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Inversion asymmetry in bilayer graphene can be tuned by the displacement field. As a result,
the band dispersion in biased bilayer graphene acquires flat band regions near the Dirac points
along with a non-trivial band geometry. We analyze the effect of inversion symmetry on the critical
temperature and superfluid stiffness of the superconducting state of AB-stacked graphene bilayer
and on the exciton condensate in double layers formed by two AB-stacked graphene bilayers. The
geometric superfluid stiffness in bilayer graphene superconductors is found to be negligible due
to the small superconducting gap. Furthermore, we show that the geometric superfluid stiffness
is maximized for a constant order parameter. Therefore, it can be neglected in biased bilayer
graphene superconductors with any pairing symmetry. However, the displacement field enhances the
geometric superfluid stiffness in exciton condensates. It is most prominent at low densities and high
displacement fields. A consequence of the geometric superfluid stiffness is a modest enhancement of
the Berezinskii-Kosterlitz-Thouless transition temperature in bilayer graphene’s exciton condensate.

I. INTRODUCTION

The recent discovery of superconductivity [1–7] and
correlated phases [8–13] in twisted two-dimensional crys-
tals [14] has brought attention to the role of non-trivial
band geometry in multi-orbital superconductors [15–
24] and other strongly correlated states. [13, 25–35]
Non-trivial band geometry in multi-orbital superconduc-
tors [1–7] and exciton condensates results in a geomet-
ric superfluid stiffness associated with inter-band excita-
tions of the condensate. For isolated bands, the inter-
band contribution to the superfluid stiffness can be pro-
jected onto the lowest energy and is proportional to the
quantum metric of the band. [16] In contrast, the conven-
tional superfluid stiffness is proportional to the electron
density and inversely proportional to the band’s effective
mass. [36] Consequently, the geometric superfluid weight
dominates in flat band superconductors and exciton con-
densates [35, 37], such as superconducting twisted bilayer
graphene [1–4] and twisted multi-layer graphene [5–7] at
magic angles. Additionally, the quantum metric is lower-
bounded by the absolute value of the Berry curvature.
Therefore superconductors in the topological and Wan-
nier obstructed bands [15, 18, 38–40] exhibit a finite su-
perfluid stiffness. [41]

Until recently, the geometric superfluid weight has only
been studied for flat or weakly dispersive isolated bands.
However, situations arise where an otherwise dispersive
band contains large flat regions in momentum space, as
in multi-layer graphene systems. [42–47] Since pairing in-
teractions are typically projected close to the Fermi en-
ergy if the Fermi energy also coincides with these flat
regions, the geometric superfluid density can be compa-
rable to its conventional counterpart. Additionally, to
maximize the flat band regions and geometric superfluid
density, it would be ideal to engineer situations where

the local extrema of the Berry curvature also coincide
with such flat band regions. In bilayer graphene, the flat
band regions appear at the Dirac points, in the vicinity
of which the Berry curvature and the quantum metric ex-
hibit maximum values. The tunability of the band struc-
ture and Berry curvature of biased bilayer graphene by
displacement fields and control of total density in dual-
gated samples make it possible to satisfy these stringent
constraints.

In this work, we analyze the geometric and conven-
tional superfluid stiffness ratio, which can be tuned by
displacement fields in biased-bilayer graphene supercon-
ductors [48, 49] and exciton condensates. [50] We first
perform a mean-field analysis of superconductivity and
exciton condensation in dual-gated bilayer graphene in
the presence of a mass term m due to broken C2 sym-
metry. This mass term corresponds to the displace-
ment field between the layers. We assume a momentum-
independent order parameter at the Fermi surface in both
cases. Inversion asymmetry, characterized by m, en-
hances the superconducting and excitonic gap, increas-
ing the critical temperature Tc. We find that for small
changes in mass term m ∼ 0−40 meV, the self-consistent
value of the superconducting gap increases by several or-
ders of magnitude. However, the associated Tc ∼ 1−100
mK is small. In contrast, the enhancement of the exciton
gap is less pronounced but its Tc can be larger. This is
due to the long-range nature of the pairing attraction in
exciton condensates. The exciton gap is maximized for an
optimal value of the density-dependent mass m(n) pro-
viding critical temperatures Tc ∼ 1− 10K. This provides
a sweet spot to search for the elusive exciton condensate
in double-bilayer graphene systems.

The superfluid density for the two cases exhibits very
different behaviors. In the case of superconductors, while
the geometric superfluid density enhancement follows the
superconducting gap, it is negligible compared to the con-
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ventional superfluid density. This is due to the small
values of the superconducting gap. However, for the ex-
citon condensate, the geometric contribution is of the
same order as the conventional superfluid density. As
a result, the geometric superfluid stiffness for the exci-
ton condensate exhibits a rich phenomenology, the most
striking of which is a density-dependent maximum value
as a function of the mass term m. We analyze the
Berezinskii-Kosterlitz-Thouless (BKT) transition tem-
perature (TBKT) for the exciton condensate. [51] The ad-
ditional geometric superfluid density increases TBKT/Tc,
which is more pronounced at low densities and large val-
ues of m.

The paper is organized as follows: Section I reviews
chiral two-dimensional electron systems’ geometric and
topological properties. In section II, we solve the self-
consistent gap equation for the superconductor, and the
exciton condensates as a function of the density n and the
mass m. In section III, we calculate the superfluid den-
sity and discuss the enhancement of the geometric super-
fluid stiffness for both cases. Finally, section IV discusses
the influence of the mass term on the BKT transition in
exciton condensates. We conclude by discussing the rel-
evance of our results to experiments in superconducting
and exciton condensates in biased bilayer graphene.

II. CHIRAL 2DEGS: GEOMETRIC
PROPERTIES

The electronic properties of single and multi-layer
graphene 2D crystals are described by the chiral two-
dimensional electron gas (C2DEG) Hamiltonian. This
class of k · p Hamiltonians is defined for the electron en-
velope wavefunction momenta k near the Dirac points
K(K ′) denoted by η = ±. The chiral 2DEG Hamilto-

nian: H0,η =
∑

k,η c†k,ηĤ0,ηck,η with chirality index J ,

Ĥ0,η = ζJk
J

(
cos(Jϕk)σ̂x + η sin(Jϕk)σ̂y

)
+mσ̂z, (1)

captures a chirality-dependent electronic dispersion. In
Eq. (1), σ̂i correspond to the Pauli matrices defined in
the sublattice space, while the momenta, k = (k2

x+k2
y)1/2

with ϕk = tan−1(ky/kx) and ζJ denotes a constant in
units of eV/nmJ , ζ1 = ~v for graphene and ζ2 = (~v)2/γ1

(γ1 ∼ 0.4 eV) for bilayer graphene systems, with v ≈
1×106 m/s. The Hamiltonian acts on the two-component

spinor c†k,η = (c†k,A,η, c
†
k,B,η), with c†k,A(B),η(ck,A(B),η)

denoting the creation (annihilation) fermionic operator
for a given sub-lattice A(B) in the η valley.

The mass term m breaks C2 symmetry, however, the
system still retains particle-hole and time-reversal sym-
metry, expressed as σyĤ0,ησy = −ĤT0,−η and Ĥ0,η =

ĤT0,−η respectively. The energy dispersion for the inver-

sion asymmetric chiral 2DEG is εk,J = ±(ζ2
Jk

2J+m2)1/2.
For biased-bilayer graphene, J = 2 the density of states
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FIG. 1. a) Berry curvature Ω(k) and b) trace of the gµν(k) in
units of a2 as a function of ka for different values of the dis-
placement field, a ∼ 0.246 nm is graphene’s lattice constant.

is enhanced for ε ≈ m,

DJ=2(ε) =
N(0)√
ε2 −m2

Θ(ε2 −m2), (2)

where N(0) = γ1/(4π(~v)2) and Θ is the Heaviside func-
tion. This divergent behavior at ε ≈ m is critical for
the superconducting and exciton gap in biased-bilayer
graphene, as discussed in the next section.

The quantum geometry of a band can be described
by a gauge-invariant complex tensor Rµν(k), called the
quantum geometry tensor, [52]

Rαµν(k) = 2Tr
[
Pα(k)∂µPα(k)∂νPα(k)

]
(3)

where Pα(k) = |uα(k)〉〈uα(k)| denotes the projection op-
erator for the αth-band and ∂µ = ∂/(∂kµ), µ, ν = kx, ky
denote directions in momentum space. The real part
of the quantum geometric tensor, denoted by gαµν(k) =
Re[Rαµν(k)] provides a notion of a quantum distance be-
tween projected states in the Hilbert space. The imag-
inary part Im[Rαµν(k)] = Ωαµν is the well-known Berry
curvature.

For any two-band model, H = σ · n(k), the quantum
geometric tensor Rαµν(k) can be expressed as,

Rαµν =
1

2
∂µn̂ · ∂ν n̂ + ıα

1

2
n̂ · ∂µn̂× ∂ν n̂, (4)

where α = ± denotes the particle/hole bands, and n̂ =
n/|n|. The quantum metric for the massive chiral 2DEG
model is valley- and spin-independent

g±µν(k) =
ζ2
JJ

2k2(J−1)

2(ζ2
Jk

2J +m2)2

(
m2δµν+ζ2

Jk
2J−2(k2δµν−kµkν)

)
.

(5)
The quantum metric components satisfy gxx(k, ϕ) =
gyy(k, ϕ + π/2), implying a π/2 rotational symmetry.
The Berry curvature Ωηα(k) for a chiral 2DEG is valley-
dependent,

Ωησ(k) = −αη ζ
2
JJ

2

2

mk2(J−1)

(ζ2
Jk

2J +m2)3/2
. (6)

The Berry curvature Ω(k) and Tr[g(k)] for biased-
bilayer graphene (J = 2) are plotted in Fig. 1 a) and
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b) at different values of m. Both exhibit a mass-
dependent maximum at a non-zero wavevector. The
position of the maximum in Ω(k) and Tr[g(k)] scales

as 0.84(0.86)
√
m/ζ2, respectively. This feature is im-

portant to the density and mass-dependent behavior of
the geometric superfluid stiffness. Additionally, since the
positive-definiteness of the quantum geometry tensor re-
quires that the real part and imaginary part satisfy the
relation Tr[g(k)] ≥ |Ωησ(k)|, these functions track each
other.

III. MEAN FIELD THEORY FOR
SUPERCONDUCTIVITY AND EXCITON

CONDENSATION

Since this paper aims to study geometric superfluid
stiffness in biased-bilayer graphene, we prefer to remain
agnostic of the specific pairing mechanism and, for sim-
plicity, assume a k-independent order parameter. For
the superconductor, this corresponds to an onsite sub-
lattice independent pairing attraction. Initial experi-
ments on superconductivity in bilayer graphene indicate
an unconventional pairing mechanism, possibly resulting
in a sign-changing order parameter on the Fermi sur-
face, [48, 49, 53]. However, a k-independent order pa-
rameter on the Fermi surface has also been proposed. [54]
We discuss the relevance of our findings for non-s-wave
pairing toward the end.

An onsite pairing attraction results in spin-singlet
Cooper pairs across the valleys (k, σ,+;−k,−σ,−). The
mean-field Bogoliubov-de Gennes Hamiltonian HBdG =∑

k ψ
†
kĤBdGψk in the four-component Nambu spinor ba-

sis with ψ†k = (c†k,↑,+, c−k,↓,−, ),

ĤBdG =

(
Ĥ0,+(k) ∆k

∆†k −ĤT0,−(−k)

)
. (7)

After projection onto the electron band, the order pa-
rameter ∆k is determined from the self-consistent gap
equation,

∆k =

∫
d2k′

(2π)2
Vk,k′Γ(k,k′)

∆k′

2Ek′
, (8)

where E2(k) = ξ2
k + ∆2

k with ξk = (εk,J − µ), µ denotes
the Fermi energy. We assume µ > 0 (the results for
µ < 0 can be attained from particle-hole symmetry of
the graphene Hamiltonian). Γ(k,k′), denotes the angle-
dependent chirality form factor,

Γ(k,k′) =
1

2

(
1+cos θk cos θk′+sin θk sin θk′ cos(Jϕk−k′)

)
,

(9)
where cos(θk,J) = m/|εk,J | and ϕk−k′ ≡ ϕk − ϕk′ .
In general, the chirality form factor Γ(k,k′) results in
an order parameter of the form ∆k = |∆α| eiαϕk+iφ

with chirality α = 0,±1,±2, . . . [55] and an arbitrary
global phase φ = 0. Substituting ∆k = |∆α| eiαϕk

FIG. 2. The magnitude of the superconducting order param-
eter ∆ as a function of the mass gap and two-dimensional
charge density n for bilayer graphene. Here V0 = 908 meV·
nm2 and ωc = 1 meV. The unit of n is 1011cm−2 if not spec-
ified specially.

in the gap equation above and integrating over ϕk re-
sults in only three orthogonal solutions α = 0,±J for
any central interactions. For s-wave pairing interaction
Vk,k′ = V0, constant over thin shell over the Fermi sur-
face −ωc < (εJ,k − µ) < ωc, with cutoff ~vkc ∼ 1meV ,
the α = 0 (s-wave) component provides the largest gap
∆ ≡ ∆α=0,|k|=|kF | for all values of m.

For weak coupling, λ = N(0)V0/2 � 1, the super-
conducting gap can be expressed as ∆ = 2ωc exp(−1/λ)
when m = 0. For our calculations, we choose V0 =
908 meV· nm2 and ωc = 1meV, which corresponds to
∆ ∼ 0.0045meV (Tc ∼ 30mK) with m = 50 meV and
n ∼ 6× 1011cm−2. [48]

The order parameter exhibits exponential growth, as
indicated in Fig. 2 a) and b) for m ∼ 0−50 meV. It then
increases linearly for higher values of the mass term. This
enhancement results from the large density of states at
low values of n. For m = 0, the density of states in bilayer
graphene is constant. Therefore, ∆ has no dependence on
the Fermi energy. However, when m 6= 0 at lower values
of densities, there is a large density of states, resulting in
an enhancement of the order parameter, as indicated in
different line cuts in Fig. 2 b). The full phase diagram
as a function of the mass m and the two-dimensional
density n is plotted in Fig. 2 a). Next, we study the
exciton gap in bilayer exciton condensates, which shows
different behavior from the superconducting gap due to
the long-range nature of the attractive interaction.

To realize bilayer graphene excitons condensate, we
consider two bilayer graphene systems separated by a di-
electric of thickness d (see Fig. 3). [50, 56–58] The Fermi
energy can be tuned by the top and bottom gates to
ensure electrons(holes) in the top(bottom) layers. In the
particle(hole) language, the electrons in the top layer pair
up with holes in the bottom layer, forming an exciton, as
shown in Fig. 3. Particle-hole (PH) symmetry in exciton
condensates plays the same role as time-reversal symme-
try in superconductors. [59] 2D crystals generally satisfy
perfect particle-hole symmetry [56, 57], therefore, they
are attractive candidates to realize double-layer exciton
condensates. [56, 57]
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FIG. 3. (a) Schematic of dual-gated bilayer graphene device
for exciton condensate. (b) The quasiparticle bands disper-
sion in biased bilayer graphene exciton condensate. Dashed
lines indicate the non-interacting electron-hole bands. The
Fermi energy is indicated in green

A similar mean field analysis can be performed for the
double-biased bilayer graphene exciton condensate. The
mean-field exciton parameter, here denoted by ∆⊥, is
calculated from self-consistent similar to Eq. 8 (see the
Appendix for details). For the exciton case, we take the
inter-layer interaction as, VD(q) = 2πe2/(εq)e−qd with
the value of ε ∼ 10 to capture the effects of screening.
As in the superconducting case, the α = 0 solution has
the largest value for the exciton gap for all values of the
mass m. In the α = 0 pairing channel, the gap equation
can be expressed as,

1 = κ

∫ π/2

−π/2
dϕ

∫ 2 cosϕ

0

dq̄
e−q̄kF d cos θk−q cos θk√

ξ̄2
k−q + (∆̄⊥)2

∣∣∣∣
|k|=kF

,

(10)
where κ = e2γ1/(8πε(~v)2kF ) is the coupling constant,
all energies are measured relative to the Fermi energy
εF , and the exciton gap ∆⊥ and chirality factors are all
evaluated at |k| = kF . The k−1

F dependence of the cou-
pling constant and exponential decay as a function of kF
results from the Coulomb interaction. This results in a
different dependence of the exciton gap on n and m.

The results for the exciton gap with Coulomb inter-
layer interactions are plotted in Fig. 4 a) as a function of
m and n for double bilayer graphene. We take the Fermi
energy EF ∼ 3 − 35 meV at m = 0 which corresponds
to the densities n = 0.1 − 1 × 1012 cm−2 and d = 1nm.
At m = 0, the exciton gap is expected to decrease as a
function of the density n (not visible due to the scale in
Fig. 4 a). This is the combined effect of a weaker cou-
pling constant κ value and the exponential suppression
in Eq. 10.

Fig. 4 a) indicates an optimal value of n and m where
the exciton gap is maximized. This behavior can be un-
derstood by studying the low and high n limits for m
in Eq. 10 At low densities, electrons reside in flat-band
regions with access to a large density of states, resulting
in a sudden increase in the exciton gap. At large densi-
ties, the exponential term in Eq. 10 dominates, thereby

FIG. 4. The magnitude of the exciton order parameter ∆ as a
function of the mass gap and two-dimensional charge density
n for biased bilayer graphene. The inset in (b) shows the
∆(m) at lower values of m.

reducing the exciton gap sharply. At intermediate values
of the density n, these opposite trends conspire to pro-
duce a density-dependent local maximum value of the
exciton gap. This analysis indicates an optimal value of
displacement fields to search for exciton condensates in
biased bilayer graphene.

The exciton gap enhancement is shown in Fig. 4 b).
Even though the exciton gap is enhanced as a function
of m, this enhancement is less pronounced than that of
the superconducting gap; remarkably, the exciton gap
also shows the opposite trend as a function of the mass
and density in the enhancement. For the range of den-
sities considered, initially, there is a larger enhancement
at lower densities for masses m ∼ 0−20 meV. After this,
there is a larger enhancement at higher densities past a
density-dependent crossover point. These differences are
due to the long-range nature of the Coulomb interaction,
which results in a density-dependent coupling parameter.

IV. SUPERFLUID DENSITY

Our two-band superconductor is restricted to intra-
band pairing between opposite spins in different valleys.
In contrast, inter-band pairing results in the formation
of an exciton condensate. This indicates the similarity
and essential differences in the superconductors and ex-
citon condensates. In the latter particle-hole symmetry
results in the nesting of electrons and holes, while in the
former time-reversal symmetry results in the nesting of
electrons with opposite spins and opposite valleys. While
the paring interaction in the superconductor and exciton
condensate corresponds to physically distinct processes,
the mathematical structure of the mean-field Hamilto-
nian is similar, allowing for a unified description of the
superfluid properties.

The superfluid density of the condensate characterizes
its ability to carry a supercurrent. For a two-band model,
taking the Fermi energy to lie within the αth band gives
two contributions to the superfluid density for the αth-



5

FIG. 5. The superfluid stiffness for bilayer graphene super-
conductor. (a) & (c) plot the geometric stiffness as a function
of m for different density values n and as a function of n
at different m, respectively. (b) The conventional superfluid
density as a function of m for fixed n and (d) as a function of
n for fixed m. The solid line labels the geometric term in all
graphs, while the dashed line is the conventional superfluid
density. The unit of energy is meV.

band Dµν = Dconv
µν +Dgeo

µν , [16] where,

Dconv
µν =

g

L2

∑
k

(
1− ξα,k

Eα,k
tanh

(βEα,k
2

))
∂µ∂νεk,α,

(11)
is the conventional contribution to superconductivity,

Dgeo
µν =

g

L2

∑
k,α=±

2|∆k|2

αEk,α

εk
µ

tanh
(βEk

2

)
gµν(k), (12)

where E2
k,α = αξ2

k + ∆2
k, is the geometric contribution

in the two-band model. At T = 0, Dconv
µν = n/m?δµν ,

where m? = ~−1(∂2εk)/∂k2, is the effective mass. This
result is independent of the symmetry of the order pa-
rameter. The s-wave order parameter maximizes the ge-
ometric superfluid stiffness, as any non s-wave symmetry
reduces phase space in the integral over momentum space
in Eq. 12. Therefore, our results for the s-wave symme-
try provide an upper bound for the geometric superfluid
density associated with the superconductor and exciton
condensates in biased bilayer graphene.

Using azimuthal symmetry we can write Dgeo
xy = 0 and

Dgeo
xx = Dgeo

yy = Dgeo. For m = 0, the superfluid density
can be expressed as,

Ds =
gJ

2π

√
µ2 + ∆2 +

gJ∆2

2πµ
log

(
µ+

√
∆2 + µ2

µ−
√

∆2 + µ2

)
.

(13)

FIG. 6. The superfluid stiffness for the exciton condensate.
(a) & (c) plot the geometric term as function of m for dif-
ferent values of density n and as a function of n at different
m, respectively. (b) The ratio of the superfluid density as a
function of m for fixed n. (d) Total superfluid density as a
function of n for fixed m In all graphs, the solid line labels the
geometric term, while the dashed line is the total superfluid
density. The unit of energy is meV.

For weak coupling, µ = εF and ∆ � εF , resulting in a
comparatively minor geometric superfluid stiffness. For
m > 0, the superfluid density is calculated numerically
using Eqs. 11 and 12. The geometric and conventional
superfluid density as a function of m is shown in Fig. 5.
As in the case m = 0, the geometric superfluid stiffness
is negligible Dgeo

s /Dconv
s ∼ 10−4 for m ∼ 50 meV due

to the small superconducting gap. The geometric su-
perfluid stiffness is plotted as a function of m in Fig. 5
a; it follows the same behavior as the enhancement of
the superconducting gap. As expected, the conventional
superfluid stiffness decreases as a function of m as indi-
cated in Fig. 5 b, due to an increase in the effective mass
m?. The decrease in the geometric superfluid stiffness in
Fig. 5 (c) can be interpreted as a result of the µ−1 term
in Eq. 12. Dconv

s scales linearly with the density n for
small values of the m as shown in Fig. 5 d, but exhibits
an additional nonlinear suppression for larger values of
m.

In contrast, the geometric superfluid stiffness for the
exciton condensate exhibits much richer phenomenology
as indicated in Fig. 6 a-d. Due to the large value of the
exciton order parameter, the geometric superfluid stiff-
ness has the same order as the conventional superfluid
stiffness. As a result, the geometric superfluid density
has a density-dependent maximum as a function of m,
as seen in Fig. 6 a. However, the conventional term still
determines the overall trend, except at very low densi-
ties. There is a slight enhancement in the total super-
fluid density at low densities n . 1 × 1011 cm−2 (see
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Fig. 6 b). Still, the superfluid density is suppressed for
higher densities as a function of m. As a result, the geo-
metric superfluid stiffness acquires a n and m dependent
maximum, as shown in Fig. 6 c). This trend follows the
Berry curvature and quantum metric trace as a function
of m (see Fig. 1 a & b). The exciton gap, which follows
the same trend, along with the quantum metric, deter-
mines the geometric superfluid density behavior. Even
though there is an approximate 20% increase in the to-
tal superfluid stiffness, it follows the same behavior as
the superconductor and is primarily determined by the
conventional term.

V. BEREZINSKII-KOSTERLITZ-THOULESS
TRANSITION

In superconductors and superfluids, the BKT phase
transition separates the superfluid and resistive states
and is associated with the binding-unbinding of vor-
tices. [51] The critical temperature of the BKT
phase transition TBKT is determined from the relation
kBTBKT = πDs(∆(TBKT), TBKT)/8, where Ds is the to-
tal superfluid density. A direct consequence of a geomet-
ric contribution is an increase of TBKT. In the following,
we only present TBKT for the exciton condensate. The
results for the superconductors, which exhibit negligible
geometric superfluid stiffness, follow the standard rela-
tions. [51]

Fig. 7 a-f summarize our findings for TBKT and critical
temperatures Tc for the exciton condensate as a function
of the density n and mass m. The dotted lines show
TBKT calculated with just the conventional term, while
the TBKT plotted by the solid lines taking into account
the geometric contribution. As expected, adding the ge-
ometric superfluid density slightly enhances TBKT. From
the general trends, the enhancement is more pronounced
at lower densities and higher values of m. The density
and mass dependence of TBKT tracks Tc, which exhibits
the same qualitative behavior of the exciton gap. The en-
hancement in TBKT at lower densities and higher masses
is plotted in Figs. 7 e) & f).

VI. DISCUSSION AND OUTLOOK

Inversion asymmetry due to a mass term m enhances
the superconducting and exciton gap in biased-bilayer
graphene and double bilayer-graphene. The supercon-
ducting gap is enhanced exponentially, prominent at low
densities, due to the large density of state resulting from
band flatness near the Dirac point. This is followed by
a concomitant enhancement of the geometric superfluid
stiffness. However, the conventional superfluid stiffness
dominates in the weak coupling limit. The momentum
independent s-wave order parameter considered in this
paper provides an upper bound for the geometric su-
perfluid density in biased-bilayer graphene. Therefore,

FIG. 7. The exciton condensate BKT transition temperature
TBKT, (a) as a function of m for different values of density
n and (b) as a function of n at different m. The exciton
condensate’s critical temperature Tc (c) as a function of m
for different n and (d) as a function of n at different m. The
ratio TBKT/Tc, (e) as a function of m for different n and (f)
as a function of n at different m.

the geometric contribution to superfluidity in bilayer
graphene superconductors should be negligible. [48] This
is not so for the exciton condensate.

For the exciton condensate, the band structure modi-
fication due to the mass term and the long-range nature
of the Coulomb interactions produces a modest increase
in the exciton gap. Coincidentally, the exciton gap is
maximized for an optimal value of the density-dependent
mass m(n) with critical temperatures Tc ∼ 1 − 10K.
These critical temperature estimates are consistent with
more sophisticated studies of exciton condensation in
transition-metal dichalogenides [60], implying mean-field
theory qualitatively captures the behavior of the exciton
condensate gap in biased bilayer graphene. These larger
values of the exciton condensate gap result in a compara-
ble geometric superfluid density compared to the conven-
tional contribution. This geometric contribution is more
pronounced at lower densities and higher mass values,
where flatter regions of the electronic band dispersion
influence the exciton condensate. An experimental con-
sequence of the more significant total superfluid density
is an increase in the BKT transition temperatures of the
exciton condensate in biased bilayer graphene.
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VII. APPENDIX: MEAN FIELD THEORY FOR
THE EXCITON CONDENSATE

Since indirect excitons in spatially separated electron-
hole bilayer are protected from recombination [61], these
systems are ideal platforms for exciton (electron-hole
bound pair) condensation. [62] Particle-hole (PH) sym-
metry in exciton condensates plays the same role as time-
reversal symmetry in superconductors. [59] 2D crystals
generally satisfy perfect particle-hole symmetry [56, 57]
and are attractive candidates to realize double-layer ex-
citon condensates. [56, 57]. The size of the superfluid ex-
citon gap in graphene double-layer condensate has been
predicted to be 1mK − 100K. [50, 56, 57, 63–65] The
wide range of transition temperatures predicted depend
on the level of the approximation in treatment of screen-
ing effects, which are of the order of the Fermi wavevec-
tor and can reduce the exciton gap. [50, 63–65] Similar
double-layer exciton condensates can be engineered in bi-
layer graphene and hybrid systems. To realize a bilayer
exciton condensate, we propose the experimental setup
in the figure, where the two chiral 2DEGs are separated
by a dielectric of thickness d, and top and bottom gates.
The device’s geometry is like Fig. 3 (a). For the single-
layer graphene, the hBN substrate provides a stagger-
ing potential, which breaks the sublattice symmetry and
creates an effective mass for the electrons. Additionally,
for the bilayer graphene systems, the effective mass cor-
responds to the electric field potential difference within
each bilayer.

In both cases, the densities of electrons and holes in
the upper or lower graphene (bilayer graphene) can be
tuned by an electric field applied perpendicular to the
combined hetero-structure, as indicated in the schematic
figure. The layers are gated separately with the gate
potential (Vg,−Vg) in the top and bottom layers. The
gate potential is adjusted for a p-type Fermi surface(FS)
in one layer nested with the n-type FS in the other layer.
The setup in the figure allows independent control of the
doping and layer potential. From now, without loss of
generality, we assume that the gate voltages are such
that the Fermi energy lies in the conduction band for

the top-layer (σ = 1(+)) and in the valence band for
the bottom-layer (σ = 2(−)). The single particle energy
dispersion of the low energy bands of hetero-structure
is symmetric about the Fermi energy due to particle-hole
symmetry with ζk,J,+ = −Vg+εk,J and ζk,J,− = Vg−εk,J
as indicated in Fig. 3 (b).

Assuming that the exciton order parameter ∆ is
smaller than the applied gate potential |Vg|, the density-
density interactions can be projected on the electron
band in the top layer and the hole band in the bottom
layer. The interaction Hamiltonian can be expressed as,

Hint =
1

2L2

∑
q,α=±

(
Vqρ̄q,αρ̄−q,α + V dq ρ̄q,αρ̄−q,−α

)
, (14)

where L2 denotes the area of the heterostructure, σ =
± = (t, b) are identified with the electron bands in the
top layer and the hole bands in the bottom layer, V dq (Vq)
refers to the interlayer (intralayer) interaction, and the
projected density operator can be expressed as,

ρ̄q,α =
∑
k,α

〈χJ,α(k + q)|χJ,α(k)〉γ†k+q,α,σγk,α,σ, (15)

where γ†k,σ(γk,σ) denotes the αth band creation and an-
nihilation operator at k, and σ denotes the spin and val-
ley degrees of freedom, which remain unaffected by the
mass term m. The form factors associated with the wave-
function overlap in the projected density determine the
symmetry of the exciton order parameter ∆ and the fluc-
tuations of the exciton condensate, as we show next.

For a non-zero expectation value for the exciton order
parameter one obtains a mean-field Hamiltonian,HMF =

−
∑

k,σ,σ′ γ
†
k,σ∆k · τσσ′γk,σ′ , where ∆ = (∆x,∆y,∆z)

denote the mean-fields and τ = (τx, τy, τz) are the 2 ×
2 Pauli matrices acting in the layer pseudospin space.
The transverse components of the pseudospin field ∆k

define a complex order parameter ∆⊥k = ∆x
k−i∆

y
k, whose

magnitude
∣∣∆⊥k ∣∣ determines the strength of the particle-

hole condensate. The mean-fields ∆k are given by the
following self-consistent equations:

∆z
k = ηk +

1

2L2

∑
p

[Vk−pΓ(k,p)− EH ]

[
1 +

∆z
p

Ep
f

(
Ep

2

)]
;

∆⊥k =
1

2L2

∑
p

V dk−pΓ(k,p)
∆⊥p
Ep

f

(
Ep

2

)
, (16)

where ηk = |ζk,J |, f(x) = tanh(βx) and β = 1/(kβT ) de-
notes the inverse thermal energy. The interlayer Coulomb
interaction in the direct channel, EH = 2πe2/εgd capture
the layer charging energy, g = 4 is the total spin and val-
ley degeneracy and ε the dielectric constant of the em-
bedding media. The bands in the presence of the exciton

order parameter ∆⊥k are given as Ek =

√
(∆z

k)2 +
∣∣∆⊥k ∣∣2.
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VIII. APPENDIX: SUPERFLUID DENSITY:
GEOMETRIC AND CONVENTIONAL

CONTRIBUTION

The Kubo formula for the superfluid density [16] can
be expressed as,

Dµν =
g

L2

∑
k,ij

n(Ej)− n(Ei)

Ei − Ej

(
〈ψi|∂µH|ψj〉〈ψj |∂νH|ψi〉〉

− 〈ψi|∂µHγz|ψj〉〈ψj |γz∂νH|ψi〉
)
, (17)

where g = 2(4) denotes the degeneracy of the super-
conductor (exciton condensate), i(j) = (±, α) label the
particle-hole Bogoliubov-deGennes (BdG) bands in the
α = ± band, with ψi and Ei denoting the respective BdG
eigenfunctions and eigenvalues, and n(E) corresponds to
the Fermi-Dirac distribution. The first term corresponds
to the diamagnetic contribution, while the second term
is the paramagnetic contribution. At points of degen-
eracy for a gapless order parameter difference between
the Fermi function is replaced by their derivative with
respect to the energy.

The gauge field in superconductor and exciton conden-
sate corresponds to physically distinct processes, namely
the magnetic field for superconductors and displacement

field asymmetry q = e( ~At − ~Ab) (where ~Ai denotes the
electromagnetic gauge field in the ith-layer) for the lat-
ter. Nevertheless, the mathematical structure of the
BdG mean-field Hamiltonian is the same, allowing for
a unified description. In the case of the superconduc-
tor, we assume the µ > 0. The superconducting BdG
eigenstates for the α = + band can be expressed in the

basis set (k, ↑,+;−k, ↓,−), are ψ†α,−(k) = (uα, vα) and

ψ†α,−(k) = (−vα, uα) with

u2
α(k) =

1

2

(
1 +

ξα
Eα

)
v2
α(k) =

1

2

(
1− ξα

Eα

)
(18)

where ξα = εα(k) − µ and Eα =
√
ξ2
α + ∆2. The BdG

eigenstates for exciton condensate can be represented
by the same expression with a different basis choice
(k, σ, e;−k, σ, h). This is due to the unified description
allowed by the superconductor and exciton condensate.

For a k-dependent and real order parameter ∆k, we
can express the matrix element in the above expression
as

〈ψα′,+|∂µH|ψα,−〉 = −(vα,kuα,k+uα′,kvα,k)〈uα′ |∂µH|uα〉,
(19)

where uα is the Bloch wavefunction of the band. The
matrix element above is calculated as usual

〈uα′ |∂µH|uα〉 = ∂µεαδαα′ + (εα′(k)− εα(k))〈∂µuα|uα′〉.
(20)

Taking the Fermi energy to lie within the αth band, a
straightforward calculation [16] gives two contributions
to the superfluid density for the αth-band Dµν = Dconv

µν +
Dgeo
µν , where,

Dconv
µν =

g

L2

∑
k

(
1− ξα,k

Eα,k
∂µ∂νεα,k

)
, (21)

is the conventional contribution to superconductivity,
while the geometric contribution Dgeo

µν becomes,

Dgeo
µν =

g

L2

∑
k

|∆k|2
∑
α 6=α′

(ξα − ξα′)

ξα′ + ξα

(
1

Eα′
− 1

Eα

)
[
〈∂µuα|uα′〉〈uα′ |∂µuα〉+ h.c.

]
, (22)

where α = ± corresponds to the particle/hole bands of
the chiral 2DEG. For the two-band model, the geometric
superfluid can be expressed as

Dgeo
µν =

g

L2

∑
k,α=±

2|∆k|2α
εα,k
µEk

gµν(k). (23)
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B 103, 125406 (2021).
[35] X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Physical

Review B 105, L140506 (2022).
[36] J. Schrieffer, Theory Of Superconductivity, Advanced

Books Classics (Avalon Publishing, 1999).
[37] Z. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi,

J. C. Hone, J. Shan, and K. F. Mak, Nature 574, 76
(2019).

[38] J. Herzog-Arbeitman, V. Peri, F. Schindler, S. D. Huber,
and B. A. Bernevig, Physical review letters 128, 087002
(2022).

[39] M. Tovmasyan, S. Peotta, P. Törmä, and S. D. Huber,
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