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Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform
systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a
semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the
effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling
between the superconductor and the semiconductor can strongly affect the impurity-induced states and may
induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of
quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the
low-energy impurity-induced bound states appear.
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Composite heterostructures provide an opportunity to re-
alize states with novel and desirable properties that are dif-
ferent from the individual components. In the past decade,
this principle has been implemented successfully to obtain
composite electronic systems with novel and unique electronic
properties. For example, heterostructures comprising a con-
ventional s-wave superconductor (SC) and a semiconductor
(SM) with strong spin-orbit coupling (SOC) may realize
topological superconducting states supporting Majorana zero
modes (MZMs)[1–9] of which preliminary signatures have
been observed [10–24].

The presence of impurities is unavoidable in any
condensed-matter system. However, in heterostructures
their effect can be particularly nontrivial due to the interplay
between scattering processes involving different materials.
Their effect in general varies significantly depending on the
component of the heterostructure in which they are located.
This fact makes the understanding of impurity effects in
superconducting heterostructures nontrivial and outside the
scope of most previous works focusing on impurity effects
in single-component homogeneous superconducting systems
(for a recent review see Ref. [25]).

In this Rapid Communication we study the states induced
by scalar impurities in heterostructures involving a SC and a
SM with Rashba SOC. Previous studies mostly focused on
the case of impurities located in the SM or at the SM/SC
interface [26–43]. Here we consider in detail also the case
when impurities are located in the SC. We focus on the case
of an isolated impurity problem and obtain analytical results
that help to understand some recent numerical simulations
[44]. We show that in general the self-energy describing
the effect of an isolated impurity consists of two terms
that may have opposite signs. We find that the complete or
partial cancellation of these two terms is responsible for the
presence of low-energy impurity-induced states that are not
present in homogeneous SC systems [25]. We find that this
cancellation may lead to impurity-induced subgap states even
in the limit of a vanishing magnetic field. This finding does

not contradict Anderson’s result [45] given that in our system
the superconducting order parameter is not uniform. For the
specific case of one-dimensional (1D) heterostructures we
study how the spectrum of the impurity-induced states changes
as a function of an external magnetic field. As shown in
Refs. [46–49], a magnetic field may induce a quantum phase
transition from a conventional (trivial) superconducting phase
to a topological superconducting phase characterized by the
presence of MZMs. We identify the regions in parameter space
where very low-energy impurity-induced states might affect
the observation and manipulation of MZMs.

The Hamiltonian H for the heterostructure can be written
as H = HN + HSC + HT, where HN is the Hamiltonian for the
normal, i.e., nonsuperconducting, component (either a SM or
a metal), HSC is the Hamiltonian for the SC, and HT is the
term describing tunneling processes between the SC and the
normal component. Specifically, HN and HSC are defined as
(henceforth h̄ = 1)

HN = 1
2

∑

k

ψ
†
N,k[ϵN,kσ0τz + αlk · σ τz + Vxσxτz]ψN,k,

(1)

HSC = 1
2

∑

k

ψ
†
SC,k[ϵSC,kτzσ0 − &0τyσy]ψSC,k. (2)

where ψ
†
k,i = (c†

i,k↑,c
†
i,k↓,ci,−k↑,ci,−k↓) is the spinor with i =

N or i = SC, c
†
i,kσ (ci,kσ ) is the creation (annihilation) opera-

tor for an electron with momentum k and spin σ in the ith part
of the heterostructure, ϵi,k = (k2/2mi − µi) with mi, µi are
the electron’s effective mass and chemical potential, respec-
tively, in the ith component, σj (τj ) are the Pauli matrices in
spin (Nambu) space, α is the strength of the Rashba SOC with
lk = (0,kz,−ky), &0 is the amplitude of the superconducting
gap, and Vx is the Zeeman splitting due to the external magnetic
field along the x direction.
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The tunneling Hamiltonian can be written as

HT = 1
2

∑

k

ψ
†
SC,kĥT(q)ψN,k+q + H.c., (3)

where ĥT(q) is the tunneling matrix. In our case, assuming that
the tunneling processes conserve the spin and the momentum
parallel to the SC-N interface (k∥) we have ĥT(q) = tσ0τzδ(q∥)
with t being the tunneling amplitude. To quantify the effect
of the tunneling term it is helpful to introduce the parameter
(t ≡ t2ρF,SC, where ρF,SC is the density of states (DOS) of the
SC at the Fermi energy EF,SC.

In the presence of impurities, the Hamiltonian for the
system is modified by an additional term Himp, describing
the scattering of electrons off the impurities. For a single
isolated impurity located in the ith (i = N,SC) component of
the heterostructure,

Himp =
∑

r

δ(r)ψ†
i,rĥimpψi,r =

∑

k,k′

ψ
†
i,kĥimpψi,k′ . (4)

Here ψ
†
i,r (ψi,r) is the creation (annihilation) operator for

an electron at position r in the ith component of the het-
erostructure, and ĥimp is the matrix describing the structure
of the impurity in spinor space. For a scalar impurity, using
the convention specified above for spinors, we have ĥimp =
uimpσ0τz where uimp is the strength of the impurity potential.

The spectrum of the impurity-induced states can be obtained
by locating the poles of the T matrix (see the Supplemental
Material [50] Sec. I). Using the diagrammatic approach, one
can express the T matrix in terms of the Green’s function for
the isolated components of the heterostructure G

(0)
i (k,ω) =

(ω + iη − Hi)−1 with i = N,SC and η → 0. If the impurity is
located in the ith component of the heterostructure, the matrix
Ti is given by

Ti(ω) = [1 − ĥimp,i,imp(ω)]−1ĥimp, (5)

where ,i,imp(ω) =
∫

dk Gi(k,ω) and Gi(k,ω) is the Green’s
function of the ith component of the heterostructure dressed
by the self-energy ,i,t (k∥,ω) due to the tunneling term,

Gi(k,ω) =
{[

G
(0)
i (k,ω)

]−1 − ,i,t (k,ω)
}−1 (6)

,i,t (k,ω) =
∫

dq ĥT(q)G(0)
ī

(k + q,ω)ĥT(−q). (7)

Here G
(0)
ī

is the Green’s function of the heterostructure’s com-
ponent coupled via the tunneling term to the ith component.
Using Eq. (3), we obtain

,i,t (k∥,ω) = t2
∫

dq⊥σ0τzG
(0)
ī

(k∥,q⊥,ω)σ0τz. (8)

To understand how the presence of the tunneling term affects
the spectrum of the impurity-induced states it is useful to
express Ti in the following equivalent form:

Ti =
{
1 − ĥimp

[
,

(0)
i,imp(ω) + ,

(1)
i,imp(ω)

]}−1
ĥimp, (9)

s-wave SC

N x

(a)

s-wave SC

N

x

(b)

xx

yy

zz

FIG. 1. Sketch of the 1D N/SC heterostructure with an isolated
impurity, shown by the red “X” in the semiconductor (N) in (a) and in
the SC in (b). The red arrows represent impurity-induced scattering
processes.

where

,
(0)
i,imp(ω) =

∫
dk G

(0)
i (k,ω), (10)

,
(1)
i,imp(ω) =

∫
dk G

(0)
i (k,ω),i,t (k,ω)iGi(k,ω). (11)

As follows from above, there are two contributions that deter-
mine the pole structure of Ti : ,

(0)
i,imp is the term that appears if

the component i were isolated, and ,
(1)
i,imp(ω) is the term due

to tunneling processes between the ith and the īth components
of the heterostructure. If tunneling is not a weak perturbation,
the interplay between these two terms may lead to unusual
properties for the spectrum of the impurity-induced states in
the heterostructure.

For the case when the impurity is located in the normal
component (in the remainder we assume it to be a semi-
conductor) the effect of the tunneling term is to induce a
SC gap in it (&ind) and it is straightforward from Eq. (5) to
obtain TN(ω) = [τzσ0 − uimp,̂N,imp(ω)]−1uimp. When no SOC
is present (α = 0), TN(ω) does not have poles ω∗ below the
induced gap (i.e., |ω∗| ! &ind). In the presence of SOC the in-
duced superconductivity in the SM will be a mix of spin-singlet
and spin-triplet pairing components even though in the SC only
s-wave pairing is present [51–53]. To further investigate this
case we consider the quasi-1D system shown in Fig. 1 in which
Lx → ∞ and Ly, Lz are small enough so that the spectrum is
composed of 1D subbands ϵ

(n)
kx

with energy separation larger
than &0. For concreteness, in the remainder we limit ourselves
to the case in which only one spinful subband is occupied.
When Vx is larger than a critical value V c

x , the system is
expected to be in a topological phase [48,49]. For parameter
values relevant for current experiments (see the Supplemental
Material [50] Sec. II) for Vx < V c

x the impurity-induced states
have energies ω∗, very close to the induced-gap edge. When the
chemical potential is much larger than the SC bulk gap (see the
Supplemental Material [50] Sec. III), in the trivial regime, |ω∗|
can be smaller than &ind, albeit it does not approaches zero.
The spectrum of the impurity-induced states is completely
different in the topological regime. In this regime the induced
superconducting pairing is a p wave, and we find that the
energy of the bound states: (i) depends very strongly on uimp,
(ii) it is strongly asymmetric with respect to uimp = 0, and
(iii) it can go to zero for finite (negative) values of uimp [37].
This can be seen in Fig. 2(a) where the dependence of ω∗ on
uimpρF,N [ρF,N being the DOS of the semiconductor (N) at its
Fermi energy EF,N] for different values of the Zeeman splitting
Vx > V c

x .
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(b) 1D p-wave SC

(a) Impurity in semiconductor

F,N

FIG. 2. (a) Spectrum of impurity-induced bound states for the 1D
N/SC heterostructure as a function of uimpρF,N for the case (a) of Fig. 1
and Vx > V c

x . Here k2
F,N/(2mN ) = 1.5&0, αSOkF,N = 4.2&0, (t =

5&0, V c
x ≈ 5.2&0. (b) Spectrum of impurity-induced bound states

for a 1D p-wave SC as a function of uimpρF,N for different values
of µ.

The results shown in Fig. 2(a) can be qualitatively under-
stood considering a scalar impurity Eq. (4) in a 1D p-wave
superconductor for which:

HpSC =
∑

kxσσ ′[c†
kx ,σ

(k2
x/2m − µ)σ0ckx,σ ′ + i&p(kx/kF )

c
†
kx ,σ

dkx
· σσyc

†
−kx ,σ ′ + H.c.], where &p(kx/kF ) =

−&p(−kx/kF ) is the amplitude of the superconducting
p-wave pairing and dkx

is the unit vector characterizing
the polarization of the triplet state [54]. In this case
T (ω) = uimp[τz − uimp

∫
dkxGp-SC(ω,kx)]−1, where

Gp-SC(ω,kx) = (ω + iη − Hp-SC)−1. Due to the 1D nature of
the carriers, one finds that, at low energies, the density of states
is strongly dependent on their energy ϵ: ρ(ϵ) ≈ 1/

√
ϵ. This

fact makes the energy of the impurity bound state strongly
dependent on uimp when µN is close to the bottom of the
band. This is shown in Fig. 2(b) where we can see that the
energy of the bound state depends strongly on uimp when µ
is small (the solid line) and fairly weakly for large µ (the
dashed line) [55]. We should emphasize that this asymmetry
effect is very relevant for 1D topological SC wires supporting
MZMs in which typically µN must be quite small, i.e.,
|µN| <

√
V 2

x − &2
ind [46–49].

In the most recent realizations of 1D topological SC wires
[9,19–21] the SM and the interface between the SM and
the SC are of very high quality so that very few impurities
are expected to be present in the SM or at the interface.
On the other hand, the SC (i.e., aluminum) is disordered.
Therefore, henceforth we consider the situation in which the
impurities are located in the SC. In this case, using Eq. (9)

Trivial Regime: Trivial Regime: 

Topological SC Regime: T (d)

(a) (b)

(c) ::

F,SCF,SC

opological SC Regime: 

FIG. 3. Spectrum of impurity-induced bound states as function
of uimpρF,SC for the 1D N/SC heterostructure when the impu-
rity is located in the SC in (a) and (b) the trivial regime and
(c) and (d) the topological regime. Here k2

F,N/(2mN) = 1.5&0, µN =
1.5&0, αSOkF,N = 4.2&0, kF,N/kF,SC = 0.3.

one finds

TSC =
uimp

τzσ0 − uimp,
(0)
SC,imp(ω) − uimp,

(1)
SC,imp(ω)

. (12)

For the case in which the SC is an s wave and the tunneling is
such that ĥT = tδ(q∥)σzτ0 we obtain

,
(0)
SC,imp(ω) = − ρF,SC√

&2
0 − ω2

[ωσ0τ0 + &0σyτy] (13)

,
(1)
SC,imp(ω) =

∫
dk∥

∫
dk⊥G

(0)
SC(k∥,k⊥,ω)

×,SC,t (k∥,ω)GSC(k∥,k⊥,ω), (14)

with ,SC,t (k∥,ω) given by Eq. (7). One can show that the
strength of the second term ,

(1)
SC,imp(ω) is proportional to the

dimensionless parameter αSwS = (t

EF,N

kF,N

kF,SC
(see the Supple-

mental Material [50] Sec. I for details) where kF,N, kF,SC are
the Fermi momenta in the N and SC, respectively.

Figure 3(a) shows the spectrum of the impurity-induced
states as a function of uimpρF,SC for the 1D case in which
the N/SC heterostructure is in the topologically trivial phase
Vx = 2&0 < V (c)

x and different values of (t . In the limit
αSwS → 0, t ̸= 0 (i.e., ,

(1)
SC,imp → 0 and &ind ̸= 0), we find

bound states close to the gap edge. As αSwS increases, the
interplay between ,

(0)
SC,imp and ,

(1)
SC,imp may lead to low-lying

subgap states as shown in Figs. 3(a) and 3(b). The results of
Fig. 3(b) also show that as (t increases the spectrum of the
impurity-induced bound states becomes more asymmetric with
respect to uimp = 0 as we have found for the case in which the
impurity is located in the N. It is very interesting to notice
that, contrary to the case when an impurity is located in the N,
see Fig. 2(a) in the Supplemental Material [50], an impurity
in the SC may lead to low-lying subgap states with ω∗ → 0
in the trivial regime. Figures 3(c) and 3(d) show the results
when the N/SC heterostructure is in the topological phase
Vx = 14&0 > V (c)

x . One can see that the spectrum is strongly
asymmetric in this case even for relatively small values of (t ,
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FIG. 4. Effect of Vx on the impurity-induced bound states spec-
trum. (a) and (b) (t = 15&0, kF,N/kF,SC = 0.1. In (a) Vx < V (c)

x .
(c) and (d) (t = 7&0, kF,N/kF,SC = 0.3. In (c) Vx > V (c)

x . (b) and
(d) show the evolution of impurity-induced bound states (the black
solid line) for fixed uimpρF = 2.0.

Fig. 3(c). For larger (t we find that also in the topological phase
the impurity can induce zero-energy bound states for relatively
small values of uimpρF,SC, Fig. 3(d). These results suggest that
in the topological phase the value of uimp necessary to induce a
zero-energy bound state decreases as (t increases. Thus, there
is an optimal value of (t for which the induced gap is large
and, at the same time, impurities in the SC do not result in
significant subgap density of states. The effect of Vx on the
spectrum of the impurity-induced bound states is summarized
by the results shown in Fig. 4. Figures 4(a) and 4(c) show how,
for fixed (t , Vx affects the dependence of the spectrum on uimp
for the case when Vx < V (c)

x (a), and Vx > V (c)
x (c). As one can

see there is a threshold value of Vx for the emergence of bound
states with ω∗ → 0 both in the trivial and in the topological
regimes. Figures 4(b) and 4(d) show the evolution of ω∗ with
Vx for fixed uimp for the same values of (t and kF,N/kF,SC used
in (a) and (c), respectively. From the results of Fig. 4 we see
that zero-energy impurity-induced bound states may appear
in both the topological and the trivial regimes by tuning the
magnetic field.

Considering that Vx and (t are two of the key parameters
that can be controlled in experiments to realize MZMs in prox-
imitized nanowires, the knowledge of where on the (Vx,(t )
plane ω∗ = 0 is of great importance for the realization of
topological qubits based on such systems [56–59]. Figures 5(a)
and 5(b) show in gray-blue (yellow) the regions on the (Vx,(t )
plane for which there exist a finite value of uimp such that ω∗ =
0 (ω∗ < 0.6&ind). The red dashed line shows the boundary
between trivial and topological regimes. The horizontal dashed
line in Fig. 5(a) [Fig. 5(b)] identifies the values of (t for
which the results of Figs. 4(a) and 4(b) [Figs. 4(c) and 4(d)]
were obtained. As follows from Fig. 5(a), the area where
ω∗ = 0 is rather large in the trivial regime and becomes
smaller in the topological one when kF,N/kF,SC ≪ 1. As the
ratio kF,N/kF,SC increases the area where ω∗ = 0 decreases
in the trivial phase and increases in the topological phase
as shown by Fig. 5(b). Thus, the ratio of kF,N/kF,SC is an
important parameter when trying to reduce disorder effects in

(a)

Fig. 4 (a),(b)

(b)

Fig. 4 (c),(d)

FIG. 5. Phase diagram on the (Vx,(t ) plane identifying the
regions, shown in gray (yellow) for which ω∗ = 0 (ω∗ < 0.6&ind)
for some finite value of uimp (not for the fixed value of uimp). The
red dashed line shows the boundary between trivial and topological
regimes. The horizontal dashed line is placed at the value of (t for
which the results of Fig. 4 were obtained. (An evolution of bound
states for fixed uimp is shown in the Supplemental Material [50]
Sec. IV.) Here k2

F,N/(2mN) = 1.5&0, αSOkF,N = 4.2&0.

superconducting heterostructures. For aluminum-based prox-
imitized nanowires this parameter is quite small kF,N/kF,SC ≪
1. The parameter αSwS can be controlled experimentally by
changing the back-gate voltage in proximitized nanowires
[60,61] so the propensity for the formation of impurity-induced
bound states we predict, see Fig. 5, can be tested experimen-
tally.

Conclusions. We have studied impurity-induced subgap
states in superconductor-based heterostructures. In the case
of proximitized nanowires we find that in these structures
there is a large region in parameter space for which the
impurities in the superconductor can induce low-energy states
even when the superconductor is purely an s wave. Our Rapid
Communication presents results for the spectrum of the bound
states induced by a single impurity and so is complementary
to the previous studies that considered the case of many
weak impurities [31–36,38,42,44,62] via disorder-averaging
techniques. Our results are directly relevant to experimental
situations in which the impurity density is low and disorder
averaging is not justified. In addition, they are instrumental
to extend the study of the effect of many impurities via
disorder averaging to the unitary limit, i.e., the limit of strong
impurities, both for the case when the impurities are located
in the SM and for the case when they are located in the
superconductor.

Our results provide guidance for the optimization of
superconductor-semiconductor heterostructures: Although a
strong tunneling is beneficial to obtain a large gap, it also
enhances the effect of the impurities located in the s-wave
superconductor on the superconducting state induced in the
semiconductor. Therefore, we find that, when the effect of im-
purities is included, the optimal coupling to the superconductor
is not strong but intermediate, i.e., (t ∼ &0.
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In this supplementary material we provide: (I) details on the derivation of the T-matrix expression for the case when
the impurity is located in the superconductor, see Eq. (13-15) of the main text; (II) the relation between the param-
eters values used in our calculations and the parameters values of current experiments on quasi 1D semiconductor-
superconductor (N-SC) heterostructures; (III) additional results for the case when the impurity is located in the
semiconductor, (IV) dependence on Vx of the impurity strength necessary to induce a zero energy !⇤ = 0 impurity-
induced bound state.

I. T-MATRIX CALCULATION FOR AN IMPURITY IN THE SUPERCONDUCTOR

The scattering T-matrix for a single impurity in a superconductor proximity-coupled to a semiconductor nanowire
can be described by a diagrammatic representation shown in Fig. 1:

TSC(!) = uimp⌧z�0 + u2
imp⌧z�0 ·

⇣
⌃(0)

SC,imp(!) + ⌃(1)
SC,imp(!)

⌘
· ⌧z�0

+ u3
imp⌧z�0 ·

⇣
⌃(0)

SC,imp(!) + ⌃(1)
SC,imp(!)

⌘
· ⌧z�0 ·

⇣
⌃(0)

SC,imp(!) + ⌃(1)
SC,imp(!)

⌘
· ⌧z�0 + · · ·

=
uimp

⌧z�0 � uimp⌃
(0)
SC,imp(!)� uimp⌃

(1)
SC,imp(!)

, (1)

where ⌃(0)
SC,imp(!) represents the contribution to the self-energy for a clean s-wave superconductor:

⌃(0)
SC,imp(!) =

X

�!
k

G(0)
SC(!,

�!
k ) = ⇢F,SC gqc(!) = � ⇢F,SCp

�2
0 � !2

✓
!�0 (�0i�y)†

(�0i�y) !�0

◆
. (2)

The expression above corresponds to Eq. (13) of the main text. The second term ⌃(1)
SC,imp(!) represents a process in

which an electron tunnels between the SC and the semiconductor, and scatters o↵ the impurity

⌃(1)
SC,imp(!) =

Z
dkkdk1,?dk2,?G

(0)
SC(kk,k1,?,!)⌃SC,t(kk,!)GSC(kk,k2,?,!) (3)

= t2
Z

dkkdk1,?dk2,?G
(0)
SC(kk,k1,?,!) · ⌧z�0 ·GN (kk,!) · ⌧z�0 ·G(0)
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FIG. 1: Diagrammatic representation of the T-matrix for a single impurity placed in the superconductor of a SC/SM het-
erostructure. Processes that involve two scatterings can be of two types: 1) processes in which the electrons do not leave
the SC between the two scatterings, 2) processes in which the electrons travel through the N in between the two scatterings.
The meaning of the di↵erent lines is the following: double solid line (red), propagator in s-wave SC; dashed-solid line (black),
propagator in semiconductor wire with proximity induced superconducting gap; cross head - dashed line, scattering o↵ the
impurity.



2

Here t is tunneling matrix element between the SC and nanowire (N), GN is the dressed semiconductor Green function
(in proximity to a clean SC). We assume that the momentum parallel to the SC-N interface is conserved.

The largest contribution to the scattering in the SC comes from on-shell processes (i.e. close to the Fermi surface).
Therefore, it’s convenient to introduce �k ⌘ (�k, ⌦̂), where �k = |k � kF,SC| ⌧ kF,SC and ⌦̂ ⌘ k/|k|. With this
notation we obtain:

⌃(1)
SC,imp(!)=

LzkF,N

EF,N
t2
Z
d⌦̂

✓
1

kF,SCLz

Z
d�kG(0)
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◆
· ⌧z�0 ·R(!) · ⌧z�0 ·

Z
d⌦̂

✓
1

kF,SCLz

Z
d�kG(0)

SC(!; �k, ⌦̂)

◆
,

(5)

where kF,N and EF,N are the Fermi wavevector and Fermi energy in the semiconductor wire, respectively, ⇢F,SC is
the normal-state density of states (DOS), at the Fermi energy, of the SC, and

R(!) ⌘ EF,N

Z
dekk

2⇡
GN (!; ekk); with ekk =

kk

kF,N
. (6)

Notice that the DOS contributing to the N-SC tunneling amplitude is given by ⇢tF,SC = ⇢F,SC/(kF,SCLz)). Assuming

the bare SC Green’s function GSC(!; k, ⌦̂) to be isotropic and, thus, independent of ⌦̂, one can simplify the expression

for ⌃(1)
SC,imp(!):

⌃(1)
SC,imp(!) = ↵SwS⇢F,SC [gqc(!) · ⌧z�0 ·R(!) · ⌧z�0 · gqc(!)] (7)

where

↵SwS =
�t

EF,N

kF,N

kF,SC
; with �t = ⇡|t|2⇢tF,SC ; (8)

gqc(!) =
1

⇢F,SC

X

�k

G(0)
SC(�k,!). (9)

Notice that the presence of the vertex matrix ⌧z�0 flips the position of the zero energy solutions from u⇤
imp⇢F,SC < 0

to u⇤
imp⇢F,SC > 0 (please compare Fig. 2 with Fig. 3 and 4 in the main text).

II. RELATION BETWEEN PARAMETERS VALUES USED IN THE CALCULATION AND
EXPERIMENTAL VALUES

Here, we briefly explain how to choose the numerical parameters based on relevant experimental systems [1–5]. We
consider aluminum/InSb (SC/N), and choose for the superconducting gap of the bulk SC �0 = 0.2 meV, and for the
Rashba spin-orbit coupling strength of the semiconductor ↵SO = 0.2� 1eV · Å. We assume the energy dispersion of

the semiconductor (without Rashba spin-orbit coupling and Zeeman splitting) to be ✏N,k = k2

2meff
�µN =

k2
F,N

2meff
(k̂2�1)

with k̂ = k/kF,N . We assume me↵ = 0.014me with me the electron’s mass. Including both Rashba coupling and

Zeeman splitting, the energy spectrum becomes: EN (k̂) =
k2
F,N

2meff
(k̂2�1)±

q
V 2
x + (k̂kF,N↵SO)2 with the Fermi surface

being identified by the value of k⇤ sucht that EN (k̂⇤) = 0. The Rashba spin-orbit energy can then be expressed as

ESO = k̂⇤kF,N↵SO. The results of the main text were obtained setting ↵SO = 0.8eV · Å and
k2
F,N

2meff
= 1.5�0,

corresponding to kF,N↵SO = 4.22�0.

III. ADDITIONAL RESULTS FOR CASE WHEN THE IMPURITY IS IN THE SEMICONDUCTOR

In this section, we consider the case in which the impurity is in the semiconductor, and show that low energy bound
states appear even in the topological trivial regime, if the chemical potential is large. For this section we assume

�0 = 0.2 meV, me↵ = 0.014me, ↵SO = 0.22eV · Å, and
k2
F,N

2meff
= 10.0�0, and therefore kF,N↵SO = 3.0�0. Fig. 2 (a)

and (b) show how !⇤ depends on uimp⇢F,N for di↵erent values of the Zeeman splitting Vx. Fig. 2 (a) (Fig. 2 (b)) shows
the results for Vx < V c

x (Vx > V c
x ). The dashed lines show the value of �ind. Interestingly, we can see that impurity

bound states (albeit with non-zero energy) can appear even in the topologically trivial regime. We also notice that
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for 1D N/SC heterostructure for the case when

the impurity is in the semiconductor for fixed V
x

= 6�0 > V (c)
x

, and di↵erent values of �
t

. k2
F,N/(2mw

) = 10�0, ↵kF = 3�0.

the bound states shift to the induced-gap edge if we decrease the parameter
k2
F,N

2meff
,. We see that in the trivial regime

the energy of the impurity-induced bound states becomes smaller as Vx increases but it never goes to zero. We also
notice that the energy of the bound states depends weakly on uimp with a slight asymmetry of the spectrum with
respect to the sign of the potential of the impurity.

We now consider how the interface coupling �t a↵ect the spectrum when the impurity is located in the SM. The
induced gap is proportional to �t: �ind ⇠ �t. Therefore, as �t increases, the ratio µ/�ind becomes smaller causing
an increase of the particle-hole asymmetry, in the normal state, close to Fermi level. As a consequence, we that for
larger values of Gammat there will be a stronger asymmetry in the spectrum of impurity bound states (refer to Fig.
2 (a) in the main text), and that a smaller impurity strength |uimp| will be necessary to induce a zero-energy bound
state, as shown in Fig. 3.

IV. DEPENDENCE ON V
x

OF THE IMPURITY STRENGTH NECESSARY TO INDUCE A ZERO
ENERGY IMPURITY-INDUCED BOUND STATE

Fig. 4 shows how the value of |u⇤
imp⇢F,SC | such that !⇤ = 0 depends on Vx. For the parameters along the dashed

line in Fig. 5 (a) of the main text, Fig. 4 (a) shows that the value of |u⇤
imp⇢F,SC | that gives one of the !⇤ = 0 solutions

decreases and approaches a constant at the topological transition whereas for the other !⇤ = 0 solution |u⇤
imp⇢F,SC |

increases to infinity. For the case shown in Fig. 5 (b) of the main text, Fig. 4 (b) shows that as Vx increases the two
zero-energy solutions merge and then disappear.

[1] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013), arXiv:1112.1950.
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| such that !⇤ = 0 as a function of V
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. The parameters chosen are the same as the dashed
line in Fig. 4 and 5 of the main text.
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