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A B S T R A C T   

The recent realization of twisted, two-dimensional, bilayers exhibiting strongly correlated states has created a 
platform in which the relation between the properties of the electronic bands and the nature of the correlated 
states can be studied in unprecedented ways. The reason is that these systems allow extraordinary control of the 
electronic bands’ properties, for example by varying the relative twist angle between the layers forming the 
system. In particular, in twisted bilayers the low energy bands can be tuned to be very flat and with a nontrivial 
quantum metric. This allows the quantitative and experimental exploration of the relation between the metric of 
Bloch quantum states and the properties of correlated states. In this work we first review the general connection 
between quantum metric and the properties of correlated states that break a continuous symmetry. We then 
discuss the specific case when the correlated state is a superfluid and show how the quantum metric is related to 
its superfluid stiffness. To exemplify such relation we show results for the case of superconductivity in magic 
angle twisted bilayer graphene. We conclude by discussing possible research directions to further elucidate the 
connection between quantum metric and correlated states’ properties.   

1. Introduction 

One of the most exciting developments of the past few years in 
condensed matter physics has been the ability of experimentalists to 
realize two-dimensional (2D) “twisted bilayers” [1] and observe the 
establishment in these systems of strongly correlated electronic states 
[2–16]. These systems are formed by two 2D crystals stacked with a 
relative twist angle θ. Twisted bilayer graphene (TBLG), formed by two 
graphene layers, so far, has been the most studied twisted bilayer sys
tem. The feat that experimentalists have been able to accomplish is to 
control θ with high precision and tune it to particular, “magic”, values 
(θM) for which the bands of the system are almost completely flat 
[17–19]. It is for this magic values of θ that the system exhibits a very 
rich phase diagram with strongly correlated phases, including a super
conducting phase for which the ratio between the critical temperature, 
Tc, and the Fermi temperature, TF, ranges between 0.04 and 0.1, 
depending on the doping [4]. The value of Tc/TF ≈ 0.1 is much larger 
than the one for conventional BCS superconductors, and implies that to 
understand the origin of superconductivity in MATBLG weak coupling 
theory is not sufficient. Such value is also larger than in most uncon
ventional superconductors [4], in particular high Tc cuprates. 

One very interesting aspect of magic angle twisted bilayer graphene 
(MATBLG) is the non-trivial geometry of its quantum states. As a 
consequence MATBLG is a new, highly tunable, platform in which the 

connection between strong correlations and quantum states’ geometry 
can be explored in detail both theoretically and experimentally. This 
allows to significantly advance our understanding of the relation be
tween the metric of quantum states, the conditions necessary for the 
establishment and stability of strongly correlated states, and the prop
erties of these states. 

For the past fifteen years the geometry of quantum states has been at 
the center of some of the most interesting discoveries in condensed 
matter physics. The geometry of a manifold of quantum states is encoded 
by the “quantum geometric tensor”, Qμν [20–23]. Qμν has both a real and 
an imaginary part. The imaginary part of Qμν corresponds to the Berry 
curvature [24]. In the past few years many interesting developments in 
condensed matter physics have arisen by a careful treatment of the Berry 
curvature. Exemplary are the discovery of topological insulators (TIs) 
and superconductors [25–29], Weyl and Dirac semimetals (SMs) 
[30–33], and, more recently, higher order topological materials 
[34–42]. At the same time, it is interesting to notice how much less 
attention the real part of Qμν, Re[Qμν], the “quantum metric”, has 
received compared to its imaginary part. This is in great part due to the 
difficulty to measure physical quantities related to Re[Qμν]. However, the 
connection between quantum metric and the properties of collective 
ground states breaking a continuous symmetry, and the availability of a 
system like MATBLG, have opened a new avenue to understand how 
Re[Qμν] can affect the macroscopic properties of quantum systems. 
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In this work we briefly review the recent progress in the under
standing of the relation between quantum metric and the properties of 
correlated states of 2D systems. In Section 2 we present the formalism 
describing in general terms the relation between quantum metric and 
correlated states, in Section 3 we discuss the case when the correlated 
state is a superconductor, in Section 4 we review some of the recent 
results for MATBLG, and finally in Section 5 we summarize the current 
status of our understanding of the topic and possible developments in 
the near future. 

2. Quantum metric and properties of many-body systems 

Quantum mechanical states are represented by rays in a complex 
Hilbert space. For a given quantum system, therefore, the space of 
physical states is not the Hilbert space ℋ, but the projective Hilbert 
space ℘ℋ. The projective Hilbert space ℘ℋ is the space formed by rays in 
the Hilbert space ℋ, where each ray is the set of vectors in ℋ of unit 
norm that differ only by multiplication by phase factors. For a Hilbert 
space of dimension n, ℘ℋ is the complex projective space CPn− 1 formed 
by the lines through the origin of a complex Euclidean space. The inner- 
product of ℋ endows ℘ℋ with the structure of a Kähler manifold, i.e. a 
manifold with a a proper metric tensor [43,44]. ℘ℋ can be parametrized 
by an element λ of a space 𝒱 (that itself can be a manifold) like real 
space, or momentum space. In the remainder we assume the space 𝒱 to 
be the momentum space with elements identified by the momentum 
wave-vector k. 

The inner product of ℋ leads to the natural definition of the distance 
ds2 between two vectors |ψ(k)〉, |ψ(k+dk)〉 with infinitesimally close 

momenta, k, k + dk: ds2
= 〈∂μψ

⃒
⃒
⃒∂νψ〉dkμdkν, where ∂μ ≡ ∂/∂kμ. Given 

that quantum states are represented by elements of ℘ℋ, not ℋ, the 
expression of ds2 is not the proper distance between two quantum states 
with infinitesimally close momenta. This is also reflected by the fact that 
〈∂μψ

⃒
⃒∂νψ〉, in general, is not gauge invariant. The proper distance be

tween quantum states can be obtained by redefining ds2 to remove the 
effects of a gauge transformation [21–23]. This leads to the expression: 

ds2 = Qμνdkμdkν; (1)  

Qμν ≡ 〈∂μψ ∣∂νψ〉 − 〈∂μψ∣ψ〉〈ψ ∣∂νψ〉 (2)  

Bμν ≡ Im[Qμν] (3)  

gμν ≡ Re[Qμν] (4)  

where we have introduced the quantum geometric tensor Qμν. Qμν is gauge 
invariant. Its imaginary part is the Berry curvature, Bμν, and is 
completely antisymmetric and therefore does not contribute to ds2. Its 
real part, gμν, is the Fubini-Study quantum metric [45,46]. It is inter
esting to point out that the Fubini-Study metric is the unique Rieman
nian metric on ℘ℋ that is invariant under the action of unitary 
transformations (U(n)) on CPn− 1. The quantum geometric tensor Qμν is 
positive semidefinite [20]. This fact implies the following two in
equalities [47]: 

detgμν⩾|Bμν|
2
, (5)  

Trgμν⩾2|Bμν| (6) 

It is possible to generalize the definition of Qμν to the non-Abelian 
case [48], in analogy to the non-Abelian generalization of the Berry 
curvature [49]. In this generalization one takes into account that at the 
degeneracy points quantum states related by a rotation in the subspace 
spanned by the degenerate eigenstates are equivalent. By properly 
projecting 〈∂μψ

⃒
⃒∂νψ〉 one obtains the gauge invariant “non-Abelian” 

quantum metric. 

The impact of the study of the effects of the Berry curvature Im[Qμν]

on the properties of quantum systems cannot be overstated. Just in the 
context of condensed matter systems the Berry curvature, and associated 
Berry phase [24], greatly impacted the understanding of the quantum 
Hall effect, the anomalous Hall effect, orbital magnetism [50] and it lead 
to the discovery of topological materials [27,51], and Weyl semimetals 
[32]. By contrast the effect of Re[Qμν] has so far been much less studied. 
gμν has been shown to be connected to the Hall viscosity [52–60], a 
quantity that is difficult to measure [61–67]. For a perfect conductor the 
longitudinal electric conductivity σxx(ω) as a function of frequency ω has 
a delta function Dδ(ω), where D is the Drude weight. The Drude weight 
has also been shown to be connected to the quantum metric gμν, [68–71]. 
Such connection, however, is also difficult to ascertain experimentally 
given that at finite temperature, or in the presence of any amount of 
disorder, σxx(ω) does not have a Dirac’s delta for ω = 0 and therefore 
D = 0. 

The experimental challenges to verify the relation between gμν, the 
Hall viscosity, and D are likely an important reason for the fact that 
much less research activity has been focused on the study of the effects 
of the quantum metric than on the study of the effects of the Berry 
curvature. Recently, however, novel connections 
[47,72,75–77,79,133,134] have been made between the quantum 
metric and properties of electronic systems. In Refs. [47,72] the quan
tum metric of a fractional Chern insulator [73] has been bee shown to be 
related to the stability of the fractional quantum Hall (FQH) phase of 
these systems. In particular it was shown that for a fractional Chern 
insulator band j the trace Tr[g(j)μν − |Bμν|] is correlated to the gap of the 
FQH-like phase [72]. It is also known that the magnetic susceptibility of 
a periodic multi orbital electron system depends on the metric properties 
of the quantum states [74–76]. In Ref. [77] this connection has been 
made more explicit for the case of two-band models. The metric tensor of 
a singular 2D flat band [78], i.e. a flat band with a crossing point with a 
dispersive band, has also been shown to be connected to the energy 
spread of the Landau levels arising from the singular 2D flat band in the 
presence of a magnetic field [79]. 

For systems in which the interactions induce a collective ground state 
that breaks a U(1) symmetry it has become apparent that the quantum 
metric is connected to the phase stiffness, ρ(s)

μν , of the collective ground 
state. This can be seen considering that in this case the effective 
Ginzburg-Landau action describing the low energy physics of the col
lective ground state has a term of the form 

S = β
1
2

∫

drρ(s)|∇ψ |2 (7)  

where ψ = ψ0eiϕ is the complex order parameter describing the ground 
state, ψ0 being the amplitude and ϕ the phase parametrizing U(1), and 
β = 1/(kBT),T being the temperature and kB the Boltzmann constant. To 
simplify the notation in Eq. (7) we have assumed the stiffness to be di
agonal and isotropic ρ(s)

μν = ρ(s)δμν. We can then introduce a gauge field 
Aeff associated to the U(1) charge ̃e. In the presence of Aeff the gradient in 
Eq. (7) must be replaced by the gauge covariant gradient ∇ − ĩeAeff from 
which we get mix terms of the form − ĩeAeff∇ that describe the coupling 
of the system to the field Aeff . From this we can see that the current 
operator j coupling to Aeff is ∼ ẽ∇x, and that ρs must be related to the 
strength of the current-current response (K) of the system to the probing 
field Aeff . This is completely analogous to the case of a superconductor, 
discussed in the next section, in which the connection between the 
metric of the quantum states and ρ(s)

μν is shown explicitly. This connection 
was first shown explicitly for simple cases in superconductors [80–82] 
and for flat ferromagnetic states in systems with flat bands [83]. 

Among all the types of condensed matter systems in which the 
ground states spontaneously break a U(1) symmetry two are particularly 
important and common: ferromagnets (FMs) and superconductors (SCs). 
For both classes of systems Re[Qμν] can play an essential role in deter
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mining the properties of the collective ground state. For magnetic sys
tems Re[Qμν] enters the expression of the spin-stiffness, ρ(s,spin)

μν , for su
perconductors it contributes to the superfluid stiffness, ρ(s)

μν , or, 
equivalently, the superfluid weight D(s)

μν . ρ(s,spin)
μν and ρ(s)

μν can be measured 
and are not affected by small amounts of disorder and so their rela
tionship to Re[Qμν] can be verified experimentally. 

For 2D systems for which the ground state spontaneously breaks a U 
(1) symmetry, ρ(s)

μν governs the Berezinskii-Kosterlitz-Thouless [84,85] 
(BKT) transition, in particular it fixes the value of the temperature, TKT, 
at which the transition takes place. For an isotropic system ρ(s)

μν = ρ(s)δμν 

and ρ(s) fixes TKT via the relation [85]: 

kBTKT =
π
2

ρ(s)
(

TKT

)
. (8)  

As we discuss in the following two sections, Eq. (8) can be used to es
timate the value of ρs in 2D systems. 

For a multi-orbital system ρ(s)
μν has a contribution due to the curvature 

of the bands, the so called “conventional” contribution, ρ(s,conv)
μν , and a 

contribution due to Re[Qμν], the so called “geometric” contribution, 
ρ(s,geo)

μν . Re[Qμν] can be different from zero only for multiband systems. It 
is therefore clear that the geometric contribution to ρ(s)μν can be dominant 
in multi-orbital systems with flat bands. This is precisely the situation in 
MATBLG: the effective moiré lattice of MATBG has a multiband spec
trum with the lowest energy bands, the ones that participate in the 
formation of collective ground states such as superconducting and 
ferromagnetic states [86–88], extremely flat. The advent of systems like 
MATBLG has then greatly increased our ability to study and understand 
the relation between the metric of quantum states and the macroscopic 
properties of collective ground states. 

3. Quantum metric and superfluid stiffness 

To exemplify in concrete terms the connection between the quantum 
metric and the stiffness of a ground state breaking a U(1) symmetry we 
consider the case of a superconductor. For the linear current response to 
an external vector potential, in momentum and frequency space we have 

jμ(k,ω) = Kμν(k,ω)Aν(k,ω) (9)  

where jμ(k, ω), Aμ(k, ω), and Kμν(k,ω) are the Fourier amplitude with 
wave vector k and frequency ω of the μ component of the current den
sity, the μ component of the vector potential A, and of the μν component 
of the current-current response function, respectively. The superfluid 
weight, D(s)

μν is the tensor that relates, within the linear approximation, jμ 

to the ν component of a static (ω = 0) transverse vector potential, k⋅A =

0, in the limit k→0. Denoting by k‖,k⊥, the components of k parallel and 
perpendicular to A, respectively, we have [89,90]: 

D(s)
μν ≡ − lim

k⊥→0
Kμν(k‖ = 0,ω = 0). (10)  

By combining Eqs. (9), (10) we obtain London’s equation 

lim
k⊥→0

jμ(k‖ = 0,ω = 0) = − D(s)
μν lim

k⊥→0
Aν(k‖ = 0,ω = 0) (11)  

that captures the key features, such as the Meissner effect, of the 
superconducting state. ρ(s)

μν is directly proportional to D(s)
μν : 

ρ(s)
μν =

ℏ2

e2 D(s)
μν (12) 

Notice that Eq. (11) was obtained requiring ω = 0,k‖ = 0, and then 
taking the limit k⊥→0. As a consequence Eq. (11) cannot be used to 
relate a time-dependent current to a time-dependent vector potential. 
This can only be done by allowing ω ∕= 0 when calculating Kμν(k, ω). 

The value of Kμν(k,ω) in the limit (k = 0,ω→0) is proportional to the 
Drude weight [89,90] (see Section 2). 

For an isolated parabolic band, at zero temperature, ρ(s)μν = ℏ2(n/m*)

δμν [89,90], where n is the electron density, and m* is the effective mass 
of the band. This conventional result would lead us to the conclusion 
that for systems like MATBLG, for which m*→∞, ρ(s)

μν should be very 
small so that the hallmark signatures of superconductivity such as the 
Meissner effect (for 3D systems) should be extremely weak. This is in 
contrast with the experimental observations and shows that the con
ventional expression for ρ(s)

μν obtained for a single parabolic band is not 
general enough. 

For the case of a multi-band system we need to derive the expression 
of ρ(s)

μν from the general expression of Kμν(k,ω). Using the Kubo formula 
we have: 

Kμν(k,ω) = 〈Tμν〉+ 〈χp
μν(k,ω)〉 (13)  

where Tμν is the diamagnetic current operator 

Tμν =
∑

σ

∫
dk

(2π)dc†kσ∂μ∂νH(k, σ)ckσ , (14)  

and 

χp
μν(k,ω) = − i

∫ ∞

0
dteiω+ t〈[jp

μ(k, t), j
p
ν( − k, 0)]〉 (15)  

is the time Fourier transform of the correlator of the paramagnetic 
current operator 

jp
μ(k) =

∑

σ

∫
dk

(2π)dc†k′σ∂μH(k′ +k
/

2, σ)ck′+kσ . (16)  

The angle brackets denote expectation values over the ground state, and 
[, ] the commutator. In Eq. (14), (16) c†k′σ (ck′σ) is the creation (annihi
lation) operator for an electron with momentum k and spin σ, and d is 
the dimensionality of the system. H is the matrix Hamiltonian describing 
the system expressed in the basis used for the creation annihilation 
operators (spin-momentum basis). 

A superconductor can be described in general by a Bogolyubov de 
Gennes Hamiltonian ℋBdG of the form: 

ℋBdG = (ψ†
T ψB)HBdG

(
ψT

ψ†
B

)

, HBdG =

(
HT Δ̂
Δ̂

†

− HB

)

(17)  

where ψ†
T ,ψ

†
B (ψT,ψB) are the creation (annihilation) spinor operators for 

the states, described in the normal phase by the matrix Hamiltonians HT,

HB, respectively, that pair to form the condensate characterized by the 
pairing matrix Δ̂. Using the expression of HBdG given in Eq. (17) for, 
〈Tμν〉, in the Matsubara formalism, we obtain: 

〈Tμν〉 =
1
β

∫
dk

(2π)d

∑

ωn

Tr[∂μ∂νHBdGG(iωn, k)] (18)  

where ωn = πkBT(2n + 1), with n ∈ Z are the fermionic Matsubara 
frequencies and 

G(iωn,k) = [iωn − HBdG]
− 1

=
∑

j

⃒
⃒ψj(k)〉〈ψj(k)

⃒
⃒

iωn − Ej(k)
(19)  

is the retarded Green’s function. In Eq. (19) Ej and 
⃒
⃒ψ j(k)〉 are the 

eignenvalues and eigenvectors, respectively, of HBdG. By performing the 
integration over k by parts, and considering that, from the definition of 
G, ∂μG = − G2∂μHBdG, we can rewrite Eq. (18) in the form: 

E. Rossi                                                                                                                                                                                                                                            
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〈Tμν〉 =
1
β

∫
dk

(2π)d

∑

ωn

Tr[∂μHBdGG2(iωn,k)∂νHBdG]. (20)  

Similarly for the contribution arising from the paramagnetic currents we 
obtain: 

〈χp
μν(k, iΩm)〉 =

1
β

∫
dk′

(2π)d

∑

ωn

Tr[G(iωn,k′)

∂νHBdG(k′ + k/2)τzG(iωn + iΩm, k′ + k)∂μHBdG(k′ + k/2)τz].

(21)  

where Ωm = 2πmkBT (m ∈ Z) are the bosonic Matsubara frequencies, 
and τz is the z-Pauli matrix. Combining Eqs. (13), (19), (20), and (21), 
after summing over the fermionic Matsubara frequencies, in the limit 
iΩm = 0,k→0, we obtain [82]: 

ρ(s)
μν =

∑

i,j

∫
dk

(2π)d
nF(Ei) − nF(Ej)

Ej − Ei

[〈
ψi

⃒
⃒∂μHBdG

⃒
⃒ψj〉〈ψj

⃒
⃒∂νHBdG

⃒
⃒ψi〉

− 〈ψi

⃒
⃒∂μHBdGτz

⃒
⃒ψj〉〈ψj

⃒
⃒τz∂νHBdG

⃒
⃒ψi〉

]

(22)  

where nF(E) is the Fermi-Dirac function. 
Eq. (22) can be used to show the connection between ρ(s)

μν and the 
quantum metric of the Bloch states. The origin of such connection can be 
understood by considering that in general, for a generic Hamiltonian H, 
the expectation values 〈ψ i

⃒
⃒∂μH

⃒
⃒ψ j〉 of the velocity operator ∂μH have an 

anomalous contribution proportional to 〈ψ i
⃒
⃒∂μψ j〉, and that therefore the 

terms 〈ψ i
⃒
⃒∂μHBdG

⃒
⃒ψ j〉〈ψ j

⃒
⃒∂νHBdG

⃒
⃒ψ i〉 in Eq. (22) give rise to terms of the 

form 〈∂μψ i
⃒
⃒∂νψ i〉 that, as shown above, Eq. (2), (4), enter the expression 

of the quantum metric. We call the part of ρ(s)μν arising from these terms 
the “geometric part”, ρ(s,geo)

μν , of ρ(s)
μν . 

We can explicitly separate the contribution to ρ(s)
μν arising from the 

metric of the quantum states from the conventional one, arising from 
terms proportional to the derivatives of the eigenvalues with respect to 
k. Let {∈(T)

mT } ({∈(B)
mB }), {|mT〉} ({|mB〉}) be the eigenvalues and eigen

states, respectively, of HT (HB). The Hilbert space for HBdG is given by the 
direct sum of the Hilbert spaces ℋT of HT and ℋB of HB. Any eigenstate 
|ψ i〉 of HBdG can be written as (

⃒
⃒ψT

i 〉,
⃒
⃒ψB

i 〉) with (
⃒
⃒ψT

i 〉 ∈ ℋT , and 
(
⃒
⃒ψB

i 〉 ∈ ℋB. Assuming Δ̂ to be independent of k, following [82], we can 

rewrite Eq. (22) to identify the contribution to ρ(s)
μν arising from the 

quantum metric of the |mT〉, |mB〉 states, i.e. the quantum metric of the 
bands in the normal phase. To do this we start by rewriting the expec
tation values 〈ψ i

⃒
⃒∂μHBdG

⃒
⃒ψ j〉 in terms of the |mT〉, |mB〉 states 

〈ψi∣∂μHBdG∣ψj〉 =
∑

mT ,mB
nT ,nB

[
cT

i,mT
JT

μ,mT ,nT
cT

nT ,j − cB
i,mB

JB
μ,mB ,nB

cB
nB ,j

]
(23)  

where 

cX
i,mX

= 〈ψX
i ∣mX〉; (24)  

JX
μ,mX ,nX

= 〈mX ∣∂μHBdG∣nX〉. (25)  

and X = (T, B). To simplify the notation in Eqs. (23)–(25) we do not 
show explicitly the dependence of the quantities on the momentum k. 
Using Eqs. (23)–(25) we can rewrite Eq. (22) in the form 

ρ(s)
μμ = − 4

∑

mT , nT

pB, qB, i, j

∫
dk′

(2π)d Re
[

nF(Ei) − nF(Ej)

Ej − Ei

cT
i,mT

(cT
j,nT

)
*cB

j,pB
(cB

i,qB
)

*JT
μ,mT ,nT

JB
μ,pB ,qB

]

(26)  

The current expectation values JX
μ,mX ,nX 

can be written as 

JX
μ,mX ,nX

= ∂μ∈(X)
mX

δmX ,nX +(∈(X)
nX

− ∈(X)
mX
)〈mX ∣∂μnX〉. (27)  

Eq. (27) shows that JX
μ,mX ,nX 

has a “conventional” contribution propor

tional to ∂μ∈(X)
mX , and a contribution, the second term in Eq. (27), related 

to the geometry of the quantum states. Combining Eq. (26) and Eq. (27) 
we can then identify three contributions to ρ(s)

μν = ρ(s,1)
μν + ρ(s,2)

μν + ρ(s,3)
μν 

ρ(s,1)
μν = − 4

∑

mT ,nT
pB ,qB ,i,j

∫
dk

(2π)d Re
[
CpBqB

mT nT
∂μ∈(T)

mT
∂ν∈(B)

qB
δmT nT δpBqB

]
(28)  

ρ(s,2)
μν = − 4

∑

mT , nT

pB, qB, i, j

∫ dk
(2π)d Re

[
CpBqB

mT nT
[∂μ∈(T)

mT
δmT nT

(∈(B)
qB

− ∈(B)
pB
)〈pB

⃒
⃒
⃒∂μqB〉

+∂ν∈(B)
pB

δpBqB (∈(T)
nT

− ∈(T)
mT
)〈mT

⃒
⃒
⃒∂νnT〉]

]

(29)  

ρ(s,3)
μν = − 4

∑

mT ∕= nT

pB ∕= qB, i, j

∫ dk
(2π)d Re

[
CpBqB

mT nT
[(∈(B)

qB
− ∈(B)

pB
)(∈(T)

nT
− ∈(T)

mT
)

〈
pB
⃒
⃒∂μqB〉〈mT

⃒
⃒∂νnT〉]

]
.

(30)  

where 

CpBqB
mT nT

≡
∑

ij

nF(Ei) − nF(Ej)

Ej − Ei
cT

i,mT
(cT

j,nT
)

*cB
j,pB

(cB
i,qB

)
*
. (31)  

ρ(s,1)
μν is the conventional contribution to ρ(s)

μν . ρ(s,2)
μν is a ”mixed” contri

bution: it depends in part on the properties of the band dispersion, as the 
conventional part, and in part on the geometry of the quantum states. 
For systems with particle-hole symmetry this term is negligible. ρ(s,3)

μν has 
only terms proportional to 〈mT|∂νnT〉, i.e. terms that depend on the 
metric properties of the quantum states; there are no terms proportional 
to the gradient of the eigenvalues with respect to k. For this reason, it is 
natural to identify ρ(s,3)

μν as the dominant geometric term. ρ(s)μν and ρ(s,1)
μν 

are gauge invariant and therefore the combination ρ(s,2)
μν +ρ(s,3)

μν is also 
gauge invariant. For this reason it is useful at times to separate ρ(s)

μν in the 
two terms: ρ(s,1)

μν that only depends on the bands’ dispersion, and 
ρ(s,2)

μν +ρ(s,3)
μν that is mostly given by the metric properties of the Bloch 

states. In the remainder, considering that we mostly focus on super
conducting systems for which ρ(s,2)

μν is negligible, we identify ρ(s,3)
μν as the 

geometric part, ρ(s,geo)
μν , of ρ(s)

μν . 
The expression of ρ(s,geo)

μν ≡ρ(s,3)μν given by Eq. (30), as long as the order 
parameter is independent of momentum, is quite general and therefore 
shows the general nature of the connection between quantum metric 
and superfluid density. It is fairly straightforward to write a similar 
equations for the spin stiffness of a XY ferromagnet or the pseudo-spin 
stiffness of an XY orbital-ferromagnet, i.e., a state in which the degree 
of freedom ordering is not the spin but an orbital degree of freedom, 
situation that appears to be very relevant for systems like MATBLG 
[9,91–93]. 

It is instructive to see how Eqs. (28), (30) simplify when the chemical 
potential lies within a well isolated band, j. In this case, neglecting terms 
of order 1/Γij, where {Γij} are the gaps between band j and the other 
bands, and assuming the pairing matrix to be proportional to the identity 
with amplitude Δ, we can obtain a direct relation between ρ(s,geo)

μν and the 
quantum metric g(j)μν of band j when time-reversal symmetry is preserved 
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and the superconducting order parameter, in addition to being k-inde
pendent, only has intraband terms. In this case we have [82]: 

ρ(s)
μν =

∫ dk
(2π)d

[

2
∂nF(Ej)

∂Ej
+

1− 2nF(Ej)

Ej

]
Δ2

E2
j
∂μ∈j∂ν∈j+

2Δ2
∫

dk
(2π)d

1− 2nF(Ej)

Ej
g(j)

μν

(32)  

where k is the momentum. The last term in Eq (32) is the geometric part 
of ρ(s)

μν that, in this simple case, is related in a very direct way to the 
quantum metric g(j)μν of the isolated band. 

Using the expression above, and the inequality (6) for the case of an 
isolated band we can provide a bound for the geometric part of ρ(s)

μν 
[80,82]: 

ρ(s,geo)μν ⩾2Δ2
∫

dk
(2π)d

1 − 2nF(Ej)

Ej
|Bμν|

2
. (33)  

This result shows that for bands with large Berry curvature the geo
metric contribution to ρ(s)

μν is large. It is important to point out that Eq. 
(33) only provides a lower bound given that it is possible to have situ
ations in which gμν ∕= 0 even if the Berry curvature is zero [77]. 

In 2D, for the case in which the isolated band, is flat, i.e. having a 
bandwidth much smaller than the Γij gaps, and non degenerate, ρ(s)

μν is only 
given by the geometric part and can be written in the form [80]: 

ρ(s)
μν = 2Δ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ν(1 − ν)

√ ∫
dk

(2π)2gμν(k). (34)  

where ν is the filling fraction of the flat band. In this case we have that 
(1/2π)

∫
dkBμν = εμνC, where εμν is the 2 × 2 Levi-Civita tensor and C is 

the Chern number of the isolated band. Using inequality (5) we obtain 
det(

∫
dkgμν)⩾det(dk

∫
|Bμν|

2
= C2 and then, for an isotropic system [80]: 

ρ(s)⩾
Δ
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ν(1 − ν)

√
|C|. (35)  

In general, when the 2D flat band have degenerate points it might not be 
possible to find a lower bound for ρ(s)μν = ρ(s,geo)

μν , however, this can be 
done for the case relevant to MATBLG in which the two low-energy 2D 
flat bands have degeneracy points and C2z𝒯 symmetry, C2z being the 
twofold rotation around the z-axis perpendicular to the 2D plane to 
which the quantum states are confined, and 𝒯 the time-reversal sym
metry operator [94]. Given the presence of degeneracy points it is 
necessary to consider the non-Abelian generalization of the expression 
of Qμν. It can be shown that the C2zT symmetry constrains the non- 
Abelian Berry curvature to the form [95,96] Bxy = − bxy(k)σ2 with (1/
2π)

∫
dkbxy = e2, where e2 is the Wilson loop winding number [95], or 

”Euler’s class” [96], of the two bands. In this case, assuming the pairing 
Δ is non vanishing only for the low-energy, twofold degenerate, band, 
and using again inequality (6), we have that ρ(s) has the lower bound 
[94] 

ρ(s)⩾
Δ
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ν(1 − ν)

√
|e2|. (36)  

For the specific case of TBLG e2 = 1 so that, taking into account the spin 
and valley degeneracy, we obtain [94] 

ρ(s)⩾4
Δ
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ν(1 − ν)

√
. (37)  

Inequalities (35), (36) show how the topological invariants of the bands 
can be used to obtain lower bounds for ρ(s)

μν in flat-band systems. 
For a superconductor ρ(s)μν determines the phase-stiffness of the 

superconducting state and therefore its stability against fluctuations. ρ(s)
μν 

also determines the superfluid density, a quantity that can be measured 
directly. 

ρ(s) = ρs = (1/d)Trρ(s)
μν is easy to measure for 3D superconductors, 

given that it is related to to the London penetration depth λL via the 
equation 

λL =
ℏ
e

1
̅̅̅̅̅̅̅̅̅μ0ρs

√ (38)  

where μ0 is the magnetic permeability. 
For 2D superconductors ρs cannot be obtained indirectly by 

measuring λL and recently techniques have been proposed to obtain it 
via a direct measurement [97]. However, for 2D superconductors, and in 
general 2D ground states that break a U(1) symmetry, ρ(s) can also be 
obtained experimentally via Eq. (8) relating TKT to ρ(s). In particular, for 
2D superconductors, TKT can be obtained as the temperature at which 
the voltage V across the superconductor scales as I3, I being the current. 
This was the approach used in Ref. [7] to estimate TKT in MATBLG. 
Using Eqs. (8) and (22) we can relate TKT to ρs. This requires to properly 
take into account the temperature dependence of ρs: in addition to the 
temperature dependence due to the presence of the Fermi occupation 
factors, we must include the temperature dependence of the order 
parameter Δ. For many of the second-order phase transitions of interest, 
in first approximation, we can assume the ”BCS scaling” Δ(T) =

1.76kB(1 − T/Tc)
1/2. In general Δ(T) can be obtained by solving the 

non-linear gap equation. For the concrete example of superconducting 
MATBLG discussed in Section 4 we have found that the BCS scaling of 
Δ(T) agrees well with the one obtained solving the non-linear gap 
equation. 

4. Quantum metric effects for correlated states in twisted 
bilayer graphene 

The behavior of TBLG is particularly interesting for twist angles 
θ ∼ 1.00◦. For such small twist angles the moiré primitive cell is very 
large and the most effective way to obtain the electronic structure is to 
use an effective low-energy continuum model [19]. The details of the 
model can be found in Ref. [19], here we briefly outline the model’s 
essential elements and assumptions. In graphene the conduction and 
valence bands cross at the corners K of the hexagonal Brillouin zone 
(BZ), |K| = 4π/3a0 with a0 the graphene’s carbon-carbon distance. 
Around the K points electrons in graphene behave as massless Dirac 
fermions [98] and the Hamiltonian for each layer, top (t) and bottom 
(b), forming TBLG is 

Ht/b = vFkt/b⋅σ − μσ0, (39)  

where vF = 106 m/s is graphene’s Fermi velocity, kt/b = (kx, ky)t/b is the 
2D momentum, measured from the Kt/b point, for an electron in the top/ 
bottom layer, σ = (σx, σy) is the 2D vector formed by the x, y Pauli 
matrices in sublattice space [98], μ is the chemical potential, and σ0 is 
the 2 × 2 identity matrix. Conservation of crystal momentum requires 
kb = kt + (Kt − Kb) + (Gt − Gb). Here {Gt/b} are the reciprocal lattice 
wave vectors in the top/bottom layer. Due to the twist the set of {Gt} is 
different from the set of {Gb}. In the model of Ref. [19] only the 
tunneling processes for which |kb − kt | = |Kt − Kb| = 2Ksin(θ/2), are 
taken into account. There are three vectors Qi = (Kt − Kb)+(Gt − Gb)i 
(i = − 1, 0,1) for which Q ≡ |Q| = 2Ksin(θ/2) to which correspond the 
interlayer tunneling matrices [19] 

T0 = w
(

1 1
1 1

)

; T±1 = w
(

e±i2π/3 1
e∓i2π/3 e±i2π/3

)

(40)  

where w ≈ 100 meV is the interlayer tunneling strength. Up to an overall 
scale factor the bands only depend on the ratio w/vFQ [19]. In the 
remainder we set w = 118 meV. The precise value of w depends on the 
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detail of the experimental sample. In addition, due to corrugation effects 
the tunneling strength, w0, for regions with AA stacking can be different 
from the one, w1, for regions with AB stacking. We assume the ratio w0/

w1 to be uniform and equal to 1. Changes in the ratio w0/w1 affect the 
low energy bands and therefore the superfluid stiffness. All the tunneling 
processes for which |kb − kt | = Q are taken into account by keeping all 
the recursive tunneling processes on a honeycomb structure constructed 
in momentum space with nearest neighbor sites connected by the vec
tors Qi. The primitive cell of this structure is the moiré lattice’s mini-BZ. 
We adopt the convention in which the corners, κ±, of the mini-BZ 
coincide with the points for which kt/b = 0. The number of sites of the 
honeycomb structure in momentum space used to obtain the band 
structure is increased until the bands converge. We find that for w = 118 
meV and θ ≈ 1.00◦ convergence is reached when the number of sites is 
∼ 200. 

In Ref. [19] and other works θM is defined as the twist angle for 
which the Fermi velocity at the κ± points of the mini-BZ vanishes, 
whereas in other works it is defined as the value of θ for which the 
bandwidth of the conduction, or valence, band is minimum. In the 
reminder we will adopt this second definition. Fig. 1 (a) shows the 2D 
valence band at the magic angle θ = 1.05◦. We see that the bandwidth is 
just ∼ 2 meV. Small deviations of θ away from θM have large effects on 
the bandwidth of the lowest energy bands. This can be seen from Fig. 1 
(b), showing the 2D valence band for θ = 1.00◦: a change of just 0.05◦ in 
θ results in a factor of 3 change in the bandwidth of the lowest energy 
bands. The change in the bandwidth, in turn, strongly affects the sta
bility, and properties of the correlated ground states. 

The superconducting paring matrix Δ̂ is obtained via the mean-field 
approximation after adding an effective local (s-wave) attractive inter
action whose strength is set so that at the magic angle, θ = 1.05◦,Tc =

1.63K when μ = − 0.3 meV [99], in agreement with experiment [4]. Δ̂ 
describes an s-wave superconductor whose only significant Fourier 
components are the one with wave vector q equal to zero and the ones 
with q = Qi [100,99]. 

The large size of the moiré primitive cell in TBLG when θ is of the 
order of 1◦ implies that effectively TBLG is a system with a large number 
of orbital degrees of freedom. This results in a very non-trivial quantum 
geometric tensors. In particular, for θ close to the magic angle, we have 
several regions of the BZ where the Berry curvature is very large. 
Considering that the positive semidefinite nature of Qμν implies 
detgμν⩾|Bμν|

2, see Section 2, we expect in these regions the geometric 
contribution to ρ(s)

μν to be large. Fig. 2 (a) shows the profile in the BZ of 
the integrand to obtain ρ(s,geo)

μμ for θ = 1.05◦. From this figure we see that 
at the magic angle there are large regions in the mini BZ that provide 
strong contributions to ρ(s,geo)

μμ . Fig. 2 (b) shows the conventional, geo
metric, and total, longitudinal superfluid stiffness for different, small, 
values of θ and fixed μ. We see that that ρ(s,geo)

μμ is larger than ρ(s,conv)
μμ only 

close to the magic angle, but that it is significant for all the values of θ 

smaller than 1.1◦. 
The results of Fig. 2 (b) show that systems like TBLG are an ideal 

playground in which to test the connection between quantum geometry 
and macroscopic properties of correlated ground states. This can be 
seen, for instance, by considering the scaling of ρs with the chemical 
potential μ at the magic angle, and away from it. The conventional 
contribution to ρ(s)

μν , in general, increases with doping, and therefore with 
μ. As a consequence, in systems in which the superfluid stiffness is 
mostly due to the conventional term, the total ρs increases with μ. This is 
the case also for TBLG away from the magic angle as shown in Fig. 3 (a) 
for which the conventional contribution to ρs is larger than the geo
metric contribution. The geometric contribution to ρ(s)

μν , in general, can 
increase or decrease with doping. From Fig. 3 (a) we see that, for θ =

1.00◦, ρ(s,geo)
μν decreases with μ. This is also the case at the magic angle 

where, however, ρ(s,geo)
μν dominates over ρ(s,conv)

μν . As a consequence at the 
magic angle we have the unusual situation that the total ρ(s)μν decreases 
with μ as shown in Fig. 3 (b). 

We expect that the scalings of ρs with respect to μ will be reflected in 
the scaling of TKT. Using Eq. (8), knowing the temperature scaling of ρ(s)

μν ,

TKT can be calculated. Fig. 4 (a) shows the results for the ratio TKT/Tc 
away from the magic angle, θ = 1.00◦. As expected we see that TKT/Tc 
increases as the hole density increases. At the magic angle we have 
instead that TKT/Tc decreases with doping, as shown in Fig. 4 (b), a 
consequence of the fact that at the magic angle the geometric contri
bution of ρ(s)

μν dominates. 
In a 2D superconductor the unbounding of the vortices due to ther

mal fluctuations causes a finite resistance and therefore a finite longi
tudinal voltage, Vxx, that depends on the strength of the electrical 
current I driven through the system. For T = TKT we have that Vxx∝I3. By 
measuring the Vxx(I) relation at different temperatures is then possible 
to estimate TKT as the temperature for which Vxx∝I3. For TBLG this was 
done in Ref. [7]. Fig. 4 (c) shows the scaling of TKT/Tc obtained using the 
two data points presented in the “Extended Data Table 1” of Ref. [7] for 

Fig. 1. Valence band of TBLG for θ = 1.05◦, (a), and θ = 1.00◦, (b). The high 

symmetry points in the moire
́ Brillouin zone (BZ) are also shown. Adapted 

from [99]. 

Fig. 2. (a) Integrand of ρ(s,geo)
μμ for TBLG at the magic angle. μ = − 0.30 meV. (b) 

Conventional (Conv) and geometric (Geom) contributions to the total longitu
dinal superfluid stiffness, ρs ≡ (1/2)Trρ(s)

μν , for TBLG as a function of twist angle. 
μ = − 0.3 meV. Adapted from [99]. 

Fig. 3. Conventional (Conv) and geometric (Geom) contributions to ρs as a 
function of doping, μ (hole doping), for TBLG with θ = 1.00◦, (a), and θ = 1.05◦

(magic angle), (b). Adapted from [99]. 
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MATBLG in the hole doped regime. The figure shows that in the 
MATBLG samples used in Ref. [7], in the hole-doped regime, TKT/Tc 
decreases with doping in qualitative agreement with the results of Fig. 4 
(b), suggesting that also experimentally, in the hole-doped regime, the 
geometric contribution of ρ(s)

μν dominates over the conventional one. 
Fig. 4 (d) shows the dependence in TBLG of TKT on the twist angle for 

fixed chemical potential, μ = − 0.3 meV. These results show that, 
because of the geometric contribution to ρs, at the magic angle TKT is 
largest, along with Tc. This suggests that in multiorbital systems, like 
TBLG, the geometric contribution to ρs can compensate the suppression 
of ρ(s,conv)

μμ associated with the flattening of the bands and lead to robust 
superfluid states. 

The discussion above focused on the case when the correlated ground 
state breaking a U(1) symmetry is the superconducting state. A very 
similar discussion can be carried out for other ground states that break a 
U(1) symmetry. In particular similar results can be obtained for the 
ferromagnetic state [101–103]. Recently it has been suggested that an 
”orbital-magnetic” state, characterized by a non-zero sublattice polari
zation, might be one of the correlated states most likely realized in TBLG 
[9,91–93]. Also for this state, an analysis similar to the one presented 
above for the superconducting state can be done. 

More recently, we have considered the possibility that in double 
TBLG an exciton condensate state might be realized [104]. This is a long 
sought correlated state in which electron and holes (e-h) pair to form a 
neutral superfluid [105–113]. We considered a double layer formed by 
two MATBLG, one electron-doped and one hole-doped, separated by a 
thin dielectric. As for the case of superconductivity the flatness of the 
bands, while favoring the formation of e-h pairs, can lead to a very small 
superfluid density. We found that, for the exciton condensate, the 
quantum metric plays an even more critical role than for the super
conducting case in stabilizing the collective state and in guaranteeing a 
nonzero value of the superfluid stiffness [104]. 

5. Outlook 

The experimental realization of magic angle twisted bilayer gra
phene systems has opened a completely new avenue to explore the 
connection between the metric of quantum states and the properties of 
strongly correlated states that break continuous symmetries. It has 
shown experimentally that the flatness of the low energy bands does not 
necessarily imply a low superconducting density ρ(s)

μν and demonstrated 
the importance of the interband contributions, associated with a non- 
trivial quantum metric of the bands, to ρ(s)

μν . 
The experimental results on MATBLG, combined with the theoretical 

treatment of ρ(s)
μν that includes the geometric contribution 

[80–82,114,99,94,115,116,103], show that the quantum metric plays 
an important role in determining the properties of the correlated states 
of multi-orbital systems. Multilayers formed by 2D crystals stacked with 
relative small twist angles have very large moiré primitive cells and 
therefore many orbitals and low energy bands with very small band
widths. For these systems, therefore, the quantum metric plays in 
important role in determining the stability and properties of correlated 
ground states. We expect that the study of the connection between 
quantum metric and properties of correlated states will be extended to 
several new twisted 2D multilayers, both based on graphene [6,117], 
and on other 2D crystals such as monolayers of transition metal 
dichalcogenides [118–125,16,126–130]. 

A new interesting research direction would be the study of the 
interplay between quantum metric, disorder, and stiffness of the corre
lated states, in particular in twisted bilayers [131]. We could expect that 
for states like superconductivity disorder might suppress the conven
tional part of ρ(s)

μν more than the geometric part. It will be interesting to 
verify theoretically and experimentally the extent of the validity of such 
expectation. 

Correlated states that break a continuous symmetry can differ to
pologically. For these states it will be interesting to investigate how the 
connection between quantum metric and stiffness might vary between 
the different topological phases, and, more in particular, if there are 

Fig. 4. Calculated TKT/Tc as a function of μ for θ = 1.00◦, away from the magic angle, (a), and at the magic angle (b); adapted from [99]. (c) TKT/Tc as a function of 
|nh| in the hole-doped regime obtained from the experimental measurements presented in Ref. [7]. (d) Tc and TKT as a function of θ for TBLG when μ = − 0.3 meV; 
adapted from [99]. 
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features of such connection that can be used to identify the topological 
phases. For instance, topologically different superconducting phases can 
be realized in superconducting quantum anomalous Hall (QAH) states 
[132]. Considering the recent observation of signatures of QAH states in 
MATBLG, superconducting topological states might be realized in 
MATBLG proximitized to a superconductor. 

In some cases, correlated states breaking different continuous sym
metries can compete or coexist. It will be interesting to study the relation 
between quantum metric and properties such as ρ(s)

μν of competing or 
coexisting collective states in systems like TBLG. 

As discussed in Section 3, in 2D systems, experimental evidence of 
the connection between quantum metric and ρ(s)

μν can be obtained indi
rectly by obtaining the scaling of TKT with respect to other tunable 
quantities such as doping. It will be interesting to have more direct 
experimental evidence of the effects of the metric of the quantum states 
on the properties of correlated states. One approach would be to mea
sure the dispersion of the Goldstone modes associated with the sponta
neous breaking of the continuous symmetry given that ρ(s)

μν enters the 
dispersion of such modes. 

In general, the quantitative understanding of the relation between 
quantum metric and the stability and properties of collective ground 
states will allow to better design strongly interacting systems with the 
desired functionalities. By designing multiorbital systems with flat 
bands that maximize the quantum metric we can achieve both large 
values of Tc and superfluid density, properties that are desirable in 
several applications. 
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Berry curvature, and superfluid weight, Phys. Rev. B 95 (2017) 024515. 

[83] L. Liang, S. Peotta, A. Harju, P. Törmä, Wave-packet dynamics of Bogoliubov 
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ferromagnetism, Phys. Rev. B (2020) 102. 

[103] B.A. Bernevig, B. Lian, A. Cowsik, F. Xie, N. Regnault, Z.-D. Song, TBG V: Exact 
Analytic Many-Body Excitations In Twisted Bilayer Graphene Coulomb 
Hamiltonians: Charge Gap, Goldstone Modes and Absence of Cooper Pairing, 
arXiv:2009.14200 (2020). 

[104] X. Hu, T. Hyart, D.I. Pikulin, E. Rossi, Quantum-metric-enabled exciton 
condensate in double twisted bilayer graphene, arXiv:2008.03241 (2020). 

[105] L.V. Keldysh, Y.V. Kopaev, Possible instability of semimetallic state toward 
coulomb interaction, Soviet Phys. Solid State ussr 6 (1965) 2219. 

[106] B. Halperin, T. Rice, The excitonic state at the semiconductor-semimetal 
transition, Solid State Physics, vol. 21, Academic Press, 1968, pp. 115–192. 

[107] Y.E. Lozovik, V.I. Yudson, Feasibility of superfluidity of paired spatially separated 
electrons and holes - new superconductivity mechanism, Jetp Lett. 22 (1975) 274. 

[108] Y.E. Lozovik, V.I. Yudson, Novel mechanism of superconductivity - pairing of 
spatially separated electrons and holes, Zhurnal Eksperimentalnoi I 
Teoreticheskoi Fiziki 71 (1976) 738–753. 

[109] J.P. Eisenstein, A.H. MacDonald, Bose-einstein condensation of excitons in bilayer 
electron systems, Nature 432 (2004) 691. 

[110] M.M. Fogler, L.V. Butov, K.S. Novoselov, High-temperature superfluidity with 
indirect excitons in van der Waals heterostructures, Nat. Commun. 5 (2014) 4555. 

[111] S. Gupta, A. Kutana, B.I. Yakobson, Heterobilayers of 2D materials as a platform 
for excitonic superfluidity, Nat. Commun. 11 (2020) 2989. 

[112] Z. Wang, D.A. Rhodes, K. Watanabe, T. Taniguchi, J.C. Hone, J. Shan, K.F. Mak, 
Evidence of high-temperature exciton condensation in two-dimensional atomic 
double layers, Nature 574 (2019) 76–80. 

[113] J. Wang, Q. Shi, E.-M. Shih, L. Zhou, W. Wu, Y. Bai, D. Rhodes, K. Barmak, 
J. Hone, C.R. Dean, X.-Y. Zhu, Diffusivity reveals three distinct phases of 
interlayer excitons in MoSe2/WSe2 heterobilayers, Phys. Rev. Lett. 126 (2021) 
106804. 

[114] T. Hazra, N. Verma, M. Randeria, Bounds on the Superconducting Transition 
Temperature: Applications to Twisted Bilayer Graphene and Cold Atoms, Phys. 
Rev. X 9 (2019) 31049. 

[115] A. Julku, T.J. Peltonen, L. Liang, T.T. Heikkilä, P. Törmä, Superfluid weight and 
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ferromagnetism, Phys. Rev. B 102 (2020) 1–10. 

[117] J.M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Tunable strongly 
coupled superconductivity in magic-angle twisted trilayer graphene, Nature 590 
(2021) 249–255. 

[118] D.S.L. Abergel, M. Rodriguez-Vega, E. Rossi, S. Das Sarma, Interlayer excitonic 
superfluidity in graphene, Phys. Rev. B 88 (2013) 235402. 

[119] J. Zhang, E. Rossi, Chiral superfluid states in hybrid graphene heterostructures, 
Phys. Rev. Lett. 111 (2013) 086804. 

[120] J. Zhang, C. Triola, E. Rossi, Proximity effect in graphene topological-insulator 
heterostructures, Phys. Rev. Lett. 112 (2014) 096802. 

[121] C. Triola, D.M. Badiane, A.V. Balatsky, E. Rossi, General Conditions for Proximity- 
Induced Odd-Frequency Superconductivity in Two-Dimensional Electronic 
Systems, Phys. Rev. Lett. 116 (2016) 257001. 

[122] K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. 
Wang, Evolution of Interlayer Coupling in Twisted MoS2 Bilayers, ArXiv e-prints 
(2014). 

[123] F. Wu, T. Lovorn, E. Tutuc, I. Martin, A.H. Macdonald, Topological Insulators in 
Twisted Transition Metal Dichalcogenide Homobilayers, Phys. Rev. Lett. 122 
(2019) 086402. 

[124] M. Rodriguez-Vega, G. Schwiete, E. Rossi, Spin-charge coupled transport in van 
der Waals systems with random tunneling, Phys. Rev. Res. 1 (2019) 033085. 

[125] Y.S. Gani, H. Steinberg, E. Rossi, Superconductivity in twisted graphene NbSe2 
heterostructures, Phys. Rev. B 99 (2019) 235404. 

[126] E.C. Regan, D. Wang, C. Jin, M.I. Bakti Utama, B. Gao, X. Wei, S. Zhao, W. Zhao, 
Z. Zhang, K. Yumigeta, M. Blei, J. Carlstrøm, K. Watanabe, T. Taniguchi, 

S. Tongay, M. Crommie, A. Zettl, F. Wang, Mott and generalized Wigner crystal 
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