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In graphene, the approximate SU(4) symmetry associated with the spin and valley degrees of freedom in the
quantum Hall (QH) regime is reflected in the 4-fold degeneracy of graphene’s Landau levels (LL’s). Interactions
and the Zeeman effect break such approximate symmetry and lift the corresponding degeneracy of the LLs.
We study how the breaking of the approximate SU(4) symmetry affects the properties of graphene’s QH edge
modes located in proximity to a superconductor. We show how the lifting of the 4-fold degeneracy qualitatively
modifies the transport properties of the QH-superconductor heterojunction. For the zero LL, by placing the edge
modes in proximity to a superconductor, it is in principle possible to realize a 1D topological superconductor
supporting Majoranas in the presence of sufficiently strong Zeeman field. We estimate the topological gap of
such a topological superconductor and relate it to the properties of the QH-superconductor interface.

Heterojunctions formed by two-dimensional electron gases
(2DEGs) in the quantum Hall (QH) regime, placed in prox-
imity of a superconductor (SC), are ideal to realize one-
dimensional topological superconductors [1–4], and are the
only realistic systems in which it is expected that not only Ma-
joranas zero modes [5] but also more complex non-Abelian
anyons can be realized [1, 2, 6]. In recent years advances
in materials’ and devices’ fabrication have allowed the re-
alization of high quality QH-SC systems [7–13] that have
shown signatures of superconducting correlations induced in
the edge modes of QH states. Such experiments have moti-
vated several theoretical works [14–26] that addressed some
of the limitations of simple models. QH-SC systems based
on graphene [7–11, 13] are particularly promising for sev-
eral reasons: by encapsulating the graphene layer in hexag-
onal boron nitride (hBN), high-quality, low-disorder, devices
can be realized; they can be driven into robust QH states
with smaller values of the magnetic field (B) than regular
2DEGs due to the fact that for 2D Dirac materials the Lan-
dau level (LL) energies En scale with the square root of B,
En = sgn(n)vF

√
2eℏB|n| with vF the grapehene’s Fermi

velocity and n ∈ N [27, 28], rather than linearly with B, as
for 2D systems with parabolic bands. These features have
recently enabled the observation of superconducting correla-
tions between the edge states of fractional QH states [11], the
first step toward the realization of parafermions.

In graphene, due to the spin and valley degeneracy, we have
an approximate 4-fold degeneracy of the fermionic states. As
a consequence, in the presence of a strong perpendicular mag-
netic field, graphene well approximates a SU(4) quantum
Hall Ferromagnet [29–32]. The approximate SU(4) symme-
try is broken by Zeeman and interactions effects [33–36]. The
breaking of the SU(4) symmetry can significantly affect the
strength of the superconducting correlation induced among
QH’s edge modes by proximity to a SC, and therefore mod-
ify the conditions required for the realization of non-Abelian
anyons in QH-SC systems.

In this work we study the effect that the breaking of the
SU(4) symmetry of graphene’s Landau levels (LLs) has on
the nature and strength of electron-hole (e-h) conversion pro-
cesses (Andreev reflection processes) at the interface between

the integer QH (IQH) edge and an s-wave superconductor. For
n > 0 LLs the breaking of the the SU(4) symmetry causes the
edge modes’ drift velocity (vd) to be spin and valley depen-
dent, and we find that this causes the e-h conversion probabil-
ity, The, to oscillate as function of strength of the SU(4) sym-
metry breaking terms. For the En = 0 LL the Coulomb inter-
action induces correlated phases [34–44] that lift the degener-
acy between particle-like and hole-like states and so break the
effective SU(4) symmetry of the LL, and we find that the in-
terplay of interaction’s effects and Zeeman splitting (∆Z) can
strongly affect the transport properties of the En = 0 QH-
edge modes at a QH-SC interface. Our results show the ef-
fect that SU(4) breaking terms have on the e-h conversion in
graphene-based QH-SC systems, and how, conversely, signa-
tures in the transport properties of QH-SC edges can be used
to estimate the relative strength of such terms. The depen-
dence of such transport properties on ∆Z can also be used to
estimate the efficiency of e-h conversion at QH-SC interfaces.

We consider the setup shown schematically in Fig. 1(a) in
which an interface of length Lsc is present between a SC and
a graphene layer in the IQH regime. In this situation the
IQH edge modes, along the QH-SC interface, form a chiral
Andreev edge state (CAES), a coherent superposition of e-
like and h-like edge states [45–49]. For graphene we assume
“armchair-like” boundaries. Such boundaries do not have in-
trinsic edge modes, like zig-zag edges [50, 51], and there-
fore allow to better study the intrinsic properties of QH edge
states [50]. It is also expected that in most experimental se-
tups armchair-like boundaries better approximate the devices’
edges than zig-zag edges.

For En > 0 LLs the SU(4) symmetry breaking can be de-
scribed by taking into account the presence of a Zeeman term
of strength ∆Z that splits the spin degeneracy and a similar
term, of strength ∆v , that lifts the valley degeneracy. We con-
sider an effective low-energy Boguliubov-de-Gennes Hamil-
tonian (HBdG) for the one-dimensional (1D) edge modes lo-
cated at the interface between the QH systems and the SC.
Assuming that no magnetic field is present in the SC, we have

ĤBdG = ψ†[ℏvdkτ0η0σ0 − ℏvdkF τzη0σ0 + (∆Z/2)τ0η0σz+

∆̂K1K2
+∆τxη0σ0]ψ (1)
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where ψ = (ckK1↑, ckK1↓, ckK2↑, ckK2↓, c
†
−kK2↓,−c

†
−kK2↑,

c†−kK1↓,−c
†
−kK1↑)

T with c†kKiσ
, ckKiσ the creation, anni-

hilation operators, respectively, for an electron with mo-
mentum k, and spin σ = ↑, ↓, in the Ki valley. ϵk =
ℏvdk is the edge mode’s dispersion along the QH-SC in-
terface with vd the drift velocity, τi, ηi, and σi are 2 × 2
Pauli matrices in particle-hole, valley, and spin space, re-
spectively, and kF is the Fermi wavevector at the Fermi en-
ergy EF . In Eq. (1) ∆̂K1K2 = ∆v/2[cos(θv)τ0ηzσ0 +
sin(θv) cos(ϕ)τzηxσ0 + sin(θv) sin(ϕ)τzηyσ0], where θv , ϕ
are the angles that parametrize the direction in valley space
of the mean field lifting the valley degeneracy. For En > 0
LLs SU(4) breaking terms affect the transport properties of
the QH-SC edge by causing the edge modes’ drift velocity vd
to be spin and valley dependent. This is due to two mecha-
nisms: (i) such terms cause the effective tunneling between
the QH region and the SC to be dependent on the SU(4) flavor
(see SI); (ii) the splitting due to these terms causes edge states
of different SU(4) flavors to have different Fermi wavevectors
and therefore, when the confining potential V (y) is not linear,
different drift velocities. To exemplify the physics, below we
consider in detail the second mechanism given that the fur-
ther inclusion of the first mechanism is straightforward and its
effect is also in general quite smaller (see SI).

To understand how ∆Z induces a spin-dependent vd we
can consider the simple case when V (y) = V0y

2/(lV )
2,

for y > 0 and V (y) = 0 for y < 0. V0 and lV are
constants that characterize the confining potential. Consid-
ering that y = l2Bk, with lB the magnetic length, in the
limit dV/dy|ϵk=0 ≪ ℏωc/lB , where ωc is the cyclotron fre-
quency, we obtain vd↑↓ = vd[ϵ̃F ∓ ∆Z/2]

1/2, with vd =
2[l2B/(ℏlV )][V0ϵ̃F ]1/2, and ϵ̃ ≡ EF −En,EF being the Fermi
energy, Fig. 1 (b), (SI). In the limit ∆Z ≪ 2ϵ̃F we have
vd↑↓ = vd[1±∆Z/(4ϵ̃F )].

We first consider the case when ∆Z ̸= 0 and ∆v = 0. This
situation is also directly relevant to QH-SC heterostructures
based on standard 2DEG systems. In this case HBdG can be
block-diagonalized with blocks Ĥ± = ψ†

±H±ψ±, where H±

are 2×2 matrices and ψ+ = (ck↑, c
†
−k↓), ψ− = (ck↓,−c†−k↑).

Here we drop the valley indices since in this case the valleys
are degenerate. From the expressions of H± and the BdG
equation H±Φ±(x) = EΦ±(x), we can calculate the transfer
matrices [48, 52]

M±(L, 0) = eiα
(

t± ∓ia±
∓ia± t∗±

)
(2)

that relate the CAES’s state at the end, x = Lsc, of the QH-
SC interface, to the CAES’s state at the beginning, x = 0, of
the interface. In Eq. (2) α is a trivial phase and a± describes
the mixing of electrons and holes along the interface. Know-
ing M± we can obtain the probability for Andreev conversion
T

(±)
he = |a±|2 of an electron with spin +/− =↑, ↓ from lead

0 to lead 1 (see Fig. 1 (a)):

T
(±)
he =

∆2 sin2 (Lscδkeh,±)

(ℏvs δkF,±)
2 (3)

with

δkhe± =
1

ℏvs

√
∆2 +

(
ℏvskF ± v̂E − v̂∆Z/2

1− v̂2

)2

. (4)

In Eqs. (3), (4) v̂ ≡ va/vs, with vs ≡ (vd↑ + vd↓)/2, va ≡
(vd↑ − vd↓)/2.

The knowledge of T (±)
he allows us to obtain the resistance

RD between the superconducting terminal 2 and terminal 1 in
the absence of backscattering [10–12, 21]. For filling factor ν
we have:

RD =
RH

ν

(ν − 2The)

2The
(5)

where RH = h/e2. For our case, ν = 6 (including the
En = 0 LLs) and The = 2(T

(+)
he + T

(−)
he ) + 2T

(0)
he and

T
(0)
he = T

(+)
he (E = 0, va = 0,∆v/Z = 0) describes the An-

dreev conversion of n = 0 LL states for which asymmetries
due to splittings are negligible. Equations (3)-(5) show how
the spin dependence of the edge modes velocities, by modi-
fying δkhe, affects the electron-hole conversion taking place
along the QH-SC interface, and its transport properties.

To obtain a quantitative estimate of the effect of SU(4)-
breaking terms we have also obtained the transport properties
at the QH-SC interface using a tight-binding (TB) model im-
plemented via the Kwant package [53]. Details of the model
can be found in section III of the SI [54]. Figure 1 (c) shows
the dispersion of the CAES when En > 0 both for the case
when ∆Z = ∆v = 0, and the one for which ∆v = 0 but
∆Z ̸= 0. Figure 1 (d) shows the effect of ∆Z on the renor-
malized, spin-dependent, drift velocity. In the limit ∆Z = 0,
for the chosen parameter values, tunneling processes into the
SC cause the renormalized vd to be ∼ 9/10 of the vd at a
QH-vacuum interface. The results of Fig. 1 (d) show that
the scaling va ∝ ∆Z , for ∆Z ≪ ϵ̃F , obtained assuming a
quadratic edge potential agrees well with the scaling obtained
from the TB-model calculation for ∆Z as large as ∼ 0.5ϵ̃F
Figures 1 (e), (f) show the total e-h conversion probability,
The, and RD as a function of ∆Z for ν = 6 and various
Lsc, obtained assuming for v↑(∆Z) and v↓(∆Z) the scal-
ings ±∆Z/(2ϵ̃F ) consistent with Fig. 1 (d). In the limit of
Lsc > ξ, Fig. 1 (f), we find that The oscillates with ∆Z and
that the period of the oscillations decreases with ∆Z .

The results shown in Figs. 1 (e), (f) are qualitatively valid
also when the term ∆̂K1K2

does not break time reversal (TR)
symmetry, i.e., when θv = π/2, considering that the TR op-
erator in valley space is Θv = Cηx, with C denoting complex-
conjugation. As a consequence, for θv = π/2, ∆̂K1K2 only
affects the average value of the drift velocity and does not in-
duce an asymmetry between the drift velocities of the e-like
and h-like states. The resulting transport properties at the QH-
SC edge mode are obtained from Eqs. (3)-(5) by simply taking
into account the renormalization of vs due to ∆̂K1K2 .

When θv ̸= π/2, the term ∆̂K1K2
breaks TR symme-

try and causes the drift velocities of the time-reversed edge
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FIG. 1. (a) Schematic of the QH-SC setup. (b) Dispersion of LL with Zeeman splitting. (c) BdG spectrum of a hybrid QH-SC structure in
the LLL with and without (faded lines) Zeeman field. (d) Drift velocity of CAESs normalized by the vacuum drift velocity versus the Zeeman
field. The (e), and RD (f), for ϵ̃F = 10 ∆, vs = 0.1∆ξ/ℏ, kF = 5ℏ/ξ, and Lsc = (0.5, 0.9, 2.0)ξ.

modes to be different. In this case, the effect of ∆̂K1K2 can
compound, or compensate, the effect of ∆Z . Let vs,Ki

≡
(vd↑Ki

+ vd↓Ki
)/2, va,Ki

≡ (vd↑Ki
− vd↓Ki

)/2, and vs,s ≡
(vs,K1

+vs,K2
)/2, vs,a ≡ (vs,K1

−vs,K2
)/2, va,s ≡ (va,K1

+
va,K2)/2, va,a ≡ (va,K1 − va,K2)/2. Using these definitions,
and setting without loss of generality ϕ = 0, for the case when
θv = 0, the BdG Hamiltonian, including the valley degrees of
freedom, takes the form

ĤBdG = ψ†[ℏvs,skτ0η0σ0 + ℏvs,akτzηzσ0 + ℏva,skτzη0σz
+ ℏva,akτ0ηzσz + (∆Z/2)τ0η0σz + (∆v/2)τ0ηzσz

− ℏvs,skF τzη0σ0 +∆τxη0σ0]ψ (6)

vd,K
vd,K
vd,K′￼

vd,K′￼

(a) (b)

(c) (d)

FIG. 2. (a) Drift velocities versus ∆Z for θv = 0, ∆v = ϵ̃F /2, and
ϵ̃F = 10 ∆. (b) The versus ∆Z and ∆v for Lsc = 0.9 ξ, vs,s =
0.1∆ξ/ℏ, and kF = 5ℏ/ξ. (c) RD corresponding to panel (b). (d)
Line cuts of RD for fixed ∆v = (0, 2.5, 5)∆, blue, orange, green,
traces, respectively. Stars denote the values of RD when ∆Z = ∆v .

Figure 2 (a) shows the drift velocities vσ,Ki
as a function of

Zeeman splitting for θv = 0 and fixed ∆v obtained assuming
a quadratic edge potential and ∆v,Z ≤ ϵ̃F /2. From the values
vσ,Ki

, we can block-diagonalize Eq. (6) and calculate the mo-
mentum difference between coupled electron and hole modes.
Then we use Eqs. (3) and (5) to obtain The and RD. We see

that as ∆Z increases the velocity asymmetry becomes larger
for a pair of CAESs while becoming smaller for the other pair
until it vanishes when ∆Z = ∆v . One could expect a maxi-
mum The at this point, but Fig. 2(b) shows that while a mirror
symmetry about the ∆Z = ∆v line exists, The is not maxi-
mum along this line. Fig. 2 (c) shows the dependence of RD

on ∆Z and ∆v . We find that when θv = 0, the dependence
of RD on ∆Z is different depending on the value of ∆v , as
shown by the line cuts presented in Fig. 2 (d): the period of
the oscillations of RD with respect to ∆Z decreases as ∆v in-
creases. By comparing the experimentally measured RD as a
function of ∆Z , by tuning the in-plane component of the mag-
netic field, results like the ones in Fig. 2 (d) could allow the
estimation of the strength of the valley splitting term breaking
time reversal symmetry.

FIG. 3. (a) Dispersion of En = 0 graphene LL for the FM, CAF and
AF phases with schematics illustrating the canting of spins on differ-
ent sublattices for each phase. RU (b), and RD (c), as a function
of ϵ̃F in the CAF phase. (d) T ee

j,i and The
j,i versus ϵ̃F for θ = π/6.

Lsc = 0.675ξ.

In the En = 0 LL we have a degeneracy between particle-
like and hole-like states. However, for the En = 0 LL we
also have that the valley and sublattice degree of freedom are
locked to each other. Taking into account the spin degree of
freedom, the full, approximate, symmetry for the En = 0
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LL is still SU(4). Besides the Zeeman effect, such approx-
imate symmetry is broken by interaction effects that drive
the system into a correlated state. Theoretical [37, 39, 55]
and experimental results [36, 38, 40, 41, 44] have shown that
the likely correlated state is a canted antiferromagnetic (CAF)
state in which the spin degree of freedom is locked with the
sub-lattice degree of freedom as shown schematically in the
inset of Fig. 3 (a). Recent measurements [42, 43], however,
suggest that in some cases the ground state can be an interval-
ley coherent phase characterized by a Kekulé distortion [56].
For ∆Z much smaller than the interaction strength Uint, also
for the En = 0 LL, both in the CAF and Kekulé phase, the
effect of ∆Z on the transport properties at the QH-SC inter-
face is described by Eqs. (2)-(5). When ∆Z is comparable
to, or larger than, Uint its effect on the transport properties
of the QH-SC interface can be significantly different from the
one described by Eqs. (2)-(5), but qualitatively the same in the
Kekulé phase and CAF phase. In the remainder we focus on
the CAF phase.

For ∆Z ≪ Uint the CAF phase corresponds to an anti-
ferromagnetic (AF) state, whereas for ∆Z ≫ Uint the CAF
phase describes a ferromagnetic (FM) state [38], see inset
Fig. 3 (a). To describe the CAF phase, to the tight-binding
Hamiltonian for graphene (section IV SI) we add the term
HAF = (∆AF /2)[

∑
i(ψ

†
Ai
τzσxψAi

− ψ†
Bi
τzσxψBi

)] where
ψ†
Si

, ψSi
, are the creation, annihilation, operators for an elec-

tron at site Si = (Ai, Bi) with Ai, Bi the sites of sublattices
A, B, respectively, and ∆AF the strength of the mean-field
describing the AF phase. The term HAF , without Zeeman
splitting, induces a bulk and edge gap at the charge neutrality
point, as seen in Fig. 3 (a).

To describe the evolution from the AF phase to the FM
phase, we set ∆AF = ∆0 sin θ and ∆Z = ∆0 cos θ, where
∆0 ≡ [∆2

AF +∆2
Z ]

1/2 is the total magnitude of the bulk gap,
and 2θ is the angle between the spin projections on sublattice
A and B. Figure 3 (a) shows the evolution of the LL close to
the neutrality point as θ is varied: for θ = 0 we recover the
FM phase, and for θ = π/2 the AF phase. When ∆Z ̸= 0 the
lowest energy particle-like and hole-like states approach close
to the edge causing the gap between edges states (∆edge) to
be smaller than the gap between bulk states, Fig. 3 (a). For
∆Z ̸= 0, close to the edge, the spin polarization becomes
momentum dependent so that forward and backward moving
modes have opposite spin polarizations (see SI). As a conse-
quence, when ∆Z ∼ ∆AF , for the QH edge in proximity of
the SC we can have strong Andreev retroreflection.

Figures 3 (b), (c) show the calculated resistance RU , be-
tween terminal 2 and 0, and RD, respectively, as a function
of ϵ̃F for the En = 0 LL in the CAF phase for different val-
ues of θ. Given that for ∆Z ≳ ∆AF we can have counter-
propagating modes, the equations for RD, Eq. (5), and RU

have to be generalized to take into account backscattering pro-
cesses, see Fig. 3 (d) and SI. As θ increases RU decreases.
This fact could be used to extract the effect of interactions on
the dispersion of the En = 0 LL’s edge modes.

2Δ*
k0 = 0

ak0 = 5 ⋅ 10−3π

(a) (b)

FIG. 4. (a) Spectrum for effective 1D model with finite supercon-
ducting pairing ∆ and small offset k0. (b) Topological gap ∆∗ as a
function of k0 for a fit corresponding to θ = π/4.

For ∆Z ≳ ∆AF , as we approach the FM phase, the n = 0
LL has counter-propagating edge modes with non-trivial spin
structure that appear to be ideal for the realization of a 1D
topological superconducting state supporting Majoranas at its
ends [4]. However, using realistic parameters’ values, and the
full graphene-SC TB model, we find that no Majoranas are
present. To understand the issue we map the CAF edge states
to the effective 1D model H = tk̂2 − ϵF + αk̂σy + JZσz
with k̂ ≡ ak, a = 2.46Å being graphene’s lattice constant,
and extract t and α from fitting the LL’s edges dispersion ob-
tained from the tight-binding model [54]. For θ = π/4, using
the TB model parameters presented in section IV of the SI,
we find t = 63∆, α = 7∆. Given that for the CAF regime
considered we only have one helical band we can set ϵF = 0
and set JZ equal to the chemical potential of the single helical
band. In the remainder we set JZ = 4∆. The key difference
between the ideal 1D model and the edge at the QH-SC in-
terface is that for the latter the minimum of the bands when
α = 0, in general, is not located at a time-reversal invariant
momentum (k = 0), that for a QH-SC system corresponds
to the edge between QH region and SC. To take this into ac-
count in the effective 1D model we introduce a momentum
offset k → k + k0. As k0 increases the band-gap ∆∗ in-
duced by the superconducting paring becomes more indirect
and is reduced, as can be seen in Fig. 4. We see that ∆∗ van-
ishes when k0 ≈ 10−2π/a. Considering that for B = 2 T
lB ≈ 18 nm, we have that ∆∗ will be vanishing when the dis-
tance between QH edge modes and the SC edge is larger than
10−2(π/a)l2B ≈ 2.3lB . The fact that for realistic parameters’
values k0 > 10−2π/a (see SI), explains why in our TB calcu-
lations no Majorana are observed, and points to an aspect that
must be taken into account in experiments.

In summary, we have studied how the breaking of the ap-
proximate SU(4) symmetry of graphene’s Landau levels af-
fects the Andreev conversion processes of QH edges states
located in proximity of a superconductor. We have found
that in general the probability of an electron to be converted
into a hole while traveling along the QH-SC interface, due
to Andreev processes, can strongly oscillate as a function of
the strength of the terms breaking the SU(4) symmetry, in-
ducing oscillations of directly measurable transport properties
that could be used to extract the efficiency of the electron-hole



5

conversion, and the magnitude of the SU(4) breaking terms.
Considering in detail the case when the En = 0 state is in
the canted-antiferromagnetic phase, we have obtained how the
canting angle of such phase qualitatively affects the electron-
hole conversion probability, and therefore could be estimated
by measuring the transport properties at the QH-SC interface.
In the limit of large Zeeman splitting the edge modes of the
En = 0 LL have all the properties to allow the realization,
when proximitized by a SC, of 1D topological superconduct-
ing states with Majoranas. We have shown how the topolog-
ical gap of such state could be much lower than naı̈vely ex-
pected due to the nature of the edge modes’ dispersion at the
QH-SC interface. Our results are directly relevant to the on-
going effort to induce superconducting pairing correlations in
graphene QH edges state with the ultimate goal to realize non-
abelian anyons.

Acknowledgements The work was supported by ARO
(Grant No. W911NF-18-1-0290). E. R. also acknowledges
partial support from DOE, grant No. DE-SC0022245, and
thanks the Aspen Center for Physics, which is supported by
NSF Grant No. PHY-1607611, where part of this work was
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SUPPLEMENTAL INFORMATION

I. FLAVOR-DEPENDENT DRIFT VELOCITY DUE TO NON-LINEAR CONFINING POTENTIAL

Let’s consider the generic Hamiltonian describing a free-electron gas in the two-dimensional (2D) (x, y) plane

H = ϵ̂(kx, ky) + V (y)11− EF 11, (S1)

where ϵ̂(kx, ky) is a matrix, in orbital space, describing the dispersion of the 2D electron system, k = (kx, ky) is the 2D
wavevector, V (y) is the confining potential defining the edge of the sample, and EF is the Fermi energy. Let’s assume that
translational symmetry is preserved along the x direction. In this case to include the effect of a magnetic field B perpendicular
to the 2D electron system it is convenient to use the gauge A = (−By, 0, 0). By replacing in (S1) k = (kx, ky) with k−(e/c)A,
we obtain the energy spectrum

E(k) = En + V (kl2B)− EF , (S2)

where {En} are the energies of the Landau levels, k ≡ kx, and lB = [ℏc/(eB)]1/2 is the magnetic length. Equation (S2) is valid
for the common situation when ∂yV (y) ≪ (En+1 − En)/lB . {En} are momentum independent and so the drift velocity of an
edge state in the nth Landau level is determined by the confining potential:

vd =
1

ℏ
dEn

dk
=

1

ℏ
dV

dk

∣∣∣∣
kF

=
l2B
ℏ
dV

dy

∣∣∣∣
yF

(S3)

where kF is the Fermi wavevector (E(kF ) = 0), and yF = kF l
2
B . A very natural and physical approximation for the confining

potential V (y) is:

V (y) =


(V0/l

2
V ) (y − L0)

2
, y ≥ L0

(V0/l
2
V ) (y + L0)

2
, y ≤ −L0

0, −L0 < y < L0.

(S4)

where V0 (with units of energy) lV (with units of length) are constants that parametrize the dependence of V on the position, and
2L0 is the width of the QH system. For the states at the Fermi energy on the y > 0 side of the sample we have:

yF = L0 + lV

√
ϵ̃F
V0
, (S5)

where ϵ̃F ≡ EF − En, so that

vd =
l2B
ℏ
dV

dy

∣∣∣∣
yF

=
2l2B
ℏlV

√
V0ϵ̃F . (S6)

In the presence of a Zeeman term we have the spin-degeneracy of the energy levels E(k) is lifted and we have: E(k) =
En + V (kl2B) − EF ± ∆Z/2 and therefore two different Fermi wavevectors, one for the spin-up state (kF+) and one of the
spin-down state (kF−), and correspondingly, two different values of yF :

yF,± = L0 + lV

√
ϵ̃F ∓∆Z/2

V0
. (S7)

The fact that yF,+ ̸= yF,− implies that when V (y) is not linear the spin-up and spin-down state will have different drift velocities:

vd↑↓ =
2l2B
ℏlV

√
V0 (ϵ̃F ∓∆Z/2) ≈ vd

(
1∓ ∆Z

4(ϵ̃F )

)
= vd ∓ va, (S8)

where the approximate expression is valid when ∆Z ≪ 2ϵ̃F , and the −, + signs apply to the spin ↑ and ↓ states, respectively.
Thus, the Zeeman effect in combination with a nonlinear confining potential results in a nonzero difference va between vd↑, and
vd↓. For the case when a term is present that lifts graphene’s valley degeneracy, the same equation (S8) is obtained if such a term
also breaks time-reversal symmetry. In this case ∆Z should be replaced by ∆v , the strength of the valley-splitting term.
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II. FLAVOR-DEPENDENT DRIFT VELOCITY DUE TO SPIN-DEPENDENT QH-SC TUNNELING STRENGTH

Consider a chiral edge state in the lowest Landau level propagating in the x-direction. The low-energy BdG description of a
spinful Landau level is

Hqh =
1

2

∑
k

Ψ†
k (vdk11− EF τzσ0)Ψk =

1

2

∑
k

Ψ†
k hqh(k⃗) Ψk, (S9)

where vd is the drift velocity, Ψ†
k = (c†k↑, c

†
k↓, c−k↑, c−k↓) is the BdG spinor, and τi and σi are Pauli matrices in Nambu and

spin space, respectively. We take the units where ℏ = 1. Suppose we couple this system to an s-wave spin-singlet superconductor
described by

Hsc =
1

2

∑
k

Φ†
k [ξkτzσ0 −∆τyσy] Φk =

1

2

∑
k

Φ†
k hsc(k) Φk, (S10)

where ∆ is the superconducting gap (assumed to be real for simplicity), ξk = k2

2m − EF,s, and Φ†
k = (d†k↑, d

†
k↓, d−k↑, d−k↓).

We will describe the coupling between the two systems within the tunneling Hamiltonian description with

HT =
1

2

∑
k

Φ†
k (t0τzσ0)Ψk + h.c. =

1

2

∑
k

Φ†
k hT Ψk + h.c., (S11)

where t0 is the tunneling amplitude associated with electron scattering from the quantum Hall sample to the superconductor and
vice versa. The bare Green’s function for the superconductor at T = 0 is

Gsc(k, ω) = (ω − hsc(k))
−1 (S12)

=
1

ω2 − ξ2k −∆2
(ω11 + ξkτzσ0 −∆τyσy) . (S13)

The self-energy is given by

Σ(k, ω) =

∫
dq hT (q)Gsc(k+ q, ω)hT (−q)

≈ −λω11 + ∆τyσy√
∆2 − ω2

. (S14)

where λ = −πt20Nint(0) and Nint(0) is the interface DOS at the Fermi energy. In the limit ω ≪ ∆ from the equation for the
poles of the dressed Green’s function

Det (hqh(k) + Σ(k, ω)− ω) = 0. (S15)

we can obtain the effective Hamiltonian [24, 57]

heff (k) =
vd

1 + λ/∆
k11− EF

1 + λ/∆
τzσ0 −

∆

1 +∆/λ
τyσy, (S16)

Now we will consider a perturbation to the tunneling Hamiltonian. Consider the Hamiltonian for a vacuum edge state with
Zeeman splitting ∆Z :

H ′
qh =

1

2

∑
k

Ψ†
k

(
vdk11− EF τzσ0 +

∆Z

2
τzσz

)
Ψk =

1

2

∑
k

Ψ†
kh

′
qh(k)Ψk (S17)

Besides the Zeeman effect lifting the degeneracy of the Landau levels, the splitting also spatially separates spin-polarized edge
states with opposite spin [58]. This separation occurs in the direction perpendicular to the boundary (y-direction in this case).
Thus, in a QH/SC heterostructure in the LLL, one edge state moves closer to the interface and the other moves further away. To
account for this spatial shift, we consider the modified tunneling Hamiltonian,

H ′
T =

1

2

∑
k⃗

Φ†
k (t0τzσ0 + δt(∆Z) τzσz)Ψk + h.c. (S18)
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where δt = δt(∆Z) is an odd function in ∆Z . Now we proceed as before, where we solve for the interface self-energy with the
modified tunneling Hamiltonian. Doing this, we find

Σ′(k, ω) =

∫
dq h′T (q)Gsc(k+ q, ω)h′T (−q) (S19)

≈ Σ(k, ω)− 2λ
δt

t0

(
ωτ0σz√
∆2 − ω2

)
+O

(
(δt/t0)

2
)
. (S20)

Then the energy eigenvalues describing the Andreev edge states are determined by the BdG equation

Det
(
h′qh(k) + Σ′(ω)− ω

)
= 0. (S21)

Assuming the low-energy case ω ≪ ∆, we have

Det

[
vdk11− EF τzσ0 − λτyσy +

∆Z

2
τzσz − τ0

(
σ0 +

λ

∆

(
1 + 2

δt

t0
σz

))
ω

]
≈ 0. (S22)

The matrix structure of the equation does not allow one to easily extract an effective Hamiltonian description. The equations
for the eigenenergies are also cumbersome, so we will simply point out the primary effect of interest to us. The electron-like
dispersion will have the form

E±(k) = a0 + a1k ±
√
f(k), (S23)

where a0, a1 ∈ R are constants and f(k) is a second-order polynomial in k. Then the velocities of these modes are

dE±

dk
= a1 ±

1

2
√
f(k)

df

dk
, (S24)

Figure S1 shows the drift velocities calculated directly using Eqs. (S22)-(S24). For the physically relevant regime when δt/t0 ≪
1 we see that va is quite small and grows linearly with δt/t0.

0.00 0.02 0.04
t/t0

0.65

0.66

0.67

0.68

v d
 (v

d,
va

c)

FIG. S1. Drift velocity of edge states as a function of δt for EF = ∆/2, λ = ∆/2, ∆Z = 0, and vd = 5 · 102a∆.

III. TIGHT BINDING MODEL FOR 2DEG-SUPERCONDUCTOR JUNCTION

To estimate the properties of the CAES dispersion, for ν = 2 we use the following tight-binding Bogoliubov-de Gennes
Hamiltonian:

HBdG =
∑
i

ψ†
i (4t− µi) τzσ0ψi +

∑
⟨ij⟩

ψ†
i

(
−teiϕi,j

τ0 + τz
2

+ te−iϕi,j
τ0 − τz

2

)
σ0ψj

+
∆Z

2

∑
i

ψ†
i τ0σzψi +

∑
i

ψ†
i (−∆iτx)ψi (S25)
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where ψi = (ci,↑, ci,↓, c
†
i,↓, − c†i,↑)

T , c†i,σ (ci,σ) is the creation (annihilation) operator for an electron at site i with spin
σ, τi are 2 × 2 Pauli matrices in particle-hole space, µi and ∆i are the chemical potential and superconducting gap at site i,
respectively, and ϕi,j is the Peierls phase introduced to take into account the presence of the magnetic field in the 2DEG. We
assume ∆i = ∆̃ in the SC and ∆i = 0 in the 2DEG. In the 2DEG, µi is set to a value, µ = ℏωc (between the first and second
Landau levels). We take the hopping parameter t = 1.323 eV and lattice spacing a = 2.0 nm to model a quadratic dispersion
with effective mass m∗ = 0.1me. We set ∆̃ = 1 meV and consider lead widths L(n)

x = 200 nm and L(n)
x = 600 nm for the

normal and superconductor leads, respectively. In the SC µi = µs, and in general µs ̸= µ. The magnetic field is in the direction,
z, perpendicular to the xy plane to which the 2DEG is confined: B = Bẑ. Using the Landau gauge A = Bxêy (assuming
translational invariance of the leads in the y-direction), the Peierls phase is given by the expression:

ϕi,j = −2πB

ϕ0

(yi + yj)(xj − xi)

2
, (S26)

where (xi, yi) are the coordinates of the ith site, ϕ0 = h/e is the quantum Hall magnetic flux quantum.

IV. TIGHT BINDING MODEL FOR GRAPHENE-SUPERCONDUCTOR JUNCTION

We consider a three-terminal graphene device with two QH leads (lead 0 and 1) and a single SC lead. The tight-binding
Hamiltonian is given by

H = H0 +Hsc +HZ (S27)

In graphene each unit cells is formed by two carbon atoms, A, and B. Atoms A and B form two triangular lattices. Let Ai, and
Bi denote the positions of atoms A and B, and Si = Ai, Bi. With this notation we can write:

H0 =
∑

⟨SiSj⟩

ψ†
Si

(
−teiϕSi,Sj

τ0 + τz
2

+ te−iϕSi,Sj
τ0 − τz

2

)
σ0ψSj

− µ
∑
Si

ψ†
Si
τzσ0ψSi , (S28)

Hsc =
∑
Si

ψ†
Si

(−∆τyσy)ψSi , (S29)

HZ =
∑
Si

ψ†
Si

(
∆Z

2
τzσz

)
ψSi

, (S30)

where ψSi
= (cSi,↑, cSi,↓, c

†
Si,↑, c

†
Si,↓), c

†
Si,σ

(c†Si,σ
) is the creation (annihilation) operator for an electron with spin σ =↑, ↓

at site Si, t = 2.8 eV [27], τi and σi are Pauli matrices in Nambu and spin space, respectively, µ is the chemical potential with
respect to the charge neutrality point, and ϕSi,Sj

is the Peierls phase. Using the same gauge as discussed in the previous section
we have

ϕSi,Sj = −2πB

ϕ0

(Siy + Sjy )(Sjx − Six)

2
, (S31)

where (Six , Sjy ) are the coordinates of site Si. The magnetic field used in our simulations is B = 200 T, which is artificially
large to compensate for a small scattering region giving us a magnetic flux comparable to experiment (Φtot/Φ0 ≈ 345) and to
fix the ratio lB/ξsc = 0.175 and Lsc/ξ = 0.675.

We use this tight binding model as the basis for the fit of ν = 0 states in the CAF phase. In Fig. S2 we show the fit for θ = π/4
used to generate Fig. 4 in the main text and confirm that the nanowire model for the k0 = 0 case hosts Majorana zero modes at
the ends.

V. CALCULATION OF TRANSPORT PROPERTIES

After implementing the tight-binding model via the Python package Kwant [53], we obtain the local and non-local conduc-
tances transmission probabilities T pe

j,0 =
∑Nmode

n tpej,0(n) where tpej,0(n) is the probability of an incident electron from the nth
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k0

FIG. S2. (Left) Parabolic fit (red dashed line) of ν = 0 CAF states (black dots) for θ = π/4 generated from the GS tight binding model using
parameters used in Fig. 3 of the main text.

band of lead 0 to be scattered to lead j as an electron or hole (p = e, h). The non-local downstream conductance is

GD =

Nmodes∑
n

(
T ee
1,0(n)− The

1,0(n)
)

(S32)

and the non-local Andreev conductance is

GAR =

Nmodes∑
n

(
The
0,0(n)− The

1,0(n)
)
. (S33)

The upstream and downstream resistances are calculated using a Landauer-Büttiker approach and found to be [21]:

RU =
RH

ν

(
2The

1,0 + The
0,1 + T ee

0,1

2D

)
(S34)

RD =
RH

ν

(
T ee
1,0 − The

1,0

2D

)
(S35)

where

D = The
0,1T

ee
1,0 + T ee

0,1T
he
1,0 + T ee

0,0

(
The
1,1 + The

0,1 + T ee
0,1

)
+ The

1,1

(
The
0,0 + The

1,0 + T ee
1,0

)
(S36)

VI. ON THE PEIERLS SUBSTITUTION IN QH-SC JUNCTION SIMULATIONS

Let’s consider the two geometries shown in Fig. S3(a-b). The magnetic field can be accounted for on a lattice by using the
Peierls substitution on the hopping t in tight binding simulations:∑

⟨ij⟩

ψ†
i (−t)ψi →

∑
⟨ij⟩

ψ†
i

(
−teiϕi,j

)
ψi, (S37)

where ϕi,j is the Peierls phase, Eq. (S26). The Peierls phase, integrated around a plaquette, is the magnetic flux threading the
plaquette modulo ϕ0. We will assume that the S region is in the Meissner phase and take A⃗ = 0. First consider geometry (a) and
the flux threading the plaquettes along the NS interface shown in Fig. S3(c). Using Φ =

∮
dℓ⃗ · A⃗,

Φ1 = Φ2 = a2B (S38)
Φ3 = Φ4 = a(y0 − a)B (S39)
Φ5 = 0. (S40)

Notice that Φ3, Φ4 depend on the coordinate system (i.e. y0). Since Φ is an observable quantity, this cannot be the case. The
choice of y0 is made to smoothly and monotonically take Φ → 0 across the NS interface. Then we must choose y0 ∈ {a, 2a}.
But the reason for the choice of y0 is even more basic than this. From classic electrostatics, the boundary conditions for the
magnetic field imply the vector potential must be continuous across any boundary. Then, since the NS boundary lies between
y ∈ {y0 − a, y0 − 2a}, we must have y0 ∈ {a, 2a} to make A⃗ continuous across the NS interface.

Turning to geometry (b), we can perform a similar analysis and show that the continuity of A⃗ along the NS interface is
generally violated. Hence, we may assume A⃗ = 0 at all S sites only if (i) the NS interface is perpendicular to the translationally-
invariant normal leads and (ii) the coordinate system is chosen such that A⃗ in the normal region goes to zero at the NS interface.
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FIG. S3. (a,b) Two distinct geometries of a NS junction where the two-terminal conductance is expected to be the same for both geometries in
the ideal situation. (c) Schematic of the tight binding lattice at the NS interface.


