiθkFk,ζ(0+) is the superconducting gap, sSC

k;iωn

= ∆2 + ω2
n + ϵ2

k
+ η2k2 and dk =

2ϵkη(−ky, kx, 0).


