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We study the effect of the Klein tunneling on the transport prop-
erties of graphene p-n-p junctions. We first analyze the ideal case
of a clean system and then study the realistic case in which dis-
order is present. To take into account the effect of disorder we
develop a method for obtaining quantum transport properties in
graphene that uniquely combines three crucial features: micro-
scopic treatment of charge disorder, fully quantum mechanical
analysis of transport, and the ability to model experimentally
relevant system sizes. Our results allow us to conclude unam-
biguously that recent transport experiments on graphene p-n-p
junctions have indeed observed signatures of Klein tunneling.
The analysis presented is based on Ref. (1).

Introduction

In 1929 Oskar Klein discovered that relativistic particles can, at normal incidence,
tunnel perfectly through a potential barrier with height comparable to their rest en-
ergy (2). This effect is now known as Klein tunneling (3). Up to this day the quest for
an experimental verification of Klein tunneling of elementary particles has been un-
successful. The recent experimental realization of graphene (4) has, however, opened
up a completely new avenue for the exploration of Klein tunneling. This is due to
the fact that the low energy electronic excitations of graphene are properly described
as massless Dirac fermions. It has therefore been proposed that in a graphene p-n-p
junction the transport should exhibit direct signatures of Klein tunneling (5). How-
ever, the interpretation of the experimental results is complicated by the unavoidable
presence of disorder.

The doping level of graphene, nbg, can be controlled using a back-gate. When
a top-gate is added a p-n-p junction can be defined electrostatically, Fig. 1. In the
ideal case (absence of disorder) the inversion of polarity due to the top-gate creates
an electrostatic barrier at the p-n and n-p interfaces. The electronic transmission
through such a double barrier has a strong angular dependence due to Klein tunneling
(6, 7) and for certain incident angles the electrons can be confined between the two
barriers (8, 9). Resonant tunneling through these confined states leads to pronounced
oscillations in the resistance as a function of system parameters, such as the top-gate
voltage (8, 10, 9). Early experiments failed to reproduce the predicted resistance
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oscillations (11, 12), presumably because of too much disorder (13). More recent
experiments that seek to minimize the effect of disorder have been more successful (14,
15, 16). However, a theoretical understanding of whether, or to what extent, these
experiments are really observing Klein tunneling phenomena, and the issue of the
experimental conditions needed to see Klein tunneling unambiguously have remained
open.

Theoretical approach

In this work the top gate is taken to have length Ltg = 30 nm and to be placed
at a distance dtg = 10 nm from the graphene layer. We assume the top gate to be
in air with a dielectric constant ε1 = 1, and for the substrate we assume a dielectric
constant ε2 = 4, corresponding to SiO2. These values reflect realistic experimental
conditions. We perform our calculations for a square sample of length L = 160 nm.

There is compelling evidence that in exfoliated graphene charge impurities are the
main source of disorder (17, 18, 19, 20, 21). Due to the vanishing density of states close
to the Dirac point, even taking into account screening effects, the disorder potential
created by the charge impurities retains its long-range nature (22, 23, 24). This fact
prevents the use of standard approaches to calculate the electronic structure and the
transport properties of graphene in the presence of charge impurities. A very efficient
method to obtain the ground state of graphene in the presence of Coulomb disorder
is the Thomas-Fermi-Dirac theory (25). In this approach, similar in spirit to the
Density Functional Theory, the energy functional, E[n], specific for graphene in the
presence of disorder, is minimized with respect to the density n(r). We have:

E[n] =

∫
d2r n(r)

[
2

3
!vF |πn(r)|1/2 + Vsc(r)

]
+ Exc[n] [1]

where vF ≈ 106 m/s is the Fermi velocity for graphene,

Vsc(r) = !vF rs
[
Vd(r) + Vtg(r) +

1

2

∫
d2r′

n(r′)

|r− r′|

]
− !vFµ, [2]

with rs ≡ e2/!vF ε, Vd and Vtg the potentials induced by the impurity density distri-
bution, C(r), and the top gate, respectively, and µ the chemical potential. Exc[n] is
the exchange correlation energy (25, 26). The charge impurities are assumed to be
located in a 2D plane at a distance d = 1 nm from the graphene layer, (21), and to be
in equal numbers positive and negative so that, denoting by angle brackets disorder
averaged quantities, we have 〈C(r)〉 = 0. The impurities are also assumed to be
uncorrelated so that 〈C(r1)C(r2)〉 = nimpδ(r2 − r1), where nimp is the charge impu-
rity density. The minimization is subject to the constraint (1/A′)

∫
A′ n(r)d2r = nbg,

where A′ is the area of the sample where the top gate potential is negligible. The
electrostatic potential Vtg is expressed in terms of the top gate charge density ntg

Vtg(r) =

∫
d2r′

ntg(r′)

(|r− r′|2 + d2tg)1/2
, [3]

and is obtained self-consistently, for a fixed voltage difference between the top gate
and graphene, ϕtg, by requiring that in the region below the top gate ∆ntg ≡ ntg(r)−
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Figure 1: (a) A schematic of the top gated setup. Graphene is represented by the
red layer and the top-gate dielectric by the brown one. (b) Vsc(r) for a disordered
junction with nbg = 5 × 1011cm−2, ∆ntg = 2 × 1012cm−2, and nimp = 5 × 1011cm−2.
Adapted from Rossi et al. (1).

n(r) = Ctgϕtg, where Ctg is the top gate capacitance. ∆ntg is the physical parameter
that we vary to simulate a change of the potential applied to the top-gate.

By minimizing E[n] the ground state carrier density n(r) can be obtained as well
as the screened potential Vsc(r). Fig. 1 (b) shows an example of Vsc(r) for a single
disorder realization. In the presence of disorder the carrier density landscape breaks
up into electron-hole puddles (27, 28, 25, 29, 30) and the potential barriers between
regions with opposite polarity are no longer well defined.

To calculate the electrical conductance we use a transfer-matrix approach (31, 32).
In the presence of the disordered potential Vsc the Hamiltonian

H = vFp · σ + Vsc(r) [4]

with σ = (σx, σy) the Pauli matrices, defines a scattering problem. The Schrödinger
equation Hψ = 0 generates the transfer matrix M, which relates the wavefunction
at x = 0 to the one at x = L, ψL = Mψ0. M is obtained numerically dividing
the interval (0, L) into N equal subintervals of length δx = L/N and calculating the
transfer matrix in each subinterval via the Born approximation. This gives (32)

M =
N∏

n=1

e−
i
2 δx∂yσze−iunσxe−

i
2 δx∂yσz ; un(y) =

1

!vF

∫ nδx

(n−1)δx

dx Vsc(x, y). [5]

In the limit N → ∞ the Born approximation becomes exact. From the transfer
matrix M we calculate the matrix t of transmission amplitudes, which in turn gives
us the two terminal conductance G = R−1 = (4e2/h)tr tt†.

Results

We now present our results. Fig. 2 (a) is a color plot that shows how the resistance
depends on ∆ntg and nbg. Quasi periodic oscillations as a function of ∆ntg are clearly
visible. Fig. 2 (b) shows R as function of ∆ntg for fixed nbg in the clean limit. The
dashed line is the result for a single boundary condition along the transverse direction:
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Figure 2: (a) Gate voltage dependence of the resistance for a clean device. (b) A
single trace of the resistance at fixed back gate density nbg = 5 × 1011cm−2. The
smooth curve is obtained by averaging over boundary conditions. The insets show a
close up of one of the narrow resonances obtained for transverse periodic boundary
condition. (c) Disorder averaged resistance as a function of ∆ntg for different values of
nimp: from bottom to top nimp = 0, 1, 2.5, 5, 10, and 15×1011cm−2. (d) The resistance
difference ∆R where we have subtracted the resistance at nimp = 1.5 1012 cm−2 where
the transport is diffusive, to emphasize the survival of broad oscillations for nimp as
high as 1012 cm−2. Adapted from Rossi et al. (1).

in addition to broad oscillation sharp resonances can be observed due to resonant
scattering via bound states in the region under the top-gate. The sharp resonances
disappear when the results are averaged over different transverse boundary conditions
(solid line).

Fig. 2 (c), (d) show our results in the presence of disorder. The results were
obtained averaging over several - 1000 - disorder realizations. The narrow resonances
disappear at very low impurity densities. On the other hand the broad oscillations,
signature of Klein tunneling, survive for relatively high impurity densities. This can
be observed clearly in Fig. 2 (d) from which we can see that, for our parameter values,
the broad oscillations are observables for densities as high as nimp = 1012 cm−2.

The disordered averaged results can be understood by estimating the mean free
path, l, in the presence of Coulomb disorder. When l is of the order or smaller
than the width, W , of the sample, scattering events start to dominate and the sharp
resonances disappear. For the parameter values used we find that the sharp resonances
disappear for l ≈ 400 nm, i.e. of the order of W = 160 nm. The broad oscillations are
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analogous to the oscillations of a Fabry-Perot interferometer in which the p-n and the
n-p junctions play the role of the reflecting surfaces. As a consequence, after disorder
averaging, the broad oscillations survive as long as the mean free path is longer than
the distance between the p-n and the n-p junction. Consistently we find that for
our parameter values the broad oscillations can no longer be identified for impurity
densities higher than the value corresponding to l = 40 nm, the width of the n region
created by the top-gate. This also explains the fact that the oscillations at high top-
gate voltages, for which the width of the n-region is wider, become unidentifiable at
lower impurity densities than the oscillations at low Vtg. Very recent experiments
(16) have found results in very good quantitative agreement with our predictions.

Summary

We have presented a powerful theoretical approach for calculating the transport prop-
erties of graphene in the presence of long-range disorder taking into account quantum
interference effects. We have applied the method to study the transport properties
of graphene p-n-p junctions. Our results identify the critical values of the disorder
below which quantum effects are observable in transport measurements. Our results
show unambiguously that recent transport experiments on graphene p-n-p junctions
have observed clear signatures of the Klein tunneling, for the first time since its
theoretically prediction, more than 80 years ago.
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