Physics 475, Spring 2010
Problem Set 7
Due Tuesday, March 30.

Problems from Boas:

Chapter 6:
7.19, 10.11, 10.16

Chapter 7:

5.2

Additional Problem

Consider the time-independent Schrödinger equation in one dimension,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

where \hbar, m and E are constants, and $V(x)$ is a fixed function of x.
Consider solutions $\psi_{1}(x)$ with $E=E_{1}$, and $\psi_{2}(x)$ with $E=E_{2}$, where \hbar, m and $V(x)$ are the same in both cases but $E_{1} \neq E_{2}$.

Show that ψ_{1} and ψ_{2} are orthogonal in the sense that

$$
\int_{-\infty}^{\infty} d x \psi_{1}(x) \psi_{2}(x)=0
$$

if $\psi_{1}(\pm \infty)=\psi_{2}(\pm \infty)=0$ and $\int_{-\infty}^{\infty} d x \psi_{1}(x) \psi_{2}(x)$ is finite.
Hint: Multiply the equation for ψ_{1} by ψ_{2} and vice versa. Then take the difference of the two resulting equations and integrate over x. (Recall our discussion of orthogonality and Fourier series.)

