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Two-dimensional electronic transport on the surface of three-dimensional topological insulators
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We present a theoretical approach to describe the two-dimensional (2D) transport properties of the surfaces
of three-dimensional topological insulators (3DTIs) including disorder and phonon scattering effects. The
method that we present is able to take into account the effects of the strong disorder-induced carrier density
inhomogeneities that characterize the ground state of the surfaces of 3DTIs, especially at low doping, as recently
shown experimentally. Due to the inhomogeneous nature of the carrier density landscape, standard theoretical
techniques based on ensemble averaging over disorder assuming a spatially uniform average carrier density are
inadequate. Moreover the presence of strong spatial potential and density fluctuations greatly enhances the effect
of thermally activated processes on the transport properties. The theory presented is able to take into account
all the effects due to the disorder-induced inhomogeneities, momentum scattering by disorder, and the effect of
electron-phonon scattering processes. As a result the developed theory is able to accurately describe the transport
properties of the surfaces of 3DTIs both at zero and finite temperature.
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I. INTRODUCTION

In strong three-dimensional topological insulators (3DTIs)
the nontrivial topology of the bulk energy bands1–3 enforces
the essential existence of 2D metallic surface states that
can be well described at low energies as massless Dirac
fermions. The valence and conduction band of the surface
states touch at isolated points, the Dirac points, whereas
the bulk states are gapped. Angle-resolved photoemission
spectroscopy experiments have confirmed the existence of the
Dirac-like surface states in Bi1−xSbx ,4 Bi2Se3,5,6 Bi2Te3

7,8

and Sb2Te3.8 Electronically, the surface of a 3DTI is very
analogous to graphene9,10 in which the fermionic excitations
are also well described, at low energies, as massless Dirac
fermions. There are two fundamental differences between
graphene and the surfaces of 3DTIs: (i) In graphene the chiral
nature is due to the locking of the momentum direction with
the electron pseudospin, associated with the sublattice degree
of freedom, instead of the real spin as in the surface of strong
3DTIs; and (ii) in strong 3DTIs the number of Dirac points is
odd whereas in graphene it is even. These differences make
graphene and the surfaces of strong 3DTIs fundamentally
different. However, the fact that graphene and the surfaces
of strong 3DTIs are both two-dimensional electronic systems
and have a very similar band structure suggests that these two
systems might have similar charge-transport properties. As we
show in this work this is only partially correct.

Two important aspects of TI surface transport need to be
mentioned (in the context of our comprehensive theoretical
work to be presented in this paper) so as to avoid any confusion
about our goal and scope. First, 2DTI transport occurs on
the surface of 3DTI materials, and theoretically the bulk 3D
states should be insulating with no metallic contribution to
the conductivity. Experimentally, however, this situation of
2D metallic transport on a bulk 3D insulator has not yet been
achieved since the bulk, instead of being a band insulator,
seems to have a lot of free carriers which contribute (indeed,
often dominate) the measured conductivity.11 We completely
ignore the complications of the bulk conduction and the bulk

carriers in our theory, concentrating entirely on purely the 2D
surface conductivity (as a function of density and temperature)
assuming the bulk to be an insulator as the theory implies
it should be. Recent experimental advances in materials
preparation and thin film device fabrication have made it
possible to see the expected pure 2D surface conduction with
little contamination from the bulk states, and thus our work
is relevant to an increasing body of recent data.12–15 In any
case, the subject is interesting only because of the 2D metallic
surface topological states, and therefore, we focus entirely on
this issue. Second, the actual energy dispersion of the 3DTI
surface states appears to follow the linear Dirac-like spectrum
only at rather low energies, particularly for the hole states
(i.e., the valence band) with strong nonlinearity becoming
apparent at higher energies. This nonlinearity (e.g., a quadratic
correction to the linear dispersion) is nonuniversal and strongly
materials dependent, whereas the theoretical Dirac behavior
at low energies is universal (with different Fermi velocities
characterizing different TI materials). Because the focus of
our work is on the universal behavior arising from density
inhomogeneity (which is much more important at low Fermi
energies, i.e., low 2D densities), which should not depend
much on the details of the band structure at higher energies,
we ignore the higher energy parabolicity of the 2D surface
bands. We emphasize that these two approximations, neglect
of bulk conduction and surface band dispersion correction at
higher energy, imply that our theory should not be construed
as a quantitative theory for any particular TI material, but
as a qualitative guide for the universal features of 3DTI
surface transport behavior. Detailed quantitative comparison
between theory and experiments is further complicated by our
lack of knowledge of the precise parameters for TI systems
anyway (e.g., the Fermi velocity, the phonon parameters, the
nature of disorder, etc.), and therefore, our theory provides
the zeroth-order qualitative theory for 3DTI surface transport
which should apply to all TI materials.

The surfaces of the newly discovered strong 3DTIs are
of great fundamental interest16–19 and in addition have the
potential to be used in disruptive novel technologies such as
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topological quantum information processing.20–22 To be able
to use the surfaces of 3DTIs to study novel fundamental
phenomena and in novel technologies, it is essential to
understand their electron transport properties and in particular
to understand the main factors limiting their electron mobility.
Recently, experiments on thin films of strong 3DTIs,12–15 by
enhancing the surface-to-volume ratio,23 have been able to
greatly reduce the bulk contribution transport and obtain the
intrinsic 2D transport properties of the surfaces of strong
3DTIs. Previous theoretical works on the transport in the
surface of strong 3DTIs24,25 have used simplified models and
have mostly focused on the zero temperature limit.

In this work we present a comprehensive transport theory
for the surfaces of 3DTIs valid both at zero temperature and
at finite temperatures. As in graphene,26,27 one of the main
difficulties in developing a transport theory for the surfaces
of 3DTIs is the presence, especially at low doping, of strong
carrier density inhomogeneities28 induced by disorder. The
presence of strong spatial fluctuations makes the standard
theoretical approaches, which rely on the homogeneous nature
of the ground state, inadequate. Moreover, because of the
inhomogeneities, at finite temperatures the contribution of
thermally activated carriers to transport can be very important
and difficult to quantify. Thus, disorder-induced density inho-
mogeneity by itself could introduce considerable insulating-
like activated transport behavior in the nominally metallic
3DTI surface conduction. The transport theory that we present
takes into account both the effects of quenched disorder and
electron-phonon scattering processes. In particular our theory
is able to take into account the effects of the strong disorder-
induced inhomogeneities both at zero and finite temperature.

To characterize the inhomogeneous ground state we gen-
eralize to the case of 3DTIs’ surfaces the Thomas-Fermi-
Dirac theory (TFDT) first developed to study graphene.10,29

Combining the TFDT results and the Boltzmann theory we
develop and validate the effective medium theory (EMT)
to obtain the transport properties at zero temperature. We
then develop an effective two-fluid transport theory that we
validate at zero temperature by comparing its results to
the ones obtained using the EMT. The great advantage of
the two-fluid theory is that it allows us to readily obtain the
transport properties at finite temperature, including all the
temperature-dependent effects: electron-phonon scattering,
thermal activation, changes with temperature of the screening
properties, and thermal broadening of the Fermi surface.
Given the experimental evidence12,30 that in current 3DTIs
charged impurities are the dominant source of disorder, we
have applied the theory to the case in which the quenched
disorder is due to random charges placed in the vicinity of
the surface of the 3DTI. We provide both a detailed analytical
theory and comprehensive numerical results for the density
and temperature-dependent 3DTI surface transport properties
in the presence of density inhomogeneity, scattering by random
charged impurities, and phonon scattering.

In Sec. II we present the theoretical approach that we have
developed to describe the transport on the surfaces of 3DTIs
taking into account both quenched disorder and electron-
phonon scattering processes, in particular when the quenched
disorder is due to charged impurities. In Sec. III A we present
our results for the characterization of the disorder-induced

carrier density inhomogeneities obtained using the TFDT. In
Sec. III B we present our results for the conductivity at zero
temperature, and finally in Sec. III C we present our results
for the conductivity at finite temperature. Section IV briefly
summarizes our findings and the differences between the 2D
transport properties of the surfaces of 3DTIs and single-layer
graphene.

II. THEORETICAL APPROACH

To study the electronic transport on the surface of strong
3DTIs we use the Boltzmann theory. From the Boltzmann the-
ory, within the “relaxation time approximation”, the electronic
conductivity σ is given by the following equation:

σ (n,T ) = e2

2

∫
dε D(ε)v2

F τtot(ε,T )
(

−∂f (ε)
∂ε

)
, (1)

where e is the electron charge, D(ε) the density of states at
energy ε, vF the Fermi velocity, f (ε) = 1/(1 + eβ(ε−µ)) the
Fermi-Dirac distribution, and τtot the total transport mean free
time due to the electron scattering off quenched disorder and
phonons. Assuming independent scattering from disorder and
phonons (we mention that this is not equivalent to assuming
the Matthiessen’s rule which assumes that the resistivity due
to independent mechanisms can be added and is invalid for our
system), we have

1
τtot

= 1
τdis

+ 1
τph

, (2)

where τdis is the transport mean free time due to electrons
scattering off quenched disorder and τph is the transport mean
free time due to electron-phonon scattering processes. One
thing that we must emphasize is that Eq. (1) is valid as long as
the system is homogeneous (i.e., spatial density fluctuations
effects are small enough so that the average density n is a
meaningful quantity, an approximation which would break
down for low n).

The energy-dependent scattering time τdis(ε) due to
quenched disorder is given by

h̄

τdis(εpk)
= 2πndis

∫
d2k′

(2π )2
|〈Vpk,pk′ 〉|2g(θkk′)

× [1 − cos θkk′]δ(εpk′ − εpk), (3)

where εpk = ph̄vF |k| is the energy of a quasiparticle with
p = ±1 and momentum k, ndis is the 2D density of impurities,
〈Vpk,pk′ 〉 is the matrix element of the scattering potential,
and g(θkk′) = [1 + cos θkk′]/2 is the TI chiral matrix element
factor arising from the wave-function overlap between states
with momentum k and momentum k′, with θkk′ the angle
between k and k′. In Eq. (3), to minimize the number of
parameters entering the theory we have assumed that the
impurities are randomly distributed in a 2D plane located at
an effective distance d from the surface of the 3DTI. It is
straightforward to include in the theory a more complex three-
dimensional distribution of quenched impurities, but given
the lack of experimental information about the distribution of
unintentional and unknown quenched impurity disorder in the
system, it is theoretically more meaningful to use a minimal
model with just two unknown parameters ndis and d, which
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can simulate essentially any realistic disorder distribution in
an approximate manner; we note that d = 0 implies that the
charged impurities are simply located on the surface of the
3DTI.

There is considerable evidence12 that in 3DTIs random
unintentional charged impurities are the dominant source of
disorder scattering. We therefore assume that the quenched
disordered potential VD is due to charged impurities. For
charged impurities, taking into account screening by the
2D surface carriers themselves in addition to the screen-
ing by the background lattice, we have ndis|〈Vpk,pk′ 〉|2 =
nimp|vi(q)/ε(q,T )|2, where vi(q) = 2πe2/(κq) is the Fourier
transform of the 2D Coulomb potential in a medium with
an effective background static lattice dielectric constant κ ,
and ε(q,T ) is the 2D static RPA dielectric function at finite
temperature.31 The reported values of κ for Bi2Se3 range from
30, Ref. 28, to ≈ 55, Ref. 11.

In Bi2Se3 the lowest optical phonon energy has been
measured to be 8.94 meV ≈ 100 K32,33 and therefore the
optical phonons provide a substantial source of scattering only
at high temperature (!250 K).34 Because we are interested
primarily only in the transport properties at temperatures
below 250 K, in the remainder we neglect the contribution
to the resistivity due to optical phonons and consider only the
contribution due to acoustic phonons.

Following Refs. 35–37 we have that, considering only
longitudinal acoustic phonons, the scattering time τph is given
by

1
τph(ε)

=
∑

k′

(1 − cos θkk′)Wkk′
1 − f (ε′)
1 − f (ε)

, (4)

where

Wkk′ = 2π

h̄

∑

q

|C(q)|2

× [Nqδ(ε − ε′ + ωq) + (Nq + 1)δ(ε − ε′ − ωq)],

(5)

is the transition probability from the state with momentum k to
the state with momentum k′. In Eq. (5) q = k − k′, C(q) is the
matrix element for scattering by acoustic phonon, ωq = vlq
is the acoustic phonon frequency with vl the phonon velocity,
and Nq = 1/(exp(βωq) − 1) is the phonon occupation num-
ber. The matrix element C(q) for the deformation potential
electron-phonon coupling is given by

|C(q)|2 = D2h̄q

2Aρmvl

[
1 −

( q

2k

)2
]

, (6)

where D is the deformation potential coupling constant, A is
the area of the sample, and ρm is the 2D mass density of one
quintuple layer (around 1 nm thick) of Bi2Se3, given that the
length scale over which the 2D surface states decay into the
bulk is approximately 1 nm.38

Using Eqs. (1)–(6) we can calculate the conductivity,
taking into account scattering events due to both quenched
disorder and phonons as long as the system is homogeneous.
However, especially close to the Dirac point, the random
charged impurity-induced disorder potential causes the carrier
density landscape to become strongly inhomogeneous, a fact

that has been observed experimentally in TIs28 and previously
in graphene.26,27 To develop a theory in the presence of
strong inhomogeneities it is first necessary to characterize
them. To do this we use the Thomas-Fermi-Dirac theory
(TFDT) first introduced in Ref. 29. In the TFDT, similarly
to the density functional theory (DFT), the energy of the
system is given by a functional of the density profile n(r).
The great advantage of a functional formalism is that it is
not perturbative with respect to the spatial fluctuations of the
carrier density and therefore can take into account nonlinear
screening effects that dominate close to the Dirac point.
TFDT is just well suited to describe the situation with large
disorder-induced spatial density inhomogeneity as in the low
carrier density case, whereas in the high-density situation,
it simply gives the homogeneous density result with small
fluctuations around the average density. In the TFDT, contrary
to DFT, also the kinetic energy term is replaced by a density
functional. This simplification makes the TFDT very efficient
computationally and therefore able to obtain disorder-averaged
quantities, a task that cannot be accomplished using DFT.
The simplification also makes the TFDT in general less
accurate than DFT,39 however as long as the characteristic
length scale over which the density varies is larger than the
local Fermi wavelength λF , i.e., |∇n/n|−1 ( λF ,29,40,41 the
TFDT returns reliable results.29,42,43 Our results show that as
in graphene29 the condition |∇n/n|−1 ( λF is satisfied for
the surface of 3DTIs in typical experimental conditions. Close
to the charge neutrality point (CNP) the density inside the
electron-hole puddles is always different from zero (so that λF

is always finite) and of the order of nrms. Our results show that
nrms ∼ nimp and therefore the TFDT is also valid at the CNP
as long as nimp is not too small. The great advantage of TFDT
over DFT (to which TFDT is an approximation, as it uses
the noninteracting kinetic energy functional) is that its relative
numerical and computational ease enables one to use it for the
calculation of transport properties using the computed ground
state inhomogeneous spatial density profile, which would be
completely computationally impossible for DFT to do.

Using the TFDT we can characterize completely the
carrier density profile in the presence of a disorder potential.
We can obtain the typical length scale LD and root-mean-
square fluctuation nrms of the disorder-induced carrier density
inhomogeneities. Using the Boltzmann theory we obtain the
relation between the mean free path and the doping, .(n) =
vF τtot(n), valid in the homogeneous limit. In the limit in
which .(nrms) * LD the number of scattering events inside a
single homogeneous region, or puddle, of the inhomogeneous
landscape is large enough that the Boltzmann theory is
valid locally. In addition, due to the Klein tunneling, as in
graphene,44–50 the resistance due to the boundaries between
the puddles can be neglected in comparison to the resistance
arising from scattering events inside the puddles.40 Under these
conditions, due to the random distribution of the puddles, 2D
transport on the surface of a 3DTI can be described by the
effective medium theory (EMT).10,40,51–54 In the EMT, which
is extensively used in science and engineering to quantitatively
describe properties of highly inhomogeneous systems, the
conductivity of the inhomogeneous system is obtained as the
conductivity σEMT of an equivalent homogeneous effective
medium by averaging over disorder realizations the local
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values σ (n(r)) given by the Boltzmann theory. The resulting
implicit equation for σEMT is

∫
dn

σ (n) − σEMT

σ (n) + σEMT

P [n] = 0 (7)

where P [n] is the disorder-averaged carrier density probability
distribution that we obtain using the TFDT. A solution of the
implicit EMT integral equation defined by Eq. (7) provides
the effective conductivity of the inhomogeneous system. In
graphene the TFDT + EMT method has been shown to give
results in remarkable agreement with experiments10 even in
the highly inhomogeneous situation very close to the Dirac
point and with full quantum transport analysis.50,55

A simplified approach that allows us to make further analyt-
ical progress and obtain results in qualitative agreement with
the numerical TFDT-EMT approach is the two-fluid model.56

In this approach the inhomogeneous state characterized by the
presence of electron-hole puddles is approximated as a system
consisting of the “electron fluid” formed by the electrons and
the “hole-fluid” formed by the holes, with conductivities σe and
σh respectively. Let p be the fraction of the system occupied
by the electron gas, and consequently (1 − p) the fraction
occupied by the hole gas. Adapting Eq. (7) to the simple case
of only two components for the inhomogeneous system, we
obtain the effective conductivity:56–58

σt =
(

p − 1
2

)[

(σe − σh) +

√

(σe − σh)2 + 4σeσh

(2p − 1)2

]

.

(8)

One advantage of the two-fluid model is that it allows us
to easily take into account the effect of activation processes
that at finite temperature, especially close to the Dirac point,
give a substantial contribution to the conductivity and in
particular qualitatively modify its temperature dependence.
Carrier activation becomes operational when local potential
fluctuations due to weak screening at low density lead to carrier
confinement or localization in puddles, and global transport
involves thermal activation of carriers over the local potential
hills and barriers. The activation process, which obviously
becomes more important as the inhomogeneity becomes more
important at lower carrier density, cannot be captured by the
simple Boltzmann theory of Eq. (1) or, for that matter, by any
ensemble-averaged transport theory. To take into account the
presence of activation processes, σe and σh can be written as a
sum of two terms:56

σe = σ (na)
e + σ

(a)
h ,

σh = σ
(na)
h + σ (a)

e ,

where σ (na)
e , σ

(na)
h are the disorder-averaged conductivities

obtained using the Boltzmann theory and σ (a)
e , σ

(a)
h are the

contributions to the conductivity from activation processes.
σ (na)

e and (σ (na)
h ) can be obtained by multiplying Eq. (1)

by the ratio ne/n0 (nh/n0).56 Here, ne =
∫ ∞
−∞ De(ε)f (ε)dε

(nh =
∫ ∞
−∞ Dh(ε)[1 − f (ε)]dε) denotes the effective elec-

tron (hole) density of inhomogeneous systems, while n0 =∫ ∞
0

gsgvε
2π(h̄vF )2 f (ε)dε is the electron density of homogeneous

systems. The densities of states De(ε) [Dh(ε)] after disorder

averaging are given by56

De(ε) =
∫ ε

−∞

gsgv(ε − V )
2π (h̄vF )2

P (V )dV,

Dh(ε) =
∫ ∞

ε

gsgv(V − ε)
2π (h̄vF )2

P (V )dV,

where P (V ) is the probability distribution of the screened
disorder potential. We want to mention that we use the
density of states for homogeneous systems in Eq. (1), i.e.,
D(ε) = gsgvε

2π(h̄vF )2 , to avoid double counting since the density
inhomogeneity effects have already been considered through
the variation of effective carrier density. At higher doping,
both ne/n0 and the fraction of area occupied by electrons,
denoted as p =

∫ EF

−∞ P (V )dV , approach unity while nh/n0
approaches zero. Note, however, that the ratio ne/n0 (nh/n0)
being temperature dependent is generally not equal to p
[(1 − p)]. Given that the two-fluid model is an effective model,
the use of the exact P (V ) does not guarantee an increase of its
accuracy. It is more sensible to simply assume P (V ) to have
an effective Gaussian profile

P (V ) = 1√
2πs2

exp(−V 2/2s2) (9)

with effective variance s2. The TFDT results, presented in
Sec. III, show that the root mean square s of the screened
disorder potential depends weakly on the doping or carrier
density. In Eq. (9) we can then neglect the dependence of
s on the average doping and use the value obtained for the
Dirac point. We consider two ways to estimate the value of
the effective s at the Dirac point that enters the Gaussian
approximation for P (V ): (i) the self-consistent approximation
introduced in Ref. 59; (ii) the quasi-TFDT approximation in
which s is fixed using the relation between nrms and s in the
Thomas-Fermi approximation with the value of nrms obtained
from the full TFDT calculation.

In general P (V ) cannot be obtained analytically but it is
possible to obtain an explicit expression for its moments.60

For the second moment 〈(δV )2〉 taking into account screening
effects, within the random-phase approximation (RPA) for the
surface states of a 3DTI with total degeneracy g = gsgv = 1
we have60

〈(δV )2〉 = 2πnimp

(
e2

κ

)2

C0(rs,a = kF d), (10)

where

C0(rs,a) = −1 + e−4ars

2 + rs

+ 64E1[4a]
(8 + πrs)2

+ e2rsa(1 + 2rsa)(E1[2rsa] − E1[4a + 2rsa]),

(11)

rs ≡ e2/(h̄vF κ), and E1[z] =
∫ ∞
z

t−1e−t dt is the exponential
integral function. Assuming P (V ) to be a Gaussian with
variance s2 we have s2 = 〈(δV )2〉. The difficulty arises from
the fact that the function C0 depends on the density via the
Fermi wave vector kF that, in the presence of disorder, at the
Dirac point cannot, because of fluctuations, be taken to be
simply zero. In the self-consistent approximation one assumes
that at the Dirac point the system can be approximated by a
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homogeneous system having an effective carrier density n̂ =
(g/4π )k̂2

F such that Ê2
F = s2, i.e., h̄2v2

F k2
F = s2. Using this

relation and Eq. (10) we obtain the following self-consistent
equation for s:

s2 = 2πnimp

(
e2

κ

)2

C0(rs,a = sd/(h̄vF )). (12)

By solving Eq. (12) we obtain the value of s within the
self-consistent approximation. In the self-consistent + two-
fluid model the variance of the effective Gaussian probability
distribution P (V ) is obtained using Eq. (12).

By minimizing the Thomas-Fermi energy functional, at the
Dirac point, for g = 1, we obtain the following equation:

2h̄vF sgn(n)
(

π |n(r)|
gsgv

)1/2

− V (r) = 0, (13)

where the first term is due to the kinetic energy and V (r) is
the local value of the screened disorder potential. By disorder
averaging (13) and assuming P (V ) to be a Gaussian with
variance s2 we obtain

nrms = gsgv

2π (h̄vF )2

√
3

4
s2. (14)

In the quasi-TFDT approximation the value of s used in the
two-fluid model is set using Eq. (14) and the value of nrms is
obtained from the TFDT at the Dirac point.

Locally, the activated conductivities σ (a)
e and σ

(a)
h are given

by

σ (a)
e (V (r)) = σ (na)

e exp[β(EF − V (r))], (15)

σ
(a)
h (V (r)) = σ

(na)
h exp[β(V (r) − EF )]. (16)

where V (r) is the local value of the screened disorder potential.
By disorder averaging these expressions and summing the
contribution of the nonactivated conductivities we finally
find56

σe = 1
p

∫ EF

−∞

(
σ (na)

e + σ
(a)
h

)
P (V )dV,

= σ (na)
e + σ

(na)
h

2p
e

β2s2

2 −βEF erfc
(

− EF√
2s

+ βs√
2

)
,

(17)

σh = 1
(1 − p)

∫ ∞

EF

(
σ

(na)
h + σ (a)

e

)
P (V )dV

= σ
(na)
h + σ (na)

e

2(1 − p)
e

β2s2

2 +βEF erfc
(

EF√
2s

+ βs√
2

)
,

(18)

where the fraction of the system occupied by electrons is
given by p =

∫ EF

−∞ P (V )dV with Fermi energy EF . These
are the expressions of the electron and hole conductivities
that enter the two-fluid model whose total conductivity σt

is then obtained by using Eq. (8). We notice that in the
expressions (17) and (18) several temperature effects are taken
into account: (i) the effect due to electron-phonon scattering
processes that affect the total scattering time and therefore

the values of σ (na)
e and σ

(na)
h ; (ii) the temperature dependence

of the dielectric functions that enters in the calculation of
τdis and that affect the values of σ (na)

e and σ
(na)
h ; (iii) the

thermal broadening of the Fermi surface; and (iv) the presence
of thermal activation. The ability to capture all these effects
makes the two-fluid model a very useful tool to study the
transport properties of disordered TIs.

It is useful to explicitly write down the expression for the
conductivity σCNP at the charged neutrality point obtained
using the two-fluid model. At the CNP we have 50% of the
sample being covered by electron puddles and 50% by hole
puddles so that p = 1 − p = 0.5. In this case σt = σe = σh.
At zero temperature, there are no thermal activation effects
and we find56

σCNP = σ
(na)
CNP = 1

8G[rs/2]
e2

h

gsgv

2π (h̄vF )2

s2

4nimp
, (19)

where

G[x]
x2

= π

4
+ 3x − 3πx2

2
+ x(3x2 − 2) arccos[1/x]√

x2 − 1
. (20)

Using Eq. (14) we can rewrite (19) in terms of nrms:

σ
(na)
CNP = 1

8G[rs/2]
e2

h

nrms√
3nimp

(21)

In the following sections we present our results and in particu-
lar, when possible, a comparison between the three approaches
introduced: TFDT + EMT approach, quasi-TFDT + two-fluid
model, and self-consistent + two-fluid model.

III. RESULTS

A. TFDT results

In this section we present the results for the carrier density
distribution. These results will then be used to calculate the
conductivity within the EMT and the two-fluid models.

In Fig. 1, we show the carrier density profile calculated
using the TFDT for a single disorder realization with charged
impurity density nimp = 7.5 × 1013 cm−2 and two different
values for the impurity distances, d = 0.1 nm and d = 0.2 nm
in panels (a) and (b) respectively. Unless otherwise specified,
we use the background dielectric constant κ = 50 for Bi2Se3
and the Fermi velocity vF = 6.4 × 105 m/s.12,61

FIG. 1. (Color online) Color plots of carrier density distribution
n(r) at the Dirac point for nimp = 7.5 × 1013 cm−2 and κ = 50. The
color scale is in units of 1013 cm−2. (a) The impurity distance d =
0.1 nm. (b) The impurity distance d = 0.2 nm.
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FIG. 2. (Color online) Density probability distribution at the
Dirac point for nimp = 7.5 × 1013 cm−2, d = 0.2 nm, and κ = 50.
The black line shows the TFDT result. The blue line is the fit
P = be−|n/a| with a = 0.7 × 1012 cm−2 and b = 0.5309. The red
line is the Gaussian fit to the tails of P (n), P = be−x2/a2

with
a = 2.5 × 1012 cm−2 and b = .125. The green line is the Gaussian fit
to the center of P (n), P = be−x2/a2

with a = 0.25 × 1012 cm−2 and
b = 1.0.

Figure 1 conveys the nature of the carrier density landscape
on the surface of disordered 3DTIs as also shown recently
by direct imaging experiments.28 To be able to make a quan-
titative comparison with the experiments, and calculate the
conductivity for large samples, using the TFDT we calculate
the disordered averaged density probability distribution P (n)
for different parameter values such as doping, d and κ . As
in graphene29 we find that P (n) obtained using the TFDT
is bimodal, especially for finite values of the average carrier
density, and so it is not well fitted by any single curve. To
exemplify this finding Fig. 2 shows P (n) at the CNP obtained
using the TFDT and possible fitting curves. It is obvious from
the figure that a reasonable fit can be obtained only by using
two different Gaussian curves, one to fit the very high peak
centered at n = 0 and one to fit the long tails of the distribution.

The knowledge of P (n) allows the calculation of all the
statistical properties that characterize the strongly inhomoge-
neous ground state of the surface of a 3DTI in the presence
of disorder. The quantity that better quantifies the strength of
the carrier density inhomogeneities is nrms, shown in Fig. 3
as a function of the average carrier density 〈n〉 for different
values of nimp. As expected larger values of nimp induce larger
value of nrms. The interesting result is that nrms also increases
with 〈n〉 but the dimensionless ratio decreases with increasing
average density. This is due to the fact that as 〈n〉 increases the
range of values that n can take locally also increases, inducing
larger values of nrms, but the dimensionless ratio of the density
fluctuation to the average density decreases with increasing
density.

Figure 4(a) shows the TFDT results for the root mean square
of the screened disorder potential sT FDT as a function 〈n〉
for different values of nimp. As 〈n〉 increases the screening
becomes more effective and therefore sT FDT decreases. How-
ever, we see that the dependence of sT FDT on 〈n〉 is fairly
weak, for all values of nimp considered. This fact justifies the
assumption in the quasi-TFDT model to assume the variance
of the effective distribution P (V ) to be independent of 〈n〉.
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FIG. 3. (Color online) Root mean square of the density fluctua-
tions nrms as a function of the average density for different values of
nimp with d = 0.1 nm and κ = 50.

Figure 4(b) shows the scaling of the ratio sT FDT /
√

nimp versus
〈n〉. We can see that the ratio changes by less than 10% over
a wide range of experimentally relevant values of the average
density. This result is more evidence of the weak dependence
of sT FDT on 〈n〉: to the zeroth order, the inhomogeneity and
fluctuations are determined by the impurity distribution nimp
and d (as well as the background dielectric constant κ).

The dependence of nrms and sT FDT on κ and d is very
strong as shown by Figs. 5 and 6. From Fig. 5 we see that both
nrms and sT FDT decrease rapidly as κ increases. Increasing the
average distance of the charged impurities from the surface
of the 3DTI also strongly reduces the amplitude of the spatial
inhomogeneities and therefore of nrms and sT FDT as shown in
Fig. 6.

We now present a comparison of the TFDT results with
the ones obtained using the self-consistent and the quasi-
TFDT approaches, methods in which P (V ) is assumed to be
Gaussian. Figure 7 shows the scaling of the screened disorder
rms obtained using the self-consistent approach (ssc) versus
doping and κ . These results, analogously to the TFDT results,
show that s depends very weakly on 〈n〉 and quite strongly
on κ .
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FIG. 4. (Color online) (a) Root mean square of the screened
disorder potential sT FDT as a function of average carrier density for
different values of nimp with d = 0.1 nm and κ = 50 using TFDT.
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mean square of the screened disorder potential sT FDT as a function
of substrate dielectric constant κ . The solid lines are for nimp = 4 ×
1013 cm−2 and the dashed lines are for nimp = 11.0 × 1013 cm−2.

Figure 8 shows the comparison for the value of s at the CNP
as a function of d obtained using the three different methods:
TFDT, quasi-TFDT, and self-consistent. We see that the self-
consistent approach in general returns values of s larger than
the ones obtained using the TFDT. We should emphasize that
s obtained using the quasi-TFDT method is only an effective
quantity that is used to calculate the transport properties within
the two-fluid model.

B. Transport at zero temperature

Using the TFDT and the EMT we can calculate the 2D
conductivity on the surface of a 3DTI. Figure 9 shows σ as a
function of doping, i.e., average density, for several values of
nimp and fixed d = 0.1 nm and κ = 50. As in graphene10 the
TFDT + EMT results recover the behavior of σ (n) observed
experimentally:12 the linear scaling of σ (n) at large doping,
the finite value (σmin) of σ for n = 0, and the crossover
regime for intermediate values of n. More importantly, the
theory returns values of σmin = (2 − 4)e2/h (depending on
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FIG. 6. (Color online) (a) and (b) nrms at the Dirac point versus the
distance d of the charged impurity to the TI surface calculated within
TFDT for nimp = 4.0 × 1013 cm−2. The solid, dashed, and dot-dashed
lines correspond to chemical potential EF = 0, 40, and 100 meV,
respectively. (c), (d) The corresponding sT FDT results versus d . (a),
(c) The effective background dielectric constant κ = 5. (b), (d) The
effective background dielectric constant κ = 50.
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ssc as a function of substrate dielectric constant κ . The solid lines
are for nimp = 4 × 1013 cm−2 and the dashed lines are for nimp =
11.0 × 1013 cm−2 with d = 0.1 nm.

the sample properties) that agree with the ones observed in
experiments.12

Figure 10 shows the comparison for the dependence of σ
with respect to n obtained using the TFDT + EMT method
and the two-fluid approximations. From Fig. 10 we see that
for nimp " 4 × 1013 cm−2 and values of κ ! 50, the three
approaches give very similar results. For smaller values of κ
the three approaches give results that are qualitatively similar
but that differ quantitatively. The general conclusion is that
away from the CNP the three approaches agree quantitatively
for samples with mobility µ > 1000 cm2/V s. For very low
mobility highly disordered TI systems (with 2D surface
mobility lower than 1000 cm2/V s even at T = 0), we expect
the TFDT to provide the most quantitatively accurate results.
However, given that our main objective is to describe the
universal qualities of the transport arising from the presence of
inhomogeneities, and given the absence of accurate knowledge
of the impurity distribution, i.e., nimp and d in our model, for
the purposes of this work the three approaches appear to be
equivalent.

Close to the CNP the three transport approaches give
results that differ quantitatively, as shown in Figs. 11–13.
The self-consistent + two-fluid model for the parameter values
relevant for TIs gives values of σmin smaller than the ones
obtained using the TFDT + EMT method. In TIs the agreement
between the two methods close to the CNP is worse than in
graphene62 due to the fact that in TIs the density of charged
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FIG. 8. (Color online) Comparison of three methods for the
potential fluctuation s at the Dirac point versus the charged impurity
distance d to the TI surface for nimp = 4.0 × 1013 cm−2. The solid,
dashed, and dot-dashed lines correspond to the TFDT, quasi-TFDT,
and the self-consistent methods, respectively. (a) The effective
background dielectric constant κ = 5. (b) The effective background
dielectric constant κ = 50.
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impurities is larger than in typical graphene samples. It is
remarkable to see how, in agreement with experiments, the
three methods give the result that σmin depends very weakly
on nimp and κ , for experimentally relevant parameter values.
The weak dependence on nimp can be qualitatively understood
using the two-fluid model result for σmin Eq. (19) from which
we see that σmin is proportional to the ratio s2/nimp, and that
on the other hand s2 is proportional to nimp, Eq. (12). Within
the semiclassical approach the very weak dependence of
σmin on nimp and κ is due to the fact that an increase
(decrease) of nimp (κ) increases the strength of the disorder
potential that causes a decrease of the carriers mean free
path ., and an increase of the amplitude of the carrier
density inhomogeneities (i.e., the density of carriers in the
electron-hole puddles). The reduction of . and the increase
of nrms have opposite effects on σmin and they almost cancel
out.40,63

The dependence of σmin with respect to the average distance
d of the charged impurities from the TIs surface is appreciably
different for the three methods. The self-consistent + two-fluid
model returns a very weak dependence of σmin with respect to
d. This is due to the weak dependence with respect to d of
s2 obtained using the self-consistent approximation, Eq. (12).
On the other hand the value of s2 obtained using the TFDT is
quite sensitive to the value of d and as a consequence using
the TFDT + EMT and the quasi-TFDT + two-fluid models we
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FIG. 10. (Color online) Calculated conductivity as a function
of carrier density for different values of the substrate dielectric
constant with the impurity density nimp = 4.0 × 1013 cm−2, d =
0.1 nm. The solid, dashed, and dot-dashed lines are obtained by using
the TFDT-EMT method, self-consistent method, and quasi-TFDT
method, respectively.
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find that the dependence of σmin on d is not as weak as the one
given from the self-consistent + two-fluid model. All the three
approaches show that σmin decreases as a function of d. This
is due to the fact that as d increases, due to the weakening of
the disorder potential, the decrease of nrms is faster than the
increase of the mean free path.

C. Transport at finite temperature

In this section, using the two-fluid model, we present our
results for the conductivity in TIs at finite temperature. If
we neglect the contribution of activation processes in TIs,
the dominant contribution to the temperature dependence of
σ is due to electron-phonon scattering processes. Figure 14
shows the longitudinal acoustic phonon limited resistivity of
the Bi2Se3 surface as a function of temperature on a log-log
plot. To calculate the Bi2Se3 surface resistivity due to phonon
scattering37 we use D = 30 eV for the deformation potential
coupling constant, ρm . 7.68 × 10−7 g/cm−2 for the two
dimensional mass density, i.e., 1 quintuple layer mass density
of Bi2Se3, and vl = 2900 m/s is the velocity of the longitudinal
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FIG. 12. (Color online) The minimum conductivity σmin as
a function background dielectric constant κ for nimp = 4.0 ×
1013 cm−2, d = 0.1 nm. The dashed, solid, and dot-dashed lines
denote the results obtained using the quasi-TFDT, TFDT-EMT, and
the self-consistent method, respectively.
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acoustic phonon mode.37 The inset of Fig. 14 shows the
logarithmic derivatives of the temperature-dependent resis-
tivity. Fig. 14 clearly demonstrates two different regimes
depending on whether the phonon system is degenerate or
nondegenerate, and the low- to high-temperature crossover
is characterized by the Bloch-Grüneisen (BG) temperature
TBG = 2kF vl/kB .35–37,64 The resistivity increases with T as
ρ ∼ T 4 at low temperatures and ρ ∼ T at high temperatures,
which agrees with the results obtained for TI films by using an
isotropic elastic continuum approach.37 We note that electron-
phonon scattering is an important scattering mechanism for
finite-temperature transport in TIs, e.g., TBG ∼ 30 K in TIs
compared to TBG ∼ 100 K in graphene because the latter has
much larger phonon velocity. In graphene, in contrast to 2D
surface TI transport, phonon effects are extremely weak.35

The results shown in Fig. 14 do not include the contribution
to the resistivity due to quenched disorder. To include both the
effect of quenched disorder and electron-phonon scattering
we use the quasi-TFDT + two-fluid model. As discussed
in Sec. II, this approach allows us to take into account
several finite temperature effects: the temperature dependence
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tudinal acoustic phonon mode vl = 2900 m/s. The inset shows the
logarithmic derivatives d log ρ/d log T versus temperature.
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FIG. 15. (Color online) Calculated conductivity as a function
of temperature for different carrier density including only charged
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1013 cm−2. (a) The charged impurity distance d = 0.1 nm. The
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distance d = 1 nm. The corresponding TFDT nrms . 1.0 × 1012

cm−2 and the potential fluctuation s . 150 meV [Eq. (14)].

of the screening of the quenched disorder, electron-phonon
scattering processes, broadening of the Fermi surface, and
temperature-induced activated processes. The temperature
activated processes cause σ to increase with T and therefore
induce an insulating behavior (i.e., conductivity increasing
with increasing temperature) for σ (T ), whereas the electron-
phonon scattering processes induce a metallic behavior (i.e.,
conductivity decreasing with increasing temperature). The
change with T of the screening of the disorder potential also
induces a metallic behavior for σ (T ); however, given the large
value of κ in typical TIs this effect is quite weak, contrary
to the case of graphene10 or 2D semiconductor systems.65

Figures 15(a) and 15(b) show the dependence of σ on T
obtained by neglecting the effect of electron-phonon scattering
processes. We see that in this case the temperature dependence
of σ is almost completely determined by thermally activated
processes that induce a monotonic increase of σ with T .

Figure 16 shows the scaling of the conductivity with
respect to doping at different temperatures including both the
effects of quenched disorder and electron-phonon scattering.
At large densities the main effect of the finite temperature
is to suppress σ due to the presence of electron-phonon
scattering processes. However, at low densities the effect of
electron-phonon scattering processes competes with thermal
activation processes and can give rise to a nonmonotonic
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FIG. 16. (Color online) Calculated conductivity as a function
of net carrier density for various temperatures with d = 0.1 nm
and κ = 50. (a) The impurity density nimp = 4 × 1013 cm−2. The
corresponding TFDT nrms . 2.27 × 1012 cm−2 and the potential
fluctuation s . 220 meV [Eq. (14)]; (b) The impurity density nimp =
11 × 1013 cm−2. The corresponding TFDT nrms . 4.21 × 1012 cm−2,
and the potential fluctuation s . 300 meV [Eq. (14)].
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FIG. 17. (Color online) Calculated conductivity as a function of
temperature for different carrier densities including both charged
impurity and electron-phonon scattering, with d = 0.1 nm, κ =
50, and nimp = 4 × 1013 cm−2. (a) The charged impurity distance
d = 0.1 nm. The corresponding TFDT nrms . 2.27 × 1012 cm−2,
and the potential fluctuation s . 220 meV [Eq. (14)]. (b) The
charged impurity distance d = 1 nm. The corresponding TFDT
nrms . 1.0 × 1012 cm−2 and the potential fluctuation s . 150 meV
[Eq. (14)].

dependence of σ with respect to T . This is shown in Figs. 17(a)
and 17(b) where σ (T ) for different values of n is plotted.
From Figs. 17(a) and 17(b) we see that for n " nrms at
low temperatures the thermal activation processes dominate
and induce an insulating behavior for σ (T ). The crossover
temperature from insulating to metallic behavior depends on
n, nimp, κ and d. In general the larger the strength of the
spatial fluctuations of the carrier density the stronger is the
effect of thermal activation processes and therefore the larger
is the low temperature range for which the transport exhibits
insulating behavior. This is shown clearly by the scaling of
σ (T ) at the CNP for different values of nimp, κ , Figs. 18(a)
and 18(b), respectively. From Figs. 18(a) and 18(b) we see
that a change of nimp and κ that increases nrms extends the
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FIG. 18. (Color online) Minimum conductivity as a function of
temperature (a) for various charged impurity densities nimp. As nimp

increases, the corresponding s = 220, 300, 360, and 390 meV; (b)
for various dielectric constants κ . As κ increases, the corresponding
s = 840, 500, 220, and 110 meV; (c) for various charged impurity
distances d . As d increases, the corresponding s = 220, 180, 150, and
130 meV. The corresponding potential fluctuation s is obtained via
Eq. (14) using nrms calculated within the TFDT (shown in Figs. 3, 5,
and 6).

range of temperatures over which σmin(T ) exhibit an insulating
behavior.

The temperature dependence of σ for different values of d
is shown in Fig. 18(c). It appears to contradict the general rule
that a parameter change that increases nrms will increase the
range of temperatures over which σ (T ) exhibit an insulating
behavior. This is due to the combination of two effects: (i)
The fact that at large d (d ! 1 nm) nrms is very low and
so the resistivity ρdis due to the quenched disorder at low
carrier densities is much higher than the resistivity ρph due
to electron-phonon scattering, so that σtot(T )/σtot(T = 5K) ≈
σdis(T )/σdis(T = 5K); and (ii) the decrease at large d of the
metallic screening effects. The scaling of σ with respect to
T and d is therefore very interesting because it reveals the
temperature dependence of the screening and could therefore
be used to indirectly identify the nature of the disorder potential
and the screening properties of the surfaces of 3DTIs.

Before concluding this section on the temperature-
dependent surface conductivity of 3DTIs, we point out that
one of the important qualitative findings of our work is the
nonmonotonic temperature dependence of the 2D surface
conductivity as apparent in Figs. 16–18 and as expected from
the competing mechanisms of phonon scattering and disor-
der induced density inhomogeneity. In particular, phonons
induce higher-temperature metallic temperature dependence
and the density inhomogeneity induces insulating temperature
dependence through thermal activation, and at some disorder-
dependent (and also doping-dependent) characteristic temper-
ature the transport behavior changes from being insulating-
like to metallic-like. We emphasize that this temperature-
induced crossover behavior has nothing to do with any
localization phenomenon (and in fact, Anderson localization
effects are completely absent in TI surface transport since
all back scattering is suppressed), and it arises entirely from
a competition between inhomogeneity and phonons. The
metallic behavior moves to higher (lower) temperature as
disorder increases (decreases). This nonmonotonicity has been
observed in experiments at lower 2D carrier densities34 where
the inhomogeneity effects are important.

IV. CONCLUSIONS

We have presented a detailed theoretical study of the
2D transport properties of the surfaces of 3DTIs. There is
compelling evidence that in current transport experiments on
3DTIs charged impurities are the dominant source of quenched
disorder. For this reason in our study we have considered in
detail the case in which the quenched disorder potential is
the one created by random charged impurities close to the
surface of the TI. However, the theoretical framework that we
have developed and presented in this work is very general.
As in graphene, the presence of charged impurities induces
the formation of strong carrier density inhomogeneities. In
particular, close to the charge neutrality point the carrier
density landscape breaks up in electron-hole puddles. The
strong carrier density inhomogeneities make the theoretical
description of the electronic transport challenging for two
reasons: (i) inability to use standard theoretical methods that
assume a homogeneous density landscape; and (ii) the impor-
tance at finite temperature of thermally activated processes.
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Our work presents a theoretical description of transport on
the surface of 3DTIs that overcomes these difficulties and
takes into account also the effect of electron-phonon scattering
processes which is an important resistive mechanism at higher
temperatures.

To characterize the disorder-induced inhomogeneities we
use the Thomas-Fermi-Dirac theory. We also present a
comparison of the results obtained using the TFDT with the
one obtained using the self-consistent approximation and the
quasi-TFDT approach and show that the three approaches
give results that are qualitatively similar but that differ
quantitatively.

To study the electronic transport in the presence of strong
carrier density inhomogeneities, starting from the TFDT
results, we use the effective medium theory and a two-fluid
model. The TFDT + EMT approach is well justified and
is expected to provide the most accurate results. However,
the generalization of the TFDT + EMT method to finite
temperature is impractical due to the contribution to transport
of thermally activated processes, contribution that can be
dominant at low temperatures due to the strong carrier density
inhomogeneities. At finite temperature the two-fluid approach
is very valuable because it allows us to take into account all
the finite temperature effects, such as temperature-dependent
screening and electron-phonon scattering, including thermally
activated processes. The two-fluid model relies on the use of an
effective Gaussian distribution for the probability distribution
of the screened potential P (V ). The parameters that define
P (V ) can be chosen in such a way to maximize the agreement
of the results for T = 0 obtained using the two-fluid model and
the ones obtained using the TFDT + EMT approach. These
parameters are then used to obtain the transport properties at
finite temperature using the two-fluid model.

In current 3DTIs the dielectric constant (κ ∼ 50) is much
larger than in graphene where κ ∼ 1–4. In addition, in 3DTIs
the acoustic phonon velocity is smaller than in graphene. These
facts make the contribution of electron-phonon scattering
processes to the resistivity much more important in the surface
of 3DTIs than in graphene. For the surfaces of 3DTIs the
effect of electron-phonon scattering events becomes important
already for T as low as 10 K, whereas in graphene it becomes

relevant only for T ! 200 K. As a consequence for the surfaces
of 3DTIs we find that electron-phonon scattering is much more
important to determine the dependence of the conductivity
on T . The large value of κ in 3DTIs also implies that for
the surface of 3DTIs, contrary to graphene, the temperature
dependence of the screening does not play an important role.
The temperature dependence of the conductivity on the surface
of 3DTIs is therefore mostly determined by electron-phonon
scattering processes and thermal activations processes. These
two types of processes have opposite effects on σ , and at
low temperature and low doping they compete, giving rise
to a nonmonotonic dependence of σ with respect to T . The
nonmonotonic temperature dependence of the 2D surface
conductivity is one of the important new qualitative results
of our theory. We have presented detailed results for σ (T ) that
clearly show the competition of the different processes that
affect σ for T /= 0.

The theoretical approach developed here, being able to
include all the main effects that determine the transport
properties of the surfaces of 3DTIs, allowed us to present
results that can be directly and quantitatively compared to the
experimental ones. The good agreement between our theoret-
ical results and the recent experimental measurements,12–15,34

suggest that the theoretical method presented is very effective
to characterize the transport properties of the surfaces of
3DTIs, especially due to its ability to take into account the
effects due to the disorder-induced carrier density inhomo-
geneities. Future improvement of the theory could include a
more accurate surface band structure and the effects of the
bulk bands, but we do not expect these details to affect our
qualitative results at low surface doping densities because
our theory includes the most important resistive processes
contributing to the surface transport in 3DTIs.
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