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We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in
superconductors. The presence of SOC breaks the SU(2)-spin symmetry and causes the superconducting
order parameter to have generically both singlet (s-wave) and triplet (p-wave) components. We find that in
the presence of SOC the spectrum of Yu-Shiba-Rusinov (YSR) states is qualitatively different in s-wave
and p-wave superconductors, a fact that can be used to identify the superconducting pairing symmetry of
the host system. We also predict that, in the presence of SOC, the spectrum of the impurity-induced bound
states depends on the orientation of the magnetic moment S of the impurity and, in particular, that by
changing the orientation of S, the fermion-parity of the lowest energy bound state can be tuned. We then
study the case of a dimer of magnetic impurities and show that, in this case, the YSR spectrum for a p-wave
superconductor is qualitatively very different from the one for an s-wave superconductor even in the limit
of vanishing SOC.
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The presence of impurities is almost always unavoidable
in condensed matter systems. Often, impurities are regarded
as a nuisance that spoils the properties of a clean system and
complicates the understanding of its properties. However,
impurities are, in many instances, essential to obtain desir-
able physical effects and can be used as unique atomic-scale
probes of the ground state of the host system [1–9]. In an
s-wave superconductor, magnetic impurities cause the for-
mation of bound states, the Yu-Shiba-Rusinov (YSR) states
[10–12]. There has been a significant interest in the proper-
ties of YSR states due to theoretical proposals suggesting
that a chain of magnetic impurities placed on the surface of a
superconductor (SC) would be a robust, self-tuning, system
that should exhibit Majorana states [13–17]. In these
proposals, the bound states induced by the chain of magnetic
impurities form an impurity band with nontrivial topological
character. More recently, it has been pointed out that the
presence of Rashba spin-orbit coupling (SOC) should
facilitate the realization of a topological impurity band of
YSR states [18–21]. On the surface, due to the lack of
inversion symmetry, some amount of Rashba SOC will be
present. Therefore, for the systems considered to realize a
topological band of YSR states, the presence of Rashba SOC
is both unavoidable and beneficial. This assessment has very
recently been confirmed by the experimental results pre-
sented in Ref. [21], that show some evidence of the presence
of Majorana modes at the end of a chain of Fe atoms placed
on the surface of a SC with strong SOC, Pb. The recent
developments in the search of systems that can resiliently
host Majorana fermions [22–45] strongly motivates the
study of the effect of SOC on YSR states. However, so

far the effects of SOC on YSR states have been almost
completely neglected.
In this Letter, we present the general theory of the

impurity-induced bound states in the presence of Rashba
SOC. We show that SOC, which breaks SU(2)-spin sym-
metry and results in the mixture of s-wave and p-wave
pairing correlations [46] profoundly modifies the spectrum
of the YSR states. We consider the realistic, and general,
case in which both the scalar and the magnetic part of the
impurity potential has angular momentum components (l)
higher than l ¼ 0. This is also motivated by the fact that
partial waves beyond the s wave have often been shown to
be essential for explaining experimental data [47–49]. We
find that the presence of SOC, by mixing YSR states with
different l, profoundly changes the spectrum of the impurity-
induced bound states. The presence of SOC can lead to
p-wave pairing. Our results show that the spectrum of
impurity-induced bound states is qualitatively different in
p-wave and s-wave superconductors. Another important
consequence of the presence of SOC that we find is that the
spectrum of the YSR states becomes dependent on the
orientation of the magnetic moment S of the impurity and
that, in particular, the fermion parity of the lowest energy
bound state can be tuned by changing the direction of S. We
then study the case of a dimer formed by two magnetic
impurities and find that, in this case, even in the limit of zero
SOC, the YSR spectrum is qualitatively different between
s-wave SCs and p-wave SCs.
Model.—We consider a superconductor described by the

mean-field Hamiltonian HSC ¼
P

pψ
†
pHSCðpÞψp, where

ψp is the Nambu spinor ðcp↑; cp↓; c†−p↓;−c
†
−p↑ÞT, with c†pσ

PRL 114, 236804 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

0031-9007=15=114(23)=236804(5) 236804-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.236804
http://dx.doi.org/10.1103/PhysRevLett.114.236804
http://dx.doi.org/10.1103/PhysRevLett.114.236804
http://dx.doi.org/10.1103/PhysRevLett.114.236804


(cpσ) the creation (annihilation) operator for an electron
with momentum p ¼ ðpx; pyÞ and spin σ, and

HSC ¼ τzðξp þ αlp · σÞ þ τx

!
Δs þ

Δt

pF
lp · σ

"
: ð1Þ

HSC describes effectively two-dimensional superconduct-
ing thin films, and surfaces of 3D superconductors with
strong Rashba SOC. In Eq. (1) ℏ ¼ 1, τj, σi are the Pauli
matrices in Nambu and spin space, respectively, ξp ¼ p2=
2m − ϵF, with m the effective mass of the fermionic
quasiparticles; ϵF and pF ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mϵF

p
are the Fermi energy

and Fermi momentum, respectively, lp ¼ ðpy;−pxÞ [50], α
is the strength of the Rashba SOC, and Δs, Δt are the
singlet, triplet, pairing order parameters, respectively,
which we assume to be real.
In the presence of impurities, the term Himp ¼P
jV̂jðjr − RjjÞ ¼

P
j Ûðjr − RjjÞτz þ Ĵðjr − RjjÞSj · σ

must be added to HSC. Ris are the positions of the
impurities, and Û and Ĵ are the charge and magnetic
potential, respectively. Without loss of generality, we set
R ¼ 0 for single impurity and Ri ¼ xi for a dimer. Using
the density of states (per spin) νF ¼ m=2π, and the Fermi
velocity vF ¼ pF=m, we can define the dimensionless
potentials U ≡ ÛπνF, J ≡ ĴπνFjSj, and the dimensionless
Rashba SOC ~α≡ α=vF which are used in the remainder of
the Letter.
To find the spectrum fEg of the impurity-induced

states, we have to solve the Schrödinger equation
ðHSCþHimpÞψðrÞ¼EψðrÞ. Let G ¼ ½E −HSC&−1, then
the Schrödinger equation can be rewritten as
½1−GðE;rÞHimp&ψðrÞ¼ 0 [17]. The spectrum of the
impurity-bound states is obtained by finding the values of
E such that det½1 −GðE; rÞHimp& ¼ 0. In momentum space,
the Schrödinger equation takes the form

ψðpÞ ¼
X

j

GðE;pÞ

×
Z

dp0eixjðp cos θ−p0 cos θ0ÞV̂jðjp − p0jÞψðp0Þ: ð2Þ

Following the formalism of Ref. [46], the Green’s function
G can be written as the sum (GðE;pÞ ¼ ½GþðE;pÞ þ
G−ðE;pÞ&=2) of the two spin helical bands Green’s
functions

G'ðE;pÞ ¼
!
Eþ ξ' Δ'

Δ' E − ξ'

"
σ0 ' sin θσx∓ cos θσy

E2 − ξ2' − Δ2
'

:

Here,p¼ jpj,ξ'¼p2=2m'αp−ϵF andΔ'¼Δs'Δtp=pF.
Let us define ψ j;θ¼

R
ðpdp=2πÞe−ixjpcosθψðpÞ and

GijðE; θÞ ¼
R
ðpdp=2πÞe−iðxi−xjÞp cos θGðE;pÞ. Assuming

that V̂ðpÞ at the Fermi surface depends weakly on p and
integrating Eq. (2) with respect to p, we find

ψ iðθÞ ¼
X

j

ĜijðE; θÞ 1

2π

Z
dθ0V̂jðθ − θ0Þψ jðθ0Þ: ð3Þ

Rewriting all the functions of angle that enter Eq. (3) in
terms of their angular momentum components: fðθÞ ¼P

lfle
ilθ, we find

ψ i;l −
X

j;n

Gij
n ðEÞ V̂l−n

j ψ j;l−n ¼ 0. ð4Þ

Since Himp is Hermitian and even with respect to
θ − θ0, we require Ulð¼ U−lÞ and Jlð¼ J−lÞ to be real,

and V̂l
j ¼ Ulτzσ0 þ Jlτ0

S⃗j·σ⃗
jS⃗jj

. The local term Gii
n ¼

½Gþ
n ðEÞ þG−

n ðEÞ&=2 ¼ 0 for jnj ≥ 2. The details of the
calculation are presented in the Supplemental Material [51].
Henceforth, we assume that the impurity potential has only
large l ¼ 0; 1 components and neglect higher angular
momentum channels.
We consider two different phases of a noncentrosym-

metric SC [55–57]: s wave (jΔsj ≫ jΔtj) and p wave
(jΔsj ≪ jΔtj) pairing dominating regimes. As we show
below, the spectra are qualitatively different in the two
regimes.
Single magnetic impurity.—The main effect of the

presence of SOC on the YSR spectrum is well exemplified
by the case of purely magnetic impurities. For this reason,
in the remainder, we consider only purely magnetic
impurities (Ul ¼ 0) and discuss in the Supplemental
Material [51] the case in which a scalar component of
the impurity potential is also present.
For an s-wave SC, we find that, in the presence of SOC,

we have three impurity-induced bound states at E > 0. For
the case S∥ẑ, the energies of these states are

jE1;2j
Δs

¼ γ2− J20J
2
1' γð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ20− J21Þ2þðγ− 1ÞðJ0 − J1Þ4

p

γ2½1þðJ0− J1Þ2& þ 2γJ0J1þ J20J
2
1

;

jE3j
Δs

¼ 1− J21
1þ J21

; ð5Þ

where γ ¼ 1þ ~α2. In the limit of no SOC, each nonzero
angular momentum component of the magnetic impurity
potential, Jn, creates a bound state [12]. For ~α ¼ 0, the
l ¼ '1 levels are degenerate due to the rotational sym-
metry of the Hamiltonian. The presence of SOC, however,
causes the l ¼ '1 levels to split, see Fig. 1(a). Interestingly,
we find that only two of the levels disperse with α, and one
level remains unchanged.
An important consequence of the presence of

SOC in s-wave SCs is that, by breaking the SU(2)
symmetry of the SC Hamiltonian, it causes the spectrum
of the YSR states to strongly depend on the direction of
S ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ, see Fig. 2(a). (Because
of the remaining U(1) symmetry, the spectrum does not
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depend on the in-plane direction, i.e., ϕ.) In particular,
the results of Fig. 2(a) show that, by tuning the direction
of S, the fermion parity of the bound states can be
changed. This feature could be extremely useful for
tuning between topological and nontopological regimes
in the YSR-based Majorana proposals [17]. In the limit
~α ≪ minf1; jJ0 − J1jg, we can obtain an analytic expres-
sion for the dependence of the YSR energy levels on the
direction of S in an s-wave SC

jE1j
Δs

≈
1 − J20
1þ J20

þ 4~α2J20J1ðJ0cos2θ − J1Þ
ð1þ J20Þ2ðJ20 − J21Þ

;

jE2;3j
Δs

≈
1 − J21
1þ J21

þ 2~α2J0J21½J0 − J1cos2θ ' FðθÞ&
ð1þ J21Þ2ðJ20 − J21Þ

; ð6Þ

where F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0−J1Þ2cos2θþJ21sin

4θ
p

. These expres-
sions, valid as long as the hybridized states are not
degenerate, allow us to identify the effect of the interplay
of SOC, relative strength of the different components of the
magnetic impurity potentials (Jl), and direction of S on the
YSR spectrum.
We now study YSR states in a p-wave SC. The energies

of the YSR spectrum, in the presence of small SOC ( ~α ≪ 1)
for S∥ẑ, are given by

jE1;2j
jΔtj

¼ 1þ J0J1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ J20Þð1þ J21Þ

p ' j ~αj ðJ0 − J1Þ2

ð1þ J20Þð1þ J21Þ
;

jE3;4j
jΔtj

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J21

p ' j ~αj J21
1þ J21

: ð7Þ

Figure 1 shows the evolution with ~α of the energies of
the YSR states in a p-wave SC for S∥ẑ (b) and S∥x̂ (d). In
the absence of SOC, the YSR spectrum is isotropic in the
s-wave case due to the rotational spin symmetry. In p-wave
case, this is not the case, as follows from Figs. 1(b)
and 1(d). Since the p-wave pairing term mixes different
angular momentum channels, l is not a good quantum
number to label the states even in the absence of SOC.
Furthermore, one can notice that the states are doubly
degenerate at ~α ¼ 0 due to an additional symmetry present
in the p-wave case. Indeed, the p-wave Green’s function is
invariant under the transformation U ¼ τzP with P being
the momentum inversion operator p → −p. Because of this
symmetry, YSR states appear in pairs in p-wave super-
conductors. In contrast, the s-wave Green’s function does
not have the above symmetry and, as a result, there is only
one bound state per angular momentum channel (i.e., one
state for l ¼ −1; 0; 1 channels). In the presence of pertur-
bations not commuting with U, such as, for example, SOC,
this degeneracy is lifted and the different parity of the
number of the particlelike (or holelike) subgap states in the
s wave and p wave becomes visible, see Figs. 1 and 2. This
qualitative result opens the possibility to identify the
dominant superconducting pairing of a SC by simply
counting the number of particlelike energy levels induced
by a magnetic impurity within the SC gap. In contrast to
s-wave superconductors, the YSR spectrum in the p-wave
case depends on θ even in the absence of SOC since
p-wave pairing is characterized by the vector lp, see
Eq. (1). The analytical results for a general angle θ are
not particularly illuminating (see Eq. (S26) in the
Supplemental Material [51]), so we plot the evolution of
the YSR spectrum with θ in Fig. 2(b).
Dimer.—To understand the physics of a chain of impu-

rities, it is very helpful to investigate the simpler case of a
dimer formed by two magnetic impurities. Using Eq. (4),
we have studied the properties of a dimer formed by two
magnetic impurities placed at a distance d from each other
on the surface of the SC assuming Δ=ϵF ≪ 1. We find that
the wave function overlap between the bound states
induced by the two impurities generates level splitting
which strongly depends on the relative direction of the
impurity spins and on the strength of the SOC. It is
interesting to note that the presence of SOC, even when
the SC is an s wave, also modifies the spectrum in the limit
in which the magnetic part of the single impurity potential
has only one nonzero angular momentum component.
For this reason, we consider the case in which only J0
is not zero, and one impurity has S1∥ẑ and the other
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FIG. 1 (color online). Dependence on SOC strength of the
spectrum of bound states induced in a SC by a purely magnetic
impurity with J0 ¼ 3=4, J1 ¼ 1=2 in s-wave [(a) and (c)] and
p-wave [(b) and (d)] superconductors for S∥ẑ [(a) and (b)]
and S∥x̂ [(c) and (d)].
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FIG. 2 (color online). Bound state spectrum for magnetic
impurity in a s-wave (a) and p-wave (b) SC as a function of
the direction of the magnetic moment at J0 ¼ 1, J'1 ¼ 1=3.
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S2 ¼ ðsin θ; 0; cos θÞ. The dependence of the dimer YSR
spectrum on the relative angle θ between the magnetic
moments of the two impurities is shown in Figs. 3(a)
and 3(b). We immediately notice the following qualitative
features: (i) Even in the limit of no SOC, for a p-wave SC,
the number of energy levels is twice as large as the number
of levels in an s-wave SC. (ii) In the limit of no SOC for an
antiferromagnetic dimer, the spins of the YSR bound states
are in the opposite directions such that their orthogonality
leads to a level crossing at θ ¼ π. (iii) In the presence of
Rashba SOC, the spatial projection of a bound state spinor
rotates around the y axis as we move from one impurity to
the other; as a result, the crossing between levels happens at
θ ≠ π; for an s-wave SC, the two levels cross for a value of
θ smaller than π [Fig. 3(a)]; for a p-wave SC, the two lower
energy states cross at θ < π, whereas the two higher energy
states cross at θ > π.
The qualitative features listed above should be easy to

test experimentally. The first feature should allow us to
readily identify the symmetry, s wave or p wave, of the
superconducting pairing in the host material even without
any tuning of the relative angle between the magnetic
moments of the two impurities. If the relative angle θ
between the magnetic moments of the two impurities is
known, features (ii) and (iii) allow us to detect the presence
of SOC and its strength. Conversely, if the strength of the
SOC is known, features (ii) and (iii) allow the determi-
nation of the relative angle θ.
The properties of the system SCþ dimer can be further

identified by studying the dependence of the dimer YSR

spectrum on the distance d between the two impurities.
Figures 3(c) and 3(d) show the evolution of the energy
levels of the YSR spectrum with d, for the case of an
s-wave and a p-wave SC, respectively. The combination of
the results presented in the panels of Fig. 3 makes it
possible to obtain experimentally, by measuring the
dependence of the dimer spectrum on the experimentally
tunable parameters θ and d: (i) the pairing symmetry of
the SC, (ii) the strength of the impurity-host exchange
couplings (Jn), (iii) the strength of the SOC.
Conclusions.—We have studied the effect of spin-orbit

coupling on the impurity-induced resonances in the local
density of states of a 2D superconductor for the case of a
single impurity and a dimer. Our treatment is general in
that: (i) it allows for the presence of s-wave and p-wave
superconducting pairings, (ii) it includes higher (jlj ≥ 1)
angular momentum components of the impurity potential,
(iii) it takes into account both the scalar and the magnetic
part of the impurity potential. We show that SOC mixes
YSR states with different angular momentum and,
therefore, strongly modifies their spectrum. In particular,
we find that: (i) In the presence of SOC, the parity
of the particlelike (or holelike) energy levels of the
YSR spectrum is different in s-wave and p-wave SCs,
a fact that should allow one to identify the dominant
superconducting pairing symmetry of the host material.
(ii) By changing the direction of the magnetic moment
of the impurity, the fermion parity of the lowest YSR
state can be modified. (iii) The dimer YSR spectrum
oscillates as a function of the relative angle between
the magnetic moments of the two impurities and their
distance and that qualitative features of these oscillations
depend on the superconducting pairing symmetry and the
strength of the SOC. These are predictions that can be
tested experimentally using STM and have important
implications for STM experiments trying to reveal the
nature of the superconducting pairing in noncentrosym-
metric superconductors. Since Pb has a large SOC, our
results shed some light on the measurements presented
in Ref. [48].
Our findings are also directly relevant to the ongoing

efforts to use magnetic atom chains placed on the surface of
a superconductor with a strong SOC, such as Pb, to realize
topological superconducting phases with Majorana end
states [21]. Given that strong SOC leads to the dependence
of the YSR spectrum on the direction of the atom
magnetization, one might be able to control the fermion
parity of the ground states (i.e., drive the topological
quantum phase transition) by changing the direction of
the magnetization. Furthermore, we argue that higher
angular momentum impurity resonances might be
important for the interpretation of the experiment [21]
since it is not clear at the moment what is the dominant
angular momentum channel determining the topological
YSR band.

(a)

(c) (d)

(b)

FIG. 3 (color online). Bound state spectrum of a magnetic
impurity dimer along the x̂ in an s-wave (a) and p-wave (b) SC.
The direction of one impurity is fixed along ẑ while the other
impurity is pointing in the x − z plane with angle θ from ẑ. Here,
J0 ¼ 3=4, kFd ¼ 6 and ϵF ¼ 1000Δs;t. (c) Dependence of a
dimer YSR spectrum on the distance d between the two
impurities aligned along ẑ for an s-wave SC; ϵF ¼ 1000Δs,
J0 ¼ 3=4. (d) Same as (c), but for a p-wave SC.
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MOMENTUM AVERAGED GREEN’S FUNCTION

The momentum integral of Green’s functions Ĝij(E, θ) can be derived by splitting Ĝ(E,p) into two branches Ĝ±(E,p) and
changing the integral over the momentum to an integral over energy dispersion ξ± for each branch:

Ĝij(E, θ) =
1

2
(Ĝ+,ij(E, θ) + Ĝ−,ij(E, θ)) (S1)

1

2
Ĝλ,ij(E, θ) =

1

2

� ∞

0

dp

2π
pe

−ixijp cos θ
Ĝλ(E,p) (S2)

≈ νλ

2

� Λ

−Λ
dξλ e

−ixijpλ(ξλ) cos θĜλ(E, ξλ, θ) (S3)

where xij = xi−xj , λ = ±, νλ = m
2π (1−

λα̃√
1+α̃2 ), α̃ = mα/pF , pF =

√
2mεF , pλ(ξ) = pFλ+ξ/vF , pFλ = pF (

√
1 + α̃2−

λα̃), vF = pF

√
1 + α̃2/m and Λ is a cutoff. Assuming the most of the contributions for Ĝij(E, θ) comes from near the Fermi

surface p ∼ pF , we substitute ∆± with ∆̃± = ∆s ±∆t. The analytic forms of Ĝλ,ij
n (E, θ) can be derived in the limit Λ → ∞

by using the following integrals:

I
λ
A(x, θ) =

νλ

2

� ∞

−∞
dξλ

e
ipλ(ξλ)x cos θ

E2 − ξ
2
λ −∆2

(S4)

= − πνλ

2
√
∆2 − E2

exp[ipFλx cos θ −
√
∆2 − E2

vF
|x cos θ|] (S5)

I
λ
B(x, θ) =

νλ

2

� ∞

−∞
dξλ

ξλe
ipλ(ξλ)x cos θ

E2 − ξ
2
λ −∆2

(S6)

=

�
− iπνλ sgn(x cos θ)

2 exp[ipFλx cos θ −
√
∆2−E2

vF
|x cos θ|], x �= 0

0, x = 0
(S7)

Their angular momentum components are defined by

I
λ
A,n(x) =

1

2π

� 2π

0
I
λ
A(x, θ)e

−inθ
dθ, (S8)

I
λ
B,n(x �= 0) =

1

2π

� 2π

0
I
λ
B(x �= 0, θ)e−inθ

dθ. (S9)

By changing the integration variable θ → −θ we obtain the identity I
λ
A/B,n = I

λ
A/B,−n. The results of the above integrals for

|n| ≤ 3 can be written as

I
λ
A,0(x) = − πνλ

2
√
∆2 − E2

Re [J0(βλ(|x|)) + iH0(βλ(|x|))] , (S10)

I
λ
A,±1(x) = − iπνλ sgn(x)

2
√
∆2 − E2

Im [iJ1(βλ(|x|)) +H−1(βλ(|x|))] , (S11)

I
λ
A,±2(x) = − πνλ

2
√
∆2 − E2

Re

�
−J2(βλ(|x|)) + iH0(βλ(|x|))−

2iH1(βλ(|x|))
βλ(|x|)

�
, (S12)

I
λ
A,±3(x) = − iπνλ sgn(x)

2
√
∆2 − E2

Im

�
− 8

3π
− iJ3(βλ(|x|)) +H−1(βλ(|x|)) +

4iH2(βλ(|x|))
βλ(|x|)

�
(S13)
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and for non-zero x

I
λ
B,0(x) =

πνλ

2
Im [J0(βλ(|x|)) + iH0(βλ(|x|))] , (S14)

I
λ
B,±1(x) = − iπνλ sgn(x)

2
Re [iJ1(βλ(|x|)) +H−1(βλ(|x|))] (S15)

I
λ
B,±2(x) =

πνλ

2
Im

�
−J2(βλ(|x|)) + iH0(βλ(|x|))−

2iH1(βλ(|x|))
βλ(|x|)

�
, (S16)

I
λ
B,±3(x) = − iπνλ sgn(x)

2
Re

�
− 8

3π
− iJ3(βλ(|x|)) +H−1(βλ(|x|)) +

4iH2(βλ(|x|))
βλ(|x|)

�
(S17)

where βλ(x) = pFλx + i

√
∆2−E2

vF
|x| ≈ pFλx for ∆/�F � 1, Jn(z) and Hn(z) are Bessel and Struve functions of order n.

Note that IλB,n(0) = 0. Using the above results for x = 0, we get

Ĝ
ii
0 (E) = − πν+

2
�
∆2

+ − E2





E 0 ∆+ 0
0 E 0 ∆+

∆+ 0 E 0
0 ∆+ 0 E



− πν−

2
�
∆2

− − E2





E 0 ∆− 0
0 E 0 ∆−

∆− 0 E 0
0 ∆− 0 E



 , (S18)

Ĝ
ii
1 (E) = − πν+

2
�
∆2

+ − E2
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−iE 0 −i∆+ 0
0 0 0 0

−i∆+ 0 −iE 0
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2
�
∆2

− − E2





0 0 0 0
−iE 0 −i∆− 0
0 0 0 0

−i∆− 0 −iE 0



 , (S19)
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ii
−1(E) = − πν+
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0 iE 0 i∆−
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 , (S20)

Ĝ
ii
|n|>1(E) = 0. (S21)

For x �= 0,

Ĝ
ij
n (E) =

1

2

�
Ĝ

+,ij
n (E) + Ĝ

−,ij
n (E)

�
(S22)
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EI
λ
A,n + I

λ
B,n λi(EI
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(S23)
with xi − xj for the argument of function Is.

EQUATION FOR SINGLE IMPURITY BOUND STATE ENERGIES FOR ZEROTH AND FIRST ANGULAR MOMENTUM
CHANNELS

For a single impurity, we can drop the site index i such that V̂ l
i = V̂

l and ψi,l = ψl. When we assume that V̂ l=−1,0,1 are the
only non-zero components, we have following equations from the Eq. (4) of the main article.

ψ0 = Ĝ0(E)V̂ 0
ψ0 + Ĝ1(E)V̂ −1

ψ−1 + Ĝ−1(E)V̂ 1
ψ1

ψ1 = Ĝ0(E)V̂ 1
ψ1 + Ĝ1(E)V̂ 0

ψ0

ψ−1 = Ĝ0(E)V̂ −1
ψ−1 + Ĝ−1(E)V̂ 0

ψ0 (S24)

ψ2 = Ĝ1(E)V̂ 1
ψ1

ψ−2 = Ĝ−1(E)V̂ −1
ψ−1
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For a bound state solution to exist the following condition must be satisfied,

det




Ĝ0(E)V̂ −1 − 1 Ĝ−1(E)V̂ 0 0

Ĝ1(E)V̂ −1
Ĝ0(E)V̂ 0 − 1 Ĝ−1(E)V̂ 1

0 Ĝ1(E)V̂ 0
Ĝ0(E)V̂ 1 − 1



 = 0. (S25)

One can solve the above equations in both analytic and numeric ways to get the bound state spectrum. Most of the results for the
purely magnetic impurities in s and p-wave superconductors are provided in the main article. Due to the broken spin-rotation
symmetry, bound states of single magnetic impurity in p-wavw SC strongly depend on the direction of magnetic moment even
in the absence of Rashba SOC. In the limit of zero SOC, one can find analytic solutions for the bound state spectrum.

|E1,2|
∆t

=

�
2+2J0J1 cos2 θ+J0(J0+J0J

2
1±

�
3J2

1−2J0J1(1−J
2
1 )+J

2
0 (1+J

4
1 )+J1 cos 2θ(J1 cos 2θ−2J0(1+J0−J

2
1 )))

2(1 + J
2
0 )(1 + J

2
1 )

(S26)
Note that for α = 0 these bound states at are doubly degenerate.

EFFECTS OF THE SCALAR POTENTIAL ON THE SINGLE IMPURITY BOUND STATES IN S-WAVE SUPERCONDUCTOR

We now investigate the effect of the interplay between the scalar and the magnetic potential of the impurity. Without SOC, the
effect of Un �= 0 is to merely shift the energy of the l = n level[1]. However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created by the magnetic potential (J0, J1 �= 0). In the perturbative regime
α � 1, for S � ẑ, we find that when U0 �= 0 the energies of the l = 0, 1 states are given by the following analytical expressions:

|El=0|
∆s

≈ 1−J
2
0+U

2
0�

(1−J
2
0+U

2
0 )

2+4J2
0

(S27)

+
4α̃2

J
2
0J1((1−J0J1)(1+J

2
0+U

2
0 )+2J0J1U2

0 )

((1−J0J1)(J0+J1)+J1U
2
0 )((1−J

2
0+U

2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J
2
1

1+J
2
1

+
4α̃2

J
2
1 (J0(1−J0J1)+J1U

2
0 )

(1+J
2
1 )

2((1−J0J1)(J0+J1)+J1U
2
0 )

(S28)

whereas the energy of the l = −1 states remains unchanged. From these expressions we can see that the SOC correction to
the energy of the l = 1 level depends in a non-trivial way on U0. Analogously, we found that the energy of the l = 0 level
qualitatively depends on U1. To go beyond the perturbative regime we solved Eq. S25 with U0 �= 0 numerically. Fig. S1 shows
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FIG. S1: (Color online) Bound state spectrum for a magnetic impurity with U0 = 0 (black) and U0 = 1 (red) in an s-wave SC as a function of
J1. J0 = 3/4, U1 = 0, S = ẑ (left panel) and S = x̂ (right panel) were used.
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the evolution of the YSR-states spectrum as a function of J1 when both U0 and α̃ are not zero. This figure clearly shows the
qualitative effect that U0 has on the YSR-spectrum in the presence of SOC: for S � ẑ the interplay of SOC and scalar potential
creates avoided crossings between the particle-like l = 0 and the hole-like l = 1 levels. For in-plane direction S there is an
additional avoided crossing between particle-like and hole-like l = 1 levels.

EFFECTS OF THE SCALAR POTENTIAL ON THE SINGLE IMPURITY BOUND STATES IN P-WAVE SUPERCONDUCTOR

One can show that even in the presence of time-reversal symmetry, scattering off non-magnetic impurities alone leads to the
formation of subgap bound states in the p-wave superconductors[2–4]. The presence of SOC modifies the spectrum. In the limit
of no magnetic potential, for α̃ � 1, we find the following analytical expressions for the energy levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(S29)

+
α̃
2(U0 − U1)2((U0 + U1)2 + 1− U

2
0U

2
1 )

2(1 + U0U1)((1 + U
2
0 )(1 + U

2
1 ))

3/2

|El=1|
∆t

≈ 1 + α̃
2
U

2
1 /2�

1 + U
2
1

(S30)

Fig. S2 (left) shows the evolution of these levels with α̃. In Fig. S2 (right) we show the effect of U1 for fixed values of α̃ and U0.
We see that there can be a value of U1 for which the energy levels cross. Notice that the bound state levels given by Eqs S29, S30
are doubly degenerate due to time reversal symmetry. The presence of a magnetic potential (Jn �= 0) leads to splitting of these
Kramers doublets.
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FIG. S2: (Color online) Bound state spectrum in a p-wave SC for a scalar impurity as a function of α at U0 = 0.5 and U1 = 2 (left) and as a
function of U1 at α = 0.5 and U0 = 0.5 (right).

EQUATION FOR DIMER BOUND STATE ENERGIES FOR ZEROTH AND FIRST ANGULAR MOMENTUM CHANNELS

For dimer Eq. (4) of the main article becomes
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1 1− Ĝ0(E)V̂ 1

1








ψ1,−1

ψ1,0

ψ1,1



−




Ĝ
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2 1− Ĝ0(E)V̂ 1

2








ψ2,−1

ψ2,0

ψ2,1



 = 0.



5

Again bound-state energy is the solution of
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= 0. (S31)

Due to the inter-site terms the spectrum now depends on the distance between two impurity as well as their directions. Please
see the figure 3 in the main text.
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