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Ground state of graphene heterostructures in the presence of random charged impurities
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We study the effect of long-range disorder created by charge impurities on the carrier density distribution of
graphene-based heterostructures. We consider heterostructures formed by two graphenic sheets [either single-
layer graphene (SLG) or bilayer graphene (BLG)] separated by a dielectric film. We present results for symmetric
heterostructures SLG-SLG and BLG-BLG, and hybrid ones BLG-SLG. As for isolated layers, we find that the
presence of charged impurities induces strong carrier density inhomogeneities, especially at low dopings where
the density landscape breaks up in electron-hole puddles. We provide quantitative results for the strength of
the carrier density inhomogeneities and for the screened disorder potential for a large range of experimentally
relevant conditions. For heterostructures in which BLG is present, we also present results for the band gap induced
by the perpendicular electric field generated self-consistently by the disorder potential and by the distribution
of charges in the heterostructure. For SLG-SLG heterostructures, we discuss the relevance of our results for
the understanding of the recently observed metal-insulator transition in each of the graphene layers forming the
heterostructure. Moreover, we calculate the correlation between the density profiles in the two graphenic layers
and show that for standard experimental conditions, the two profiles are well correlated.
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I. INTRODUCTION

The ability to realize single-layer graphene (SLG) [1],
bilayer graphene (BLG) [2], and other two-dimensional (2D)
crystals [3], combined with recent advances in fabrication
techniques [4,5] in recent years has allowed the realization
of novel 2D heterostructures [6–17]. In these structures, two
or more 2D crystals are stacked in a designed sequence.
Layers of hexagonal boron nitride (hBN) [18–20] have been
used to electrically separate the graphenic layers (SLG or
BLG) in multilayered 2D heterostructures. In particular, hBN
allows the realization of graphene-based heterostructures in
which the graphenic layers are very close and yet electrically
separated [21,22], a situation that is ideal to study the effects of
interlayer interactions. It has been proposed that in these types
of systems, the interlayer interactions can drive the system
into spontaneously broken-symmetry ground states [23–28].
So far, experiments have not observed clear signatures of
the establishment of these collective ground states. However,
recent measurements of the drag resistivity in graphene double
layers [21] have shown that the drag resistivity has a very
large and anomalous peak when the doping in both graphene
sheets is set to zero. This phenomenon indicates that a
strong correlation is present between the carriers in the two
layers.

In most of the samples, random charge impurities are
present in the graphene environment, either in the substrate
or trapped between the graphenic layer and the substrate. It
has been shown theoretically [29] and experimentally [30–33]
that the long-range disorder due to charge impurities induces
strong, long-range, carrier density inhomogeneities in isolated
SLG and BLG. The presence of random carrier density
inhomogeneities has been predicted theoretically to strongly
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suppress the critical temperature (Tc) for the formation
of an interlayer phase coherent state [34–36] in graphene
heterostructures. This is in contrast to the short-range disorder
that is not expected to suppress significantly Tc [28,37,38]. In
addition, the presence of charge inhomogeneities, correlated in
the two layers, is a necessary ingredient of the energy-transfer
mechanism that has been proposed [39,40] to explain the
strong peak of the drag resistivity at the double-neutrality
point. Disorder-induced carrier density inhomogeneities are
also expected to strongly affect the transport properties of
graphene-based heterostructures [41–46]. For these reasons,
the accurate characterization of the carrier density inhomo-
geneities induced by long-range disorder in graphene-based
heterostructures is essential to understand the fundamental
properties of these systems and to identify ways to increase
their electronic mobility.

The characterization of the effects of disorder in graphene-
based heterostructures is challenging for several reasons: (i) In
most samples, the disorder appears to be due predominantly
to random charge impurities and to be quite strong and long
range; this fact makes the use of standard techniques, such as
perturbation theory, not viable. (ii) Due to the linear dispersion
in graphene, the screening of the long-range disorder due
to the charge impurities is nonlinear. (iii) In graphene het-
erostructures, the screening effects due to the different layers
must be taken into account self-consistently. (iv) In bilayer
graphene, the presence of a perpendicular electric field opens
a band gap [47,48]. (v) In heterostructures comprising BLG,
the component of the electric field perpendicular to BLG,
and the BLG gap, must be obtained self-consistently taking
into account the presence of the disorder and its screening
by the metallic gates, and the other graphenic layer. In this
work, we present a systematic study of the effects of the
long-range disorder due to random charge impurities on the
ground state of graphene-based heterostructures taking into
account all the effects mentioned above. As shown in Fig. 1, we
consider heterostructures formed by two “graphenic” layers,
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FIG. 1. (Color online) Sketch of the typical graphene het-
erostructure considered in this work showing the graphenic layers
(blue dashed lines) connected to independent metal gates (gray solid
lines), isolated with hBN, and placed on a SiO2 substrate. The charged
impurities are modeled as a two-dimensional distribution c(r) (red
line) located at an effective distance d below the bottom graphenic
layer.

either SLG or BLG, separated by a thin dielectric film. In
the assumed configuration, using a top and a bottom gate, the
doping of each graphenic layer can be set independently. We
considered three classes of heterostructures: (i) double-layer
graphene (SLG-SLG) formed by two sheets of single-layer
graphene; (ii) double-bilayer graphene (BLG-BLG) formed
by two sheets of bilayer graphene; (iii) “hybrid structures”
(BLG-SLG) formed by one sheet of BLG and one sheet
of SLG. We find that the presence of charge impurities
induces strong and long-range carrier density inhomogeneities
in graphene-based heterostructures as in isolated SLG [29]
and BLG [43]. However, for typical experimental situations,
we find that for the top graphenic layer the strength of the
carrier density inhomogeneities is strongly suppressed due to
the screening of the charge impurities by the bottom layer.
We quantify this effect for most of the experimentally relevant
conditions and find that for the top layer, the amplitude of the
density fluctuations can be reduced by an order of magnitude
and that the effect is strongest in BLG-SLG heterostructures.
We also show that the carrier density inhomogeneities in
the different graphenic layers are well correlated. Finally,
we show how the average band gap of BLG and its root
mean square depend on the parameters, such as the impurity
density, characterizing the heterostructure. Our results present
a comprehensive characterization of the carrier density profile
of graphene heterostructures in the presence of long-range
disorder. By showing how the strength of the carrier density
inhomogeneities depend on the experimental parameters, our
results show how the quality of graphene-based heterostruc-
tures could be improved. In particular, the parameters that,
within a certain range, can be easily tuned experimentally
are as follows: the doping of each of the graphenic sheets
forming the heterostructure, the type of graphenic sheets used,
the impurity density (via annealing or the use of different
substrates), and the distance between the graphenic sheets.
For each of these parameters we present quantitative results
that show how the values can be tuned to reduce the disorder
strength in each of the graphenic sheets, or both, forming
the heterostructure. The results presented in the remainder
of this work, for instance, quantify how an increase of the

doping in one of the two sheets forming the heterostructure
can substantially reduce the strength of the disorder-induced
long-range inhomogeneities in the other sheet, and quantify
how much a reduction of the impurity density would reduce
the strength of the disorder potential in the heterostructure.
In addition, we show how a change of the distance between
the two sheets can be optimized to reduce the overall disorder
strength in the heterostructure. Our results also show that,
to reduce the strength of the disorder-induced long-range
inhomogeneities in single-layer graphene it is more efficient to
have below it a sheet of bilayer graphene instead of SLG. The
information on how to reduce, control, the disorder strength
is essential for the study of fundamental effects in graphene
heterostructures and for their use in technological applications.

In Sec. II, we present our theoretical approach; in Sec. III,
we present the results and discuss their relevance for current
experiments; in Sec. IV, we discuss the relevance of our
results for the recently observed metal-insulator transition as a
function of doping in double-layer graphene heterostructures.
Finally, in Sec. V, we present our conclusions.

II. THEORETICAL APPROACH

Figure 1 presents a sketch of the type of graphene
heterostructure that we consider. One graphenic layer (SLG
or BLG), layer 1 in our notation, is placed on an insulating
substrate, typically SiO2 . A thin buffer layer of high-quality
dielectric, typically hBN, might be present between the
SiO2 and the graphenic layer. A second graphenic layer, layer
2, is placed above the first one. Layers 2 and 1 are electrically
isolated via a thin insulating film. The doping level of the two
graphenic layers can be tuned independently via a top and a
bottom gate.

There is compelling evidence [45] that in systems of the
type depicted in Fig. 1 the dominant sources of disorder are
random charge impurities located close to the surface of SiO2.
It is known that on the surface of SiO2 there is a large density
of charge impurities. Transport measurements on single-layer
graphene have consistently observed a linear scaling of the
conductivity with the doping (n) at low doping. The fact that
the conductivity is suppressed at low dopings indicates that the
effective strength of the disorder increases as the carrier density
is decreased. Theoretical transport results in which charge
impurities are the dominant source of scattering precisely
predict at low dopings a linear suppression of the conductivity
as n is decreased [41,45,49]. The agreement between transport
theories in which charge impurities are the main source of
disorder and experimental transport measurements has also
been confirmed by experiments in which the density of charge
impurities was tuned [50]. In recent years, there have been also
several imaging experiments [30–33] that, close to the charge
neutrality point, have observed the presence of electron-hole
puddles with dimensions and amplitudes that are consistent
with the presence of charge impurity densities in the graphene
environment [29,41,42] of the order of the ones extracted from
the transport results mentioned above.

The distribution of the charge impurities can be modeled as
an effective 2D distribution c(r) placed at a distance d below
the bottom graphenic layer (layer 1). The dashed-dotted line
in Fig. 1 shows schematically the location of the effective 2D
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plane where the random impurities are located. It is likely
that some charge impurities will also be trapped between each
graphenic sheet and the adjacent thin dielectric films. However,
experimental evidence, especially for setups in which hBN is
used as dielectric material, strongly suggests that the density
of such trapped impurities is at least an order of magnitude
smaller that the density of the impurities close to the surface
of the SiO2 . For this reason, we henceforth assume that the
disorder potential is solely due to the charge impurities located
close to the SiO2’s surface. Without loss of generality, we can
assume 〈c(r)〉 = 0, where the angle brackets denote average
over disorder realizations. Our formalism allows us to easily
take into account the presence of spatial correlation between
the charge impurities [51,52]. However, given the fact that
in general the charge impurities are frozen and locked in a
configuration that results from the fabrication process and that
is not the thermodynamic equilibrium [53], we can assume that
their position is uncorrelated so that 〈c(r)c(r′)〉 = nimpδ(r −
r′), where nimp is the charge impurity density.

At low energies, the fermionic excitations of SLG are
well described by a massless Dirac model with Hamiltonian
[45,54]

H = �vF σ · k, (1)

where �k is the momentum operator, σ = (σx,σy) are the Pauli
matrices in sublattice space, and vF ≈ 106 ms−1 is the Fermi
velocity. Recent experiments for graphene on hBN have shown
evidence of the opening of a gap [9,55]. Considering the fact
that there is a 1.8% lattice mismatch between graphene and
hBN and the fact that in current experiments a twist angle
between the graphene layer and the hBN is normally present,
the mechanism by which the gaps open is still not completely
understood [40,56], but is thought to be arising from the
explicit breaking of the AB sublattice symmetry in SLG due to
the presence of the hBN substrate, and that it should not depend
on the local electric field, but should depend on the twist angle
between graphene and hBN in some complex manner. For our
purposes, this means that for SLG on hBN the band gap, if
present, can be assumed to be fixed and independent of the
local doping and electric field created by the nearby gates. In
the presence of a band gap, the low-energy Hamiltonian for
single-layer graphene becomes

H =
(

� �vF (kx − iky)
�vF (kx + iky) −�

)
. (2)

At low energies, the effective Hamiltonian describing the
fermionic excitations in BLG is

H =
(

� �
2

2m∗ (kx − iky)2

�
2

2m∗ (kx + iky)2 −�

)
, (3)

where m∗ = 0.033me is the effective electron mass and �

is the band gap due a difference (U ) in the electrochemical
potential between the two layers of carbon atoms forming
BLG.

In our case, U in Eq. (3) is due to the presence of a
perpendicular electric field E⊥ induced by the metal gates, the
other graphenic layer, and the charge impurities surrounding
the BLG sheet. If BLG is layer 1, i.e., it is the graphenic layer

closest to the charge impurities, we have

E
(1)
⊥ (r) = ed

ε

∫
dr′ c(r′)

[|r − r′|2 + d2]3/2

− ed12

ε

∫
dr′ n2(r′)[|r − r′|2 + d2

12

]3/2

− eδ1

ε

∫
dr′ n1(r′)[|r − r′|2 + δ2

1

]3/2 , (4)

where d12 is the distance between the two graphenic layers and
δ1 ≈ 300 nm is the distance between BLG and the bottom gate
(Fig. 1). Notice that in general E⊥ is not uniform, mostly due
to the presence of the charge impurities. When BLG is layer 2
we have

E
(2)
⊥ (r) = (d + d12)

e

ε

∫
dr′ c(r′)

[|r − r′|2 + (d + d12)2]3/2

+ ed12

ε

∫
dr′ n1(r′)[|r − r′|2 + d2

12

]3/2

+ (δ2 − d12)
e

ε

∫
dr′ n2(r′)

[|r − r′|2 + (δ2 − d12)2]3/2
,

(5)

where δ2 ≈ 150 nm is the distance between the first graphenic
layer and the top metal gate (Fig. 1). Using these expressions
for the perpendicular component of the electric field, we can
calculate U . We have

U (i)(r) = edmE
(i)
⊥ (r), (6)

where i = 1 (i = 2) if BLG is the bottom (top) graphenic layer,
and dm = 0.335 nm is the BLG interlayer separation. Taking
into account screening effects [57–59], the band gap of BLG
due to a finite value of U is given by the equation

�(x,y) = γ1|U (x,y)|√
|U (x,y)|2 + γ 2

1

, (7)

where γ1 = 0.34 eV is the BLG interlayer tunneling ampli-
tude [54].

To obtain the ground-state carrier density distribution in the
presence of charge impurities we use the Thomas-Fermi-Dirac
theory (TFDT). The TFDT is a generalization of the Thomas-
Fermi theory to include cases in which the electronic degrees of
freedom behave as massless Dirac fermions, as in single-layer
graphene. In this case, both the kinetic energy functional
and the functional due to the exchange part of the Coulomb
interaction are different from those valid for systems in which
the electrons behave as massive fermions [29,60]. In the TFDT,
the ground state of the system is obtained by minimizing the
energy functional E[n] of the carrier density n. The TFDT
is similar in spirit to the density functional theory (DFT), the
difference being that in the TFDT the kinetic energy is also
approximated by a functional of the density EK [n], whereas in
the DFT it is treated via the full quantum-mechanical operator
acting on the wave function �. The TFDT returns accurate
results as long as the length scale of the carrier density
inhomogeneities Ln ≡ |∇n/n|−1 is larger than the Fermi
wavelength λF . Prior results on SLG [29,43] and BLG [61,62]
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have shown that in graphene-based systems, this inequality
is satisfied for typical experimental conditions. The value of
n that enters in the inequality Ln 	 λF is the typical local
value inside the “puddles” characterizing the inhomogeneous
carrier density landscape. At the charge neutrality point (CNP)
〈n〉 = 0, however, everywhere the local density n(r) is different
from zero and therefore locally λF has a finite value. As a
consequence, close to the CNP the average density can not
be taken as a measure of the typical carrier density inside the
puddles and a better estimate is given by the density root mean
square n(rms). Given that n(rms) ≈ nimp [29,61], we have that the
TFDT is valid at all densities as long as nimp is not too small
(nimp > 1011 cm−2) [63]. This is confirmed by prior results
on SLG [29,43] and BLG [61,62]. The two major advantages
of the TFDT are as follows: (i) Being a functional theory is
not perturbative with respect to the strength of the density
fluctuations and can therefore take into account nonlinear
screening effects. (ii) It is computationally very efficient and
this makes the TFDT able to return disorder-averaged results.

For the systems of interest, the TFDT energy functional
E[ni] will be a functional of the density profiles {ni(r)} in the
two graphenic layers. Neglecting exchange-correlation terms
that have been shown to be small for most of the situation
we are interested in Refs. [29,61], the general form of the
functional E[ni] is

E[ni] =
∑

i

EK [ni] +
∑

i

e2

2ε

∫
d2r

∫
d2r ′ ni(r)ni(r′)

|r − r′|

+
∑
i,j 
=i

e2

2ε

∫
d2r

∫
d2r ′ ni(r′)nj (r)[|r − r′|2 + d2

ij

]1/2

+ e
∑

i

∫
d2r V i

D(r)ni(r) −
∑

i

μi

∫
d2r ni(r),

(8)

where ε is the dielectric constant of the medium surrounding
the graphenic layers, dij is the distance between the graphenic
layers, V i

D is the bare disorder potential in layer i, and μi is
the chemical potential in layer i. The second term in Eq. (8)
is the Hartree part of the intralayer Coulomb interaction,
the third term is the Hartree part of the interlayer Coulomb
interaction, and the fourth is the one due to the disorder
potential V i

D . Assuming that charge impurities close to the
surface of SiO2 are the dominant source of disorder, we have

V
(1)
D = e

ε

∫
dr′ c(r′)

[|r − r′|2 + d2]1/2
; (9)

V
(2)
D = e

ε

∫
dr′ c(r′)

[|r − r′|2 + (d + d12)2]1/2
. (10)

The ground state is obtained by minimizing E with respect
to {ni}. This gives rise to two coupled equations. In general,
for the cases we are interested in, the term μkin ≡ δEK/δni

is nonlinear. For the case of gapless SLG, μkin scales as the
square root of the density:

μ
(SLG)
kin [n] = �vf sgn[n(r)]

√
π |n(r)|. (11)

For the case of gapped SLG, we have

μ
(SLG)
kin [n,�] = sgn[n(r)]

√
�2v2

f π |n(r)| + �2. (12)

For BLG, neglecting the presence of a nonzero band gap
(�), μkin depends linearly on n. This fact allows us to obtain
analytical results for the carrier density ground state of BLG-
BLG heterostructures in the limit � = 0 (see Sec. III). In the
presence of a band gap, the screening is strongly nonlinear
and this is reflected by the nonlinear dependence of μkin with
respect to the density. Taking into account the band gap for
BLG, we have

μ
(BLG)
kin [n] =

√(
�2

2m∗

)2

π2n2 + �2. (13)

The nonlinearities due to the term δEK/δni , and the need
to self-consistently calculate � for systems involving BLG,
imply that the solution of the TFDT equations can only be
achieved numerically. We then solve these equations for many
(500–1000) disorder realizations to obtain disorder-averaged
results. The need to consider many-disorder realization to
accurately obtain the disorder-averaged values of the quantities
characterizing the ground state makes the computational
efficiency of the TFDT approach very valuable.

III. RESULTS

Figure 2 shows the profiles for a single-disorder realization
of the carrier density and of the screened disorder potential in
each layer of a SLG-SLG heterostructure, at the neutrality
point. We see that, as for the case of isolated SLG and
BLG [29–33,45], the carrier density profile breaks up in
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FIG. 2. (Color online) Color plots showing (a) n1(r), (b) n2(r),
(c) V (1)

sc (r), and (d) V (2)
sc (r) for a SLG-SLG system at the charge

neutrality point for a single-disorder realization with nimp = 3 ×
1011 cm−2, d = 1 nm, and d12 = 1 nm.
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FIG. 3. (Color online) Color plots showing (a) n1(r), (b) n2(r),
(c) V (1)

sc (r), and (d) V (2)
sc (r) for a SLG-SLG system at the charge

neutrality point for a single-disorder realization with nimp = 3 ×
1011 cm−2, d = 1 nm, d12 = 1 nm, and a finite band gap � = 20 meV
in both layers.

electron-hole puddles. We also notice that the amplitude of the
density fluctuations and the strength of the screened disorder
potential in the top layer is much smaller than in the bottom
layer. This is due mostly to the screening of the charge
impurities by the layer closer to the impurities. When the
spectrum of SLG is gapped, some regions of the samples will
be insulating. This is shown by Fig. 3 which presents the
density and screened disorder profiles for a single-disorder
realization in a SLG-SLG system in which the band gap in
both graphene layers is set equal to 20 meV. The white areas
in Figs. 3(a) and 3(b) are insulating regions, i.e., regions in
which the local chemical potential is within the band gap and
therefore contain no carriers. The results shown in Figs. 2
and 3 show how the profiles of the density and disorder of the
top layer and the bottom layer are different. The asymmetry
between the profiles in the two layers will also be reflected
in the transport properties as observed experimentally [64].
In particular, for our configuration in which the disorder is
dominated by the charge impurities at the surface of the SiO2 ,
we see that in the presence of a gap the insulating regions are
substantially larger in the top layer than in the bottom layer. We
discuss the effect of this asymmetry on the qualitative features
of electronic transport in Sec. IV.

Figure 4 shows the profiles for a single-disorder realization
of the carrier density [Figs. 4(a) and 4(b)] and screened
disorder potential [Figs. 4(c) and 4(d)] in each layer of a hybrid
BLG-SLG heterostructure at the charge neutrality point. In
comparing Figs. 2(a) and 4(a), we notice that the carrier density
inhomogeneities are much stronger for BLG than SLG (all
the rest being the same). This is due to the difference in the
low-energy band structure between SLG and BLG. Due to

FIG. 4. (Color online) Color plots showing (a) n1(r), (b) n2(r),
(c) V (1)

sc (r), (d) V (2)
sc (r), and (e) �(1) corresponding to the BLG-

SLG hybrid system at charge neutrality point for a single-disorder
realization nimp = 3 × 1011 cm−2, d = 1 nm, and d12 = 1 nm.
(f) Sketch of the gapped BLG bands in the presence of disorder.

this difference, the price in kinetic energy to create a density
fluctuation at low energies is much higher for SLG than BLG.
Figure 4(b) shows that the amplitude of the density fluctuations
in the top layer (SLG) is much smaller in BLG-SLG than in the
SLG-SLG. This is due to the fact that BLG, as the layer closer
to the impurities, is much more efficient than SLG in screening
the second layer from the disorder potential due to the charge
impurities. This indicates that the mobility of SLG could be
increased significantly when placed in a heterostructure in
which the layer closest to the charge impurities is BLG. That
this is the case is further confirmed by the disorder-averaged
results that we present below.

Figure 4(e) shows the profile for single-disorder realization
of the band gap in BLG. We see that, due to the presence of
the charge impurities, � is very inhomogeneous. In addition,
we see that locally � can be as large as 60 meV. One could
then wonder why in correspondence with the regions where
� is large, the carrier density [Fig. 4(a)] locally does not go
to zero. This is due to the fact that when the doping is set to
zero in both layers, the perpendicular electric field responsible
for opening the band gap is due to the charge impurities that
we have assumed to be concentrated below the first layer. In
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FIG. 5. (Color online) Color plots showing (a) n1(r), (b) n2(r),
(c) V (1)

sc , (d) V (2)
sc , (e) �(1), and (f) �(2) corresponding to the BLG-BLG

system at charge neutrality point for a single-disorder realization
nimp = 3 × 1011 cm−2, d = 1 nm, and d12 = 1 nm.

these conditions, the regions in which E⊥ is strong correspond
to regions where the density of charge impurities is high and
the induced carrier density is also high. In other words, for the
conditions considered, regions where � 
= 0 are also regions
where the local value of the chemical potential is outside the
gap as shown schematically in Fig. 4(f). The scenario sketched
in Fig. 4(f) is not valid when a non-negligible density of charge
impurities is also present above the top graphenic layers or
between the two graphenic layers. Also, when the doping in
one or both of the two graphenic layers is not zero, there will
be a uniform contribution to E⊥ and this can create regions
where the chemical potential is within the gap.

Figure 5 shows the profiles for single-disorder realization
of carrier density, screened disorder potential, and gap, in both
layers of a BLG-BLG heterostructure, at the neutrality point.
As for the other heterostructures, we see that the screening by
the first layer considerably reduces the amplitude of the density
inhomogeneities in the second layer and of the screened
disorder potential. In addition, the band gap in the second
layer is quite smaller than that in the first layer as we see in
Figs. 5(e) and 5(f).

A quantitative comparison between the theoretical and
the experimental results is only possible by obtaining the
disorder-averaged values of the quantities that are measured

experimentally. In addition, the disorder-averaged character-
ization of the ground-state carrier density distribution is an
essential ingredient for the development of the transport theory
in the presence of strong, disorder-induced, carrier density
inhomogeneities [45].

For BLG-BLG heterostructures in the limit in which the
band gap � is zero, we can obtain analytic expressions for
the disorder-averaged quantities that characterize the density
profile and the screened disorder potential from the TFDT
equations. Following, we will show that in some situations
the results obtained by setting � = 0 provide results for for
n(rms) and V(rms) that well approximate the results obtained by
calculating � self-consistently. By minimizing the functional
E[n1,n2] of BLG-BLG structures with � = 0 with respect to
the density profile n1(r) in the first layer and the density profile
n2(r) in the second layer, we find

ni(q) = rsc|q|e|q|d12

π [e2|q|d12 (1 + |q|rsc)2 − 1]

×
[
V

(j )
D (q)

rsc
− 2m∗

�2
μjδ(q) + e|q|d12 (1 + |q|rsc)

×
(

2m∗

�2
μiδ(q) − V

(i)
D (q)

rsc

)]
, (14)

where ni(q) is the Fourier transform of the carrier density
profile in layer i = 1,2, j = 2 (1) if i = 1 (2), and rsc =
ε�

2/(2e2m∗) ≈ 3.2 nm is the BLG screening length. Using
the statistical properties of the impurity distribution c(r) we
can calculate the root mean square of the carrier densities
(ni(rms)) and the screened disorder potential

V (i)
sc = V

(i)
D (r)

rsc
+ 1

2rsc

∫
dr′ nj (r′)[|r − r′|2 + d2

12

]1/2

+ 1

2rsc

∫
dr′ ni(r′)

|r − r′| .

We find

ni(rms) =
[

2

r2
scπ

nimpIi

(
d

rsc
,
d12

rsc

)]1/2

, (15)

V
(i)

sc(rms) = �
2π

2m∗ ni(rms) (16)

(i = 1,2), where

I1(x,y) =
∫ ∞

0
dz ze−2xz [1 − e2yz(1 + z)]2

[1 − e2yz(1 + z)2]2
(17)

and

I2(x,y) =
∫ ∞

0
dz

z3e2z(y−x)

[1 − e2yz(1 + z)2]2
. (18)

Figure 6 shows the scaling of n(rms) (and Vsc(rms)) in the two
layers as a function of d/rsc and d12/rsc. As d increases, the
amplitude of the carrier density inhomogeneities decreases
rapidly. As d12 increases, n1(rms) approaches the value found
for a single BLG sheet [62] whereas n2(rms) decreases expo-
nentially to zero.

As discussed in Sec. II, when SLG is one of the constituents
of the heterostructure, and/or when the BLG’s band gap
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FIG. 6. (Color online) Color plots of (a) n1 (rms)rsc/
√

nimp, and
(b) n2 (rms)rsc/

√
nimp as a function of d/rsc, and d12/rsc as obtained in

Eq. (15).

can not be neglected, the TFDT equations can only be
solved numerically due to the nonlinearity induced by the
kinetic energy term. Following, we present our results for the
disorder-averaged quantities. Apart when explicitly indicated,
all the results were obtained for 160 × 160 nm samples with
a spatial coarse graining of 1 nm [65,66]. For each case, we
used a number of disorder realizations NS large enough to
guarantee that the results would not change if a larger number
of disorder realizations were used. For the cases presented in
the following, we find that the results do not depend on Ns

when Ns is larger than 500.
Figure 7 shows the root mean square of the carrier density

and of the screened disorder potential in each layer of a
SLG-SLG heterostructure. We see that the amplitude of the
carrier density fluctuations in the first layer increases with
〈n1〉 and depends quite weakly on 〈n2〉. Analogously, n(rms) in
the second layer increases with 〈n2〉. This is due to the fact
that as the doping increases, more carriers are available to
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FIG. 7. (Color online) Color plots of (a) n1 (rms), (b) n2 (rms),
(c) V

(1)
sc (rms), and (d) V

(2)
sc (rms) for SLG-SLG system as a function of

the average carrier density for nimp = 3 × 1011 cm−2, d = 1 nm, and
d12 = 1 nm.

screen the disorder potential by creating high-density electron
(hole) puddles in correspondence of the valleys (peaks) of
the bare disorder potential. However, we see that n2(rms)also
depends significantly on 〈n1〉. This is due to the fact that
the first layer, being the closest to the charge impurities, is
most responsible for the screening of the disorder potential
and therefore significantly affects the amplitude of the density
fluctuations in the second layer. Both 〈n1〉 and 〈n2〉 contribute
to a decrease of the screened disorder potential in layers
1 and 2, as shown by Figs. 7(c) and 7(d). The results of
Figs. 7(b) and 7(d) confirm the conclusion that we derived from
the single-disorder realization results: due to the screening
effect of the first layer, the amplitude of the carrier density
inhomogeneities and the strength of the screened disorder
potential are weaker in layer 2 than in layer 1.

In the presence of a band gap in the graphene spectrum for
SLG-SLG systems, the dependence of n(rms) and Vsc (rms) on
〈n1〉 and 〈n2〉 is qualitatively similar to the gapless cases. In
the presence of a gap it is interesting to also look at how the
fraction of the area of graphene that is insulating, A

(1)
I (A(2)

I )
for layer 1 (2), depends on the doping in the two layers [see
Figs. 8(e) and 8(f)]. For relatively large impurity densities,
such as considered for the results shown in Figs. 8(e) and 8(f),
AI in layer 1 depends only weakly on the doping of layer
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I , for SLG-SLG system with finite

band gap as a function of the average carrier density for � = 20 meV,
nimp = 3 × 1011 cm−2, d = 1 nm, and d12 = 1 nm.
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FIG. 9. (Color online) Plot of (a) n1(rms) and (c) n2(rms) as a
function of 〈n1〉 for nimp = 2 × 1011 cm−2, d12 = 1 nm, and d =
1 nm. The squares symbols correspond to 〈n2〉 = 1.5 × 1012 cm−2,
and the circle symbols correspond to 〈n2〉 = −1.5 × 1012 cm−2. The
curves with open symbols show the results obtained keeping � fixed,
whereas the curves with solid symbols show the results obtained by
calculating � self-consistently. 〈�〉 is shown in subplots (b) and (d)
also as a function of 〈n1〉. The dashed lines correspond to the case
� = 0 eV for both values of 〈n2〉 since the gapless BLG-SLG system
is even in 〈n2〉.

2, and vice versa. However, as we show in Fig. 15, and as
we discuss in Sec. IV, this is not the case at low impurity
densities. In practice, we have that when the screened disorder
Vsc (rms) � � the effect of layer j on AI of the other layer can
be very significant.

For heterostructures in which BLG is present, we need to
account for the opening of a band gap due to the presence of
a perpendicular electric field. The calculation of the band gap
has to be done self-consistently due to the fact that the redistri-
bution of the charges in the layer forming the heterostructure
modifies the profile of the perpendicular component of the
electric field, affecting the profile of the band gap that itself
affects the screening properties of the heterostructure. To test
the importance of self-consistently calculating the profile of �

for a set of cases for BLG-SLG structures, we first performed
the calculation setting � equal to the value obtained from
Eqs. (5), (6), and (7) in the limit of homogeneous density
profiles in the two layers, with n1 = 〈n1〉 and n2 = 〈n2〉. We
then redid the calculation by obtaining �(r) self-consistently.
The comparison of the two sets of results is shown in Fig. 9
in which n(rms) in the two layers and the average gap (〈�〉)
are plotted as a function of 〈n1〉 for a fixed, nonzero, value of
〈n2〉: the curves with open symbols show the results obtained
keeping � fixed, whereas the curves with solid symbols show
the results obtained by calculating � self-consistently. We
see that in general the value of n(rms) obtained using the two

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
−2

)

(a) n1(rms)(1011cm−2)

6.30
6.45
6.60
6.75
6.90
7.05
7.20

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
−2

)

(b) n2(rms)(1011cm−2)

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
−2

)

(c) V
(1)
sc(rms)(meV)

24.9
25.2
25.5
25.8
26.1
26.4
26.7
27.0
27.3

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
− 2

)

(d) V
(2)
sc(rms)(meV)

12.8
13.6
14.4
15.2
16.0
16.8
17.6

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
−2

)

(e) Δ (meV)

7.5
9.0
10.5
12.0
13.5
15.0
16.5

−1.0−0.5 0.0 0.5 1.0
n1 (1012cm−2)

−1.0

−0.5

0.0

0.5

1.0

n
2

(1
012

cm
−2

)

(f) Δ(rms)(meV)

5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
8.4

FIG. 10. (Color online) Color plots of (a) n1 (rms), (b) n2 (rms),
(c) V

(1)
sc (rms), (d) V

(2)
sc (rms), (e) 〈�〉, and (f) �rms for BLG-SLG system as

a function of the average carrier density for nimp = 3 × 1011 cm−2,
d = 1 nm, and d12 = 1 nm.

approaches differs. For the case in which 〈n1〉〈n2〉 > 0 we have
that the value of 〈�〉 obtained self-consistently is reasonably
approximated by the fixed value �fixed obtained assuming
uniform carrier density profiles. However, for 〈n1〉〈n2〉 < 0,
we find that the value of 〈�〉 is significantly different from
�fixed [Fig. 9(d)]. The results of Fig. 9 show that the effect
of the disorder can not be captured by a simple average of a
spatially homogeneous theory and requires a self-consistent
calculation of the parameters defining the local band structure.
All results that we present for heterostructures in which BLG
is present were obtained calculating � self-consistently.

For a fixed nimp, d, d12, Fig. 10 shows the dependence
of the disorder-averaged quantities characterizing the ground
state of a BLG-SLG structure on the 〈n1〉 and 〈n2〉. We see
that amplitude of the density fluctuations and the strength of
the screened disorder potential at low dopings depend almost
exclusively on 〈n2〉, the average carrier density in SLG, and
only very weakly on 〈n1〉, the average carrier density in BLG.
This is due to the fact that at low dopings, the band gap in
BLG is quite small and so the density of states (DOS) of BLG
is to a good approximation constant, independent of 〈n1〉. On
the other hand, in SLG, due to the linear band dispersion, the
DOS depends linearly on the doping 〈n2〉. As a consequence,
at low dopings a change of |〈n1〉| has a negligible effect on
the screening properties of the system whereas an increase
(decrease) of |〈n2〉| increases (decreases) the screening due
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to the second layer SLG. At high dopings, the situation is
complicated by the effect that a high average density on each
layer has on the size of the gap in BLG, as shown in Fig. 10(e).
As a consequence, the DOS in BLG is no longer almost
independent of 〈n1〉. This causes dependence of n(rms) and
Vsc (rms) on the value of 〈n1〉. In particular, the asymmetry of
n(rms) and Vsc (rms) with respect to 〈n1〉, for large values of 〈n2〉,
is due to the asymmetric dependence of � on 〈n1〉 [Fig. 10(e)].
Figure 10(f) shows the root mean square of �, 〈�rms〉. We see
the 〈�rms〉 is in general of the same order of �, indicating
the inhomogeneities of the band gap in BLG are quite strong
and can not be treated perturbatively. In addition, we see that,
qualitatively, 〈�rms〉 depends on 〈n1〉 and 〈n2〉 in a similar way
to 〈�〉. Another important feature of the results of Fig. 10
to notice is that when both |〈n1〉| and |〈n2〉| are large, the
size of the gap in BLG is comparable to the strength of the
screened disorder potential. In these conditions, we expect that
the transport properties might be significantly affected by the
presence of the band gap and that BLG might behave as a bad
metal [62].

We now consider the BLG-BLG heterostructure. In this
case, both the top layer and the bottom layer can have a
gapped band structure. Due to the fact that the band gap in both
layers depends asymmetrically on 〈n1〉 and 〈n2〉 [Figs. 11(e)
and 11(f)], we find that n(rms) and Vsc (rms), in both layers,
depend asymmetrically on the average carrier density of each
layer, as shown in Figs. 11(a)–11(d). We also find that in
both layers the rms of the band gap is of the same order as
〈�〉 and that it scales with 〈n1〉 and 〈n2〉 qualitatively as 〈�〉.
We notice that for the bottom layer, the average band gap
is never larger than the rms of screened disorder potential.
On the other hand, for the top layer, we have that at large
|〈n1〉| and |〈n2〉| the average gap is larger than V

(2)
sc(rms). As a

consequence, we expect that when |〈n1〉| and |〈n2〉| are large,
the bottom layer will behave as a bad metal and the top layer
as a bad insulator [62].

By comparing the results of Figs. 7, 10, and 11, we
see that the three heterostructures SLG-SLG, BLG-SLG,
and BLG-BLG exhibit disorder-induced density fluctuations
of comparable magnitude, and comparable strengths of the
screened disorder potential. These results suggest that the
effect of disorder on the establishment of collective ground
states that has been proposed for SLG-SLG [23–28], BLG-
SLG [28], and BLG-BLG [67] should be comparable.

It is interesting to compare the amplitude of n(rms) and of
Vsc (rms) for SLG when isolated and when part, as top layer,
of one of the heterostructures considered. Figure 12 presents
such a comparison. As we had anticipated above, we see that
n(rms) and Vsc (rms) in SLG are much lower when part of a
heterostructure, due to the screening of the disorder by the
bottom layer, than when isolated. From the results of Fig. 12,
we see that when the doping in the bottom layer is ∼1012 cm−2,
n(rms) can be reduced by an order of magnitude thanks to the
screening of the disorder by the bottom layer. Figure 12(b)
shows that the strength of the screened disorder potential in
SLG is reduced by a factor 3 by the presence of the graphenic
bottom layer. In addition, Fig. 12 shows that BLG, as a bottom
layer, for 〈n1〉 � 2.5 × 1012 cm−2, is more efficient than SLG
to screen the top SLG layer. For 〈n1〉 � 2.5 × 1012 cm−2, SLG
and BLG, as bottom layers, have the same effect on screening
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FIG. 11. (Color online) Color plots of (a) n1 (rms), (b) n2 (rms),
(c) V

(1)
sc (rms), (d) V

(2)
sc (rms), (e) 〈�(1)〉, (f) 〈�(2)〉, (g) �(1)

rms, and (h) �(2)
rms

for the BLG-BLG system as a function of the average carrier density
for nimp = 3 × 1011 cm−2, d = 1 nm, and d12 = 1 nm.
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FIG. 12. (Color online) Plots of (a) n2 (rms) and (b) V
(2)

sc (rms) as a
function of the carrier density on the graphenic layer closest to the
impurities. The blue crosses correspond to the SLG-SLG system, the
red circles correspond to the BLG-SLG system, and the black dashed
curve corresponds to bare SLG.
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the disorder for the top layer given that their band structures
are very similar for dopings of this order or larger.

The results of Fig. 12 suggest that, assuming that charge
impurities are the dominant source of disorder, a very effective
way to reduce the effects of disorder in SLG and BLG would
be to considerably reduce the thickness of the insulating
layer between the graphene sheet and the back gate. Given
the modern techniques to realize graphene devices, this is
something that we think could be done using the currently
available experimental capabilities.

To understand the physics of graphene heterostructures in
the presence of disorder, a very important property is the
correlation C12 = 〈n1(r)n2(r)〉 − 〈n1〉〈n2〉 between the density
profiles in the two layers. The knowledge of C12 is important
to estimate the effect of disorder on the establishment of
correlated ground states. Moreover, knowledge of the nature of
the correlations in the presence of disorder between n1(r) and
n2(r) might be essential to understand recent drag resistance
measurements [21] on SLG-SLG heterostructures.

One possible explanation of these measurements relies on
the presence of correlated electron-hole puddles in the two
layers [39,40] close to the double charge neutrality point (i.e.,
when both 〈n1〉 and 〈n2〉 are equal to zero). Our results for C12

(Fig. 13) show that, for all three heterostructures considered,
C12 is always positive, indicating that each electron (hole)
puddle in the bottom layer corresponds an electron (hole)
puddle in the top layer. This is due to the fact that the formation
of the electron-hole puddles is mainly due to the presence of
charge impurities below the bottom layer. Assuming that the
energy transfer mechanism presented in Refs. [39,40] is the
main mechanism for the strong peak of the drag resistivity
observed in Ref. [21] at the double charge neutrality point,
our results therefore strongly suggest that in the SLG-SLG
double-layer structure used in Ref. [21], charge impurities
below the bottom layer are the dominant source of disorder
and the main reason for the formation of the electron-hole
puddles at low dopings.

If the density of charge impurities between the two graphene
sheets, or above the top sheet, is comparable to the density
of charge impurities located below the bottom sheet, the
results for the correlation C12 would be modified. The amount
of change would depend on the details of the device: ratio
between the intersheet impurity density, the impurity density
above the top layer, and the impurity density below the bottom
sheet; average distance of the impurity distributions to each of
the sheets; doping level in each layer, . . . . In general, we would
expect that, as the impurity density between the sheets and
above the top sheet become less negligible, the carrier density
fluctuations in the two sheets would become less correlated.

Figures 14–17 show the dependence on the impurity
density of the statistical quantities characterizing the dis-
ordered ground state for SLG-SLG, BLG-SLG, and BLG-
BLG, respectively. To obtain these results, we consid-
ered four different combinations of average densities in
the two layers: (〈n1〉,〈n2〉) = (0,0); (5 × 1011 cm−2,0),(0,5 ×
1011 cm−2,0)(5 × 1011 cm−2,5 × 1011 cm−2).

For SLG-SLG (Fig. 14), we have that the scaling with
nimp is qualitatively similar for all four pairs of (〈n1〉,〈n2〉)
considered. The main feature is that, as is the case also for
isolated SLG, n(rms) is lower for 〈n〉 ≈ 0 than for 〈n〉 away
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FIG. 13. (Color online) Color plots of the density correlation
C12 = 〈n1n2〉 − 〈n1〉〈n2〉 as a function of the average carrier density
for (a) SLG-SLG, (b) BLG-SLG, and (c) BLG-BLG systems for
d = 1 nm, nimp = 3 × 1011 cm−2, and d12 = 1 nm.

from the charge neutrality point. When the band structure of
SLG is gapped, we have that the scaling n(rms) and Vsc (rms)

with nimp [Figs. 15(a)–15(d)] is qualitatively similar to the
one obtained for the gapless case. For low values of 〈n1〉
(〈n2〉), the fraction of the insulating area in layer 1 (2) depends
quite strongly on nimp, as shown in Figs. 15(e) and 15(f). In
addition, we see that at low doping in layer 1 (2), and low
impurity densities, A

(1)
I (A(2)

I ) depends quite strongly on 〈n1〉
(〈n2〉), i.e., on the doping of the other graphenic layer. For
BLG-SLG heterostructures (Fig. 16), we find that n(rms) and
Vsc (rms) depend very weakly on the 〈n1〉, consistent with the
results shown in Fig. 10. The results of Figs. 16(c) and 16(e)
also show that the ratio between the screened disorder potential
and the average band gap increases with nimp. We therefore

035406-10



GROUND STATE OF GRAPHENE HETEROSTRUCTURES IN . . . PHYSICAL REVIEW B 90, 035406 (2014)

1 2 3 4 5 6 7 8 9
nimp (1011cm−2)

0

1

2

3

4

5

6

n
1(

rm
s)

(1
011

cm
−2

)

(a)

1 2 3 4 5 6 7 8 9
nimp (1011cm−2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n
2(

rm
s)

(1
011

cm
−2

)

(b)

1 2 3 4 5 6 7 8 9
nimp (1011cm−2)

10

20

30

40

50

V
(1

)
sc

(r
m

s)
(m

eV
)

(c)

1 2 3 4 5 6 7 8 9
nimp (1011cm−2)

10

15

20

25

30

35

40

V
(2

)
sc

(r
m

s)
(m

eV
)

(d)

FIG. 14. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

and (d) V
(2)

sc (rms) as a function of the impurity strength nimp for the SLG-
SLG system, d = 1 nm, d12 = 1 nm, and for four different carrier
density averages. The circle symbols correspond to 〈n1〉 = 0 cm−2

and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 = 5 × 1011 cm−2 and
〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 ×
1011 cm−2, and the star symbols correspond to 〈n1〉 = 5 × 1011 cm−2

and 〈n2〉 = 5 × 1011 cm−2.

expect that the effects on the transport properties due to the
presence of a band gap [47,62,68–70] will be stronger for
cleaner samples.

Consistently with the results of Fig. 11 we find that for
BLG-BLG systems, the dependence of n(rms) and Vsc (rms) on
nimp is only weakly affected by the values of 〈n1〉 and 〈n2〉
(Fig. 17). In Figs. 17(a)–17(d), the dashed line shows the
results (15) and (16) obtained assuming � = 0. We see that,
for the purpose of estimating n(rms) and Vsc (rms), in BLG-BLG
heterostructures neglecting the presence of a band gap returns
results that are in good agreement with the results obtained
taking into account the fact that � 
= 0. As in BLG-SLG
systems, we observe that also in BLG-BLG heterostructures
the ratio Vsc (rms)/〈�〉 increases with nimp. However, we notice
that for the top BLG layer there is a large range of values of
nimp, and dopings, for which 〈�〉 is larger than Vsc (rms) and
for which we therefore expect the top layer to behave as an
insulator.

As the distance d of the charge impurities from the
bottom layer is increased, the amplitude of the carrier density
inhomogeneities and of the rms of the screened disorder
decrease rapidly for all the three heterostructures considered.
This is shown in Figs. 18–20. In particular, panel (d) of these
figures shows that for d � 10 nm, Vsc (rms) in the top layer is
extremely small, smaller than 5 meV for the realistic parameter
considered. These results suggest that the combination of first
screening layer (graphenic or metallic) and a clean buffer layer
of a high-quality dielectric, such as hexagonal boron nitride
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FIG. 15. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) fraction of the area of the sample that is insulating

in layer 1, A
(1)
I , and (f) fraction of the area of the sample that is

insulating in layer 2, A
(2)
I , as a function of the impurity strength

nimp for a SLG-SLG system with gapped graphene: � = 20 meV,
d = 1 nm, d12 = 1 nm, and for four different carrier density averages.
The circle symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2,
the cross symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the
triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and
the star symbols correspond to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 =
5 × 1011 cm−2.

(hBN), 10 nm thick or more, would reduce the effects of the
disorder due to charge impurities to almost negligible levels.

For BLG-BLG systems, we find that the scaling of n(rms)

and Vsc (rms) with d, analogously as for the scaling with nimp,
is very well approximated by Eqs. (15) and (16) derived in the
limit � = 0. Also, we find that for d � 3 nm 〈�〉 dependence
on d is very weak, and that the ratio 〈�rms〉/〈�〉 is quite small.
This is due to the fact that as d increases, the disorder potential
provides a decreasing contribution to the perpendicular electric
field and therefore to the band gap of BLG. For very large d

and 〈n1〉 (and/or 〈n2〉) not zero the finite value of the band
gap is due to the almost uniform charge distributions in the
graphenic layers and metal gates.

Figures 21–23 show the dependence of n(rms), Vsc (rms), and
� on the distance d12 between the two layers forming the
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FIG. 16. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�〉, and (f) �(rms) as a function of the impurity
strength nimp for the BLG-SLG system, d = 1 nm, d12 = 1 nm, and for
four different carrier density averages. The circle symbols correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

heterostructure. For the SLG-SLG heterostructure (Fig. 21),
the scaling on d12 of n(rms) and Vsc (rms) in layer 1 (layer 2)
depends strongly on the average carrier density in layer 2 (layer
1). This is due to the fact that the ability of layer 1 (layer 2)
to screen layer 2 (layer 1) from the disorder potential depends
strongly on its average carrier density. For example, when
〈n2〉 = 0 layer 2 does not provide a significant contribution to
the screening of the disorder potential in layer 1 and therefore
moving it away from layer 1, i.e., increasing d12, has only a
very minor effect on the value of n1(rms) and V

(1)
sc(rms), as shown

in Figs. 21(a) and 21(b), respectively.
For BLG-SLG heterostructures (Fig. 22), the dependence

of n(rms) and Vsc (rms) on d12 it is almost independent of the
average density in BLG, layer 1, a fact that is consistent with
the other results that we have presented above for BLG-SLG
systems. This reflects the fact that the density of states in BLG
at low dopings depends only very weakly on the value of 〈n〉.
As d12 increases, the values of n1(rms) and V

(1)
sc(rms) approach

asymptotically the values for isolated BLG. Moreover, we
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FIG. 17. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�(1)〉, (f) 〈�(2)〉, (g) �
(1)
(rms), and �

(2)
(rms) as a function of

the impurity strength nimp for the BLG-BLG system, d = 1 nm,
d12 = 1 nm, and for four different carrier density averages. The
circle symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2,
the cross symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the
triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and
the star symbols correspond to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 =
5 × 1011 cm−2.

observe that, as d12 increases, the value of 〈�〉 and 〈�rms〉
approach a constant value, independent of d12, but dependent
on 〈n2〉 [Figs. 22(e) and 22(f)].

This is due to the fact that as d12 increases, the screening
effects of the top layer on the bottom layer decrease, as
mentioned above, and the perpendicular electric field reaches
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FIG. 18. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

and (d) V
(2)

sc (rms) as a function of the distance between the impurities
and the lower graphenic layer d for the SLG-SLG system, d12 =
1 nm, and nimp = 3 × 1011 cm−2. The circle symbols correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

a value that is almost independent of d12, but still dependent on
〈n2〉. In these conditions, � in layer 1 depends on layer 2 only
via 〈n2〉. Also, as d12 increases, 〈�rms〉 in layer 1 approaches
a constant value corresponding to the value of 〈�rms〉 for an
isolated BLG sheet with average band gap 〈�〉.

The effect of a change in d12 in BLG-BLG systems is shown
in Fig. 23. In Figs. 23(a)–23(d), the dashed lines show the
results obtained using Eqs. (15) and (16) obtained by setting
� = 0 in both layers. We see that for the dependence of n(rms)

and Vsc (rms) on d12, as for the dependence on nimp and d,
the results obtained by setting � = 0 are in good quantitative
agreement with the results obtained by calculating � self-
consistently. For the same reason mentioned for the case of
BLG-SLG heterostructure, we find that 〈�〉 and 〈�rms〉 in the
bottom layer decrease with d12 and approach a constant value
for large d12. As for BLG-SLG, we see that as d12 increases,
〈�rms〉 takes values that are very close to the values of 〈�〉.

In Fig. 24, we show the probability distribution (Pni
) for the

carrier density in the two layers of a SLG-SLG heterostructure
for different values of the average doping 〈n1〉 and 〈n2〉. For
〈n1〉 = 0 (〈n2〉 = 0), we see that Pn1 (Pn2 ) is very strongly
peaked around the charge neutrality point: for ni → 0, Pn1

reaches values that are orders of magnitude outside the scale
of the figures. In this situation, Pni

is not Gaussian. As 〈n1〉
(〈n2〉) increases, Pn1 (Pn2 ) becomes bimodal: it exhibits a very
strong and narrow peak at n1 = 0 (n2 = 0) and a much broader
peak around n1 = 〈n1〉 (n2 = 〈n2〉). Only for quite large
values of 〈n〉 Pn is well approximated by a simple Gaussian
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FIG. 19. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�〉, and (f) �(rms) as a function of d for the
BLG-SLG system, d12 = 1 nm, nimp = 3 × 1011 cm−2, and for four
different carrier density averages. The circle symbols correspond to
〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

centered around 〈n〉. The properties of Pn for SLG-SLG
heterostructures, and their dependence on 〈n〉, are very similar
to the ones of an isolated layer of graphene [29]. The only
difference is that, for the same strength of the disorder, the
peaks of Pn in the second layer are narrower than in the first
layer and than in an isolated graphene layer because of the
screening of the disorder by the first layer. In addition, we
find that because of the screening effect of the first layer, the
value of 〈n2〉 above which Pn2 has a simple Gaussian peak
centered around 〈n2〉 is lower than for the first layer (and than
for isolated graphene).

Figures 25(a) and 25(b) show the results for Pni
for the

case of BLG-SLG. The presence of a perpendicular electric
field induces the opening of a band gap in BLG. This causes
the presence of small gapped regions with zero carrier density.
As a consequence, Pn1 exhibits an extremely narrow peak for
n1 = 0 surrounded by two large shoulders [Fig. 25(a)]. As
〈n1〉 increases, the narrow peak at n1 = 0 decreases and the
two-shoulders structure becomes asymmetric evolving toward
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FIG. 20. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�(1)〉, (f) 〈�(2)〉, (g) �
(1)
(rms), and �

(2)
(rms) as a function d

for the BLG-BLG system, d12 = 1 nm, nimp = 3 × 1011 cm−2, and for
four different carrier density averages. The circle symbols correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

a single, broad, Gaussian peak centered around 〈n1〉. Pn in the
top layer, the SLG layer, is qualitatively very similar to the Pn

of the top layer in SLG-SLG structures, just much narrower
due to the fact that the BLG, as a bottom layer, is much more
efficient to screen the disorder potential.

Figure 25(c) shows the profile of the probability distribution
(P�) of the band gap in BLG. We see that P� has a Gaussian-
type shape, approximately centered at zero (of course limited
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FIG. 21. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

and (d) V
(2)

sc (rms) as a function of the distance between graphenic layers
d12 for the SLG-SLG system, d = 1 nm, and nimp = 3 × 1011 cm−2.
The circle symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2,
the cross symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the
triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and
the star symbols correspond to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 =
5 × 1011 cm−2.

to positive values). For the values of 〈n1〉 and 〈n2〉 considered
in Fig. 25(c), the profiles of P� are qualitatively very similar
indicating that, for the cases shown, the main contribution
to � is due to the disorder potential. Only the profile for
〈n1〉 = 〈n2〉 = 5 × 1011 cm−2 shows a significant difference
from the profiles for the other cases. This is due to the fact that
for 〈n1〉 = 〈n2〉 = 5 × 1011 cm−2, a uniform �, independent
of the disorder, is present that causes a shift of the average
value of P�.

Figures 26(a) and 26(b) show the results for Pni
for the

case of BLG-BLG. The results are qualitatively similar to the
results shown in Fig. 25(a) for the BLG layer of a BLG-SLG
structure, and the explanation of the main qualitative features
of Pn presented for that case apply also here. Figures 26(c)
and 26(d) show P� in the bottom and top layers, respectively.
In this case, for 〈n1〉 = 〈n2〉 = 5 × 1011 cm−2, especially for
the top layer [black dashed line in Fig. 25(d)], it is clear that
the average of P� is shifted to the right due to the fact that
when 〈n1〉 
= 0 and/or 〈n2〉 
= 0 a uniform band gap is present.

IV. ON THE METAL-INSULATOR TRANSITION IN
DOUBLE-LAYER GRAPHENE HETEROSTRUCTURES

The experiments of Ref. [64] have shown that in SLG-SLG
structures, a density-tuned metal-insulator transition (MIT)
can be induced in one of the SLG layers by tuning the doping
in the other layer. The fact that the MIT in one layer is tuned by
the doping in the other layer strongly suggests that long-range
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FIG. 22. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�〉, and (f) �(rms) as a function of d12 for the
BLG-SLG system, d = 1 nm, nimp = 3 × 1011 cm−2, and for four
different carrier density averages. The circle symbols correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

disorder, and in particular the electron-hole puddles that such
disorder induces, play a dominant role in the physics of the
MIT in SLG-SLG systems.

In Ref. [64] it was proposed that the insulating behavior
of a graphene layer in a SLG-SLG heterostructure is due
to strong Anderson localization made possible in the system
perhaps due to strong intervalley scattering. The “control”
graphene layer provides additional screening of the disorder
induced by charge impurities and therefore a reduction of
the amplitude of the electron-hole puddles in the studied
layer. In the scenario proposed in Ref. [64], the increase
of the doping in the control layer can reduce the strength
of the carrier density inhomogeneities in the studied layer,
increasing the resistivity [45] to allow the manifestation of the
strong Anderson localization. In Ref. [71], the tunability of
localization effects in the studied layer via the doping of the
control layer is attributed to the dependence of the scattering
rate due to charge impurities and the dephasing time in the
studied layer on the doping in the control layer.
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FIG. 23. (Color online) Plots of (a) n1 (rms), (b) n2 (rms), (c) V
(1)

sc (rms),

(d) V
(2)

sc (rms), (e) 〈�(1)〉, (f) 〈�(2)〉, (g) �
(1)
(rms), and �

(2)
(rms) as a function

d12 for the BLG-BLG system, d = 1 nm, nimp = 3 × 1011 cm−2,
and for four different carrier density averages. The circle symbols
correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the star symbols
correspond to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

Reference [72] proposed a completely different scenario
to interpret the results of Ref. [64]. In this scenario, the
dramatic increase of the resistivity, close to the CNP, in the
studied layer, as a function of doping in the control layer
is not due to Anderson localization, but to the fact that, as
the amplitude of the disorder-induced electron-hole puddles
decreases, the resistivity at the CNP diverges since in SLG
the density of states vanishes at the CNP. One of the key
observations of Ref. [72] is that, contrary to metals, in systems
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FIG. 24. (Color online) Plots of the carrier density probability
distribution (a) Pn1 and (b) Pn2 , for the SLG-SLG system, d = 1 nm,
and nimp = 3 × 1011 cm−2. The solid line corresponds to 〈n1〉 =
0 cm−2 and 〈n2〉 = 0 cm−2, the dotted line corresponds to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the line-dotted curve corresponds
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the dashed line
corresponds to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

such as graphene, at low dopings, higher mobility samples
exhibit higher resistivity. This agrees with the experimental
results of Ref. [64] that show that of the two graphene layers
forming the heterostructure, the one with the higher mobility
is the one exhibiting the highest resistivity at low dopings.

We note that the contrasting interpretations offered in
Refs. [64,72] for the experimental observations in Ref. [64]
both depend crucially on the screening properties of the
double-SLG system, in particular, the suppression of the
impurity-induced puddles in the studied layer due to
the screening induced by the control layer, as noted already
in Ref. [71] using a perturbative analytical approach of
double-SLG screening. Since our current work is precisely
on the nonperturbative screening properties of double-layer
graphene system, we are in a good position to shed light on
the experimental situation studied in Ref. [64]. Our results
show that the two graphene layers forming the SLG-SLG
heterostructure have in general very different disordered
ground states. This is exemplified by Figs. 27 and 28. Figure 27
shows n(rms) and Vsc (rms) at the CNP in layer “i” as a function
of the doping in the other layer, layer ī. We see that the effect of
the doping in the control layer is very different if the studied
layer is the top (2) or the bottom (1). In other words, the
screening properties of the double-SLG heterostructure are
highly asymmetric, as already noted in Ref. [71] using a simple
analysis, with the screening of the bottom layer by the top layer
being very different quantitatively from the screening of the top
layer by the bottom layer. This is due to the fact that the charge
impurities are not distributed symmetrically, in particular, we
assumed that most of the charge impurities are close to the
surface of the SiO2 since hBN is much cleaner than SiO2 in
terms of impurity disorder (see Fig. 1). The main qualitative
feature that we want to emphasize is that the higher the disorder
potential Vsc (rms), the higher is n(rms) and therefore the lower
is the resistivity, in contrast to normal metals for which an
increase of disorder corresponds to a resistivity increase. The
results of Fig. 27 support the scenario presented in Ref. [72]
provided our model for the gapless asymmetric double-SLG
heterostructure applies to the experimental situation.

FIG. 25. (Color online) Plots of the carrier density probability
distribution (a) Pn1 and (b) Pn2 , and plot of the gap probability
distribution (c) P� for the BLG-SLG system, d = 1 nm, and nimp =
3 × 1011 cm−2. The solid line corresponds to 〈n1〉 = 0 cm−2 and
〈n2〉 = 0 cm−2, the dotted line corresponds to 〈n1〉 = 5 × 1011 cm−2

and 〈n2〉 = 0 cm−2, the line-dotted curve corresponds to 〈n1〉 =
0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the dashed line corresponds
to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

Figure 28 shows n(rms) and Vsc (rms) in the bottom (top) layer
at the CNP as function of the doping in the top (bottom) layer
for the case in which the graphene spectrum has a gap equal
to 20 meV arising from the explicit presence of hBN substrate
which might break the SLG sublattice symmetry as discussed
in Sec. II and as described by Eq. (2). Qualitatively, the results
are similar to those shown in Fig. 27: the layer with strongest
disorder has the highest n(rms) and therefore is expected to be
more metallic than the cleaner layer.

For SLG-SLG heterostructures for which the graphene
spectrum has gap �, it is interesting to consider impurity
densities such that Vsc (rms) � �. In this situation, we can
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FIG. 26. (Color online) Plots of the carrier density probability
distribution (a) Pn1 and (b) Pn2 , and plots of the gap probability
distributions (c) P�(1) and (d) P�(2) for the BLG-BLG system, d =
1 nm, and nimp = 3 × 1011 cm−2. The solid line corresponds to 〈n1〉 =
0 cm−2 and 〈n2〉 = 0 cm−2, the dotted line corresponds to 〈n1〉 =
5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the line-dotted curve corresponds
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2, and the dashed line
corresponds to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 5 × 1011 cm−2.

have ground-state configurations for which the majority of
the studied layer is covered by insulating regions. Under these
conditions, the layer is expected to behave as a (bad) insula-
tor [62]. It is therefore interesting to see how the fraction of the
sample AI covered by insulating region in the studied layer at
the CNP depends on the doping in the control layer for impurity
densities such that Vsc (rms) ∼ �. This is shown in Fig. 29. As
the doping in the control layer increases, the screened disorder
in the studied layer decreases [Figs. 29(c) and 29(d)]. As a
consequence, n(rms), i.e. the amplitude of the carrier density
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FIG. 27. (Color online) Plots of (a) n(rms) and (b) Vsc (rms) at the
CNP in layer “i” as a function of the doping in the other layer 〈nī〉,
for d = 1 nm, d12 = 1 nm, and nimp = 3 × 1011 cm−2, for the gapless
SLG-SLG heterostructure. The squares correspond to the bottom SLG
layer and the circles correspond to the top SLG layer.
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FIG. 28. (Color online) Plots of (a) n(rms) and (b) Vsc (rms) at the
CN in layer “i” as a function of the doping in the other layer 〈nī〉,
for d = 1 nm, d12 = 1 nm, and nimp = 3 × 1011 cm−2, for the gapped
SLG-SLG heterostructure. The graphene spectrum has a gap equal
to 20 meV. The squares correspond to the bottom SLG layer and the
circles correspond to the top SLG layer.

inhomogeneities also decreases [Figs. 29(a) and 29(b)], so that
in more regions of the studied layer the effective local Fermi
level falls within the band gap. We then see that [Figs. 29(e)
and 29(f)] as the doping in the control layer increases, AI

increases and, above a threshold, reaches 50%. For dopings in
the control layer higher than this threshold value there will not
be a percolating path and the studied layer is expected to exhibit
an insulating behavior. The results of Fig. 29 therefore suggest
a third plausible scenario to explain the experimental results
of Ref. [64]: in the presence of a band gap in the graphene
spectrum [9,55], the doping in the control layer, by reducing
the strength of the disorder in the studied layer, can drive it into
a ground state in which more than half of the area is insulating
and therefore into an insulating state. This scenario can be
considered a generalization to the case when a finite band gap is
present of the scenario presented in Ref. [72]. In this scenario,
where the interplay between the SLG band gap introduced by
hBN and the disorder screening by the double-SLG structure
dominates transport properties in the system, there is a density-
tuned effective metal-insulator transition from a gapped insu-
lator to an effective metal due to the percolation transition. This
is akin to the situation in gapped BLG [62] where the opening
of the single-particle gap has a different physical origin.

One important aspect of the results of Fig. 29 is that, as in
the experiment, for the layer with the lower effective disorder
(higher mobility), in our case the top layer, the threshold value
of the doping in the control layer that drives it to be insulating
is lower than for the more disordered layer (lower mobility).
The values of nimp and d used to obtain the results of Fig. 29
using the effective medium theory valid for inhomogeneous
graphene ground states [43] give values of the mobility that
are of the same order, 105 cm2/V s, as observed in Ref. [64].
It is therefore interesting to notice that for these values of nimp

we find threshold values for the doping in the control layer
that are very close to the ones (∼3 × 1011cm−2) observed in
Ref. [64]. Thus, it appears that the presence of an SLG gap
coupled with the effective screening of the disorder in the
studied layer by the tuning of the density in the control layer
may very well be the physics dominating the observations in
Ref. [64] although more experimental work will be necessary
to clarify the situation.
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FIG. 29. (Color online) Plots of (a) n1(rms), (c) V
(1)

sc(rms), and (e) A(1)
I

as a function of 〈n2〉, at CN in the bottom layer, and plots of (b) n2(rms),
(d) V

(2)
sc(rms), and (f) A(2)

I as a function of 〈n1〉 at CN in the top layer, all
for d = 5 nm, d12 = 1 nm, and for different impurity strengths. The
circles correspond to nimp = 1.5 × 1011 cm−2, the squares correspond
to nimp = 1.75 × 1011 cm−2, the diamonds to nimp = 2 × 1011 cm−2,
and the pentagons to nimp = 2.5 × 1011 cm−2.

The main difference between our results and the results of
Ref. [64] is that in Ref. [64] the top layer has a higher effective
disorder, lower mobility, than the bottom layer whereas our
results show that the top layer always has a lower effective
disorder than the bottom layer, a consequence of the fact
that we assumed the charge impurities to be concentrated
on the surface of SiO2 , below the bottom layer. In our
scenario for the MIT, this discrepancy would be resolved by
assuming that in the experiment of Ref. [64] the number of
charge impurities closer to the top layer is higher than in
the bottom layer, perhaps due to the fabrication process or to
impurities adsorbed by the open surface of the top layer. Future
experimental work with better control over the spatial location
and magnitude of the impurity disorder should be able to
resolve this issue completely and differentiate among the three
distinct interpretations (i.e., Anderson localization, intrinsic
thermal transport in clean graphene near the Dirac point,
and a gap-induced metal-to-insulator transition as proposed

in Refs. [64,72], and in the current work, respectively) of the
experimental observations in Ref. [64].

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied the effect of long-range
disorder on the carrier distribution density in graphene-based
heterostructures. In particular, we have considered the case
in which the main source of long-range disorder are charge
impurities located close to the surface of the substrate. We have
considered in detail three graphene-based heterostructures:
(i) SLG-SLG heterostructures formed by two sheets of single-
layer graphene separated by a dielectric film; (ii) BLG-SLG
heterostructures formed by one sheet of bilayer graphene and
one sheet of single-layer graphene separated by a dielectric
film; (iii) BLG-BLG heterostructures formed by two sheets of
bilayer graphene separated by a dielectric film.

Our results show that, as for isolated graphenic layers, the
presence of a long-range disorder potential created by charge
impurities induces long-range carrier density inhomogeneities
and, in particular, these inhomogeneities break up the carrier
density landscape into electron-hole puddles at the charge
neutrality point. However, we find that the strength of these
inhomogeneities, and of the screened disorder potential, is in
general much lower in the top layer due to the screening of
the disorder by the bottom layer, the one closer to the charge
impurities. This is expected, but our results are the first to
quantify such an effect for a large range of experimentally
relevant conditions. In particular, our results show that in BLG-
SLG heterostructures the strength of the screened disorder in
the SLG sheet is much lower than in the top SLG sheet of a
SLG-SLG heterostructure. This is due to the fact that at low
energies, for most experimentally relevant conditions, BLG
has a higher density of states than SLG and therefore is much
more efficient in screening the top layer from the disorder. This
also suggests that a very effective way to reduce the effect of
charge impurities in SLG, or BLG, would be to reduce the
thickness of the dielectric between the graphenic layer and the
metallic back gate.

One difficulty to obtain an accurate characterization, in the
presence of charge impurities, of the carrier density profile of
heterostructures comprising BLG is the fact that the impurities,
and the carriers in the nearby graphenic layers and metal gates,
create an electric field with a component perpendicular to
BLG that induces the opening of band gap (�) in BLG. As
a consequence, for heterostructures in which BLG is present,
the carrier density profiles and the BLG band gap have to be
calculated self-consistently. Our results show that in general
the average band gap � is not negligible. For the set of
parameters that we have used, we find that the local value
of � can be of the order of 50 meV, the average 〈�〉 is of the
order of 10–15 meV, and that for most of the cases the root
mean square of �, 〈�rms〉, is of the order of 〈�〉, indicating that
the inhomogeneities in the profile of �(r) are very strong. We
expect these results to be very important to interpret transport
measurements in BLG-based heterostructures.

We have also calculated the correlation (C12) between
the density profile in the bottom layer and the one in
the top layer. We find that for all the heterostructures and
conditions considered, the two inhomogeneous density profiles

035406-18



GROUND STATE OF GRAPHENE HETEROSTRUCTURES IN . . . PHYSICAL REVIEW B 90, 035406 (2014)

are correlated, meaning that C12 is positive and different from
zero. This is due to the fact that we assumed that the dominant
source of long-range disorder are charge impurities placed
close to the bottom layer of the heterostructure. Our results
are important because they provide a critical element for the
interpretation of the recent results on the drag resistivity in
SLG-SLG heterostructures [21,39,40].

Our results are also directly relevant to the recently
observed metal-insulator transition in graphene layers forming
a SLG-SLG heterostructure. In particular, our results show
that the transition from metallic to insulating in the studied
graphene layer of the SLG-SLG heterostructure, as a function
of the doping in the control layer, can be explained as
a percolationlike transition driven by the reduction of the
amplitude and size of the electron-hole puddles induced by
the additional screening of the impurity charges in the control
layer of the disorder potential.

In particular, we show that the possible presence of a
SLG gap, caused by the hBN substrate, could easily lead
to the observed metal-insulator transition in the system as
the charged disorder in the studied layer in suppressed due
to screening induced by the control layer through density
tuning.

The results presented are directly relevant to imaging
experiments, such as scanning tunneling microscopy experi-
ments, and for the interpretation of transport measurements. In
particular, the results for systems formed by BLG, by providing
both the strength of the band gap induced by the perpendicular
electric field generated self-consistently by the distribution of
charges in the heterostructure, and the strength of the screened
disorder potential, allow us to identify the parameter regimes
where the BLG sheet is expected to behave as a bad metal or
as a bad insulator [62]. Our results are also important to better
understand the conditions necessary for the establishment of
collective ground states that have been theoretically predicted
for SLG-SLG [24,73], BLG-SLG [28], and BLG-BLG [67]
heterostructures.
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