
Development of Quantum Information and Sensing Tools Based on Four-Wave
Mixing in Hot Rubidium Vapor

Ziqi Niu

Shanxi, China

Bachelor of Science, Bucknell University, 2017
Master of Science, The College of William & Mary, 2021

A Dissertation presented to the Graduate Faculty of
The College of William and Mary in Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Physics

The College of William and Mary in Virginia
May, 2025



© Copyright by Ziqi Niu 2025





ABSTRACT

Quantum correlated optical fields are crucial in quantum information and sensing
applications. Nonlinear optics serves as a primary mechanism for generating these
correlated fields. This dissertation focuses on a specific nonlinear interaction
known as Four-Wave Mixing (FWM), achieved in a warm atom ensemble and its
applications. For this we developed a bi-chromatic continuous variable
entangled-photon source, aimed at enhancing long-distance quantum
communication, and examined the optimal conditions. Our findings contribute to
the advancement of a continuous variable-discrete variable (CV-DV) hybrid
quantum computing device. Additionally, we expanded the study of FWM
squeezing within the context of non-Hermitian physics, which holds implications
for quantum simulation and non-Hermitian sensors. Lastly, we enhanced the
conventional homodyne detection method by incorporating spatial resolution,
achieving few-photon imaging through quantum noise and pushing the boundary
of quantum imaging.
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Chapter 1

Introduction

The ability of light to travel quickly and non-interactively over long distances renders

it a prime choice for communication technologies. This concept dates back to the time

of Archimedes. Light has become integral to modern information science and daily life

since the invention of lasers in 1960 by Theodore Maiman, as well as the subsequent

development of optical fibers. Following the emergence of quantum computing and the

potential quantum advantage it could bring, photons as flying qubits become essential for

any long-distance quantum network or distributed quantum computing tasks. A clean,

decoherence-free quantum systems with photons can reach very high fidelity for quantum

information science [1]. However, photons used for quantum information applications

require photon correlations or interactions, in many cases at the single photon level [2].

Over the past few decades, quantum optics has undergone rapid development and has

been used as a prime source of entangled photon pairs in quantum communication and

computing [3–5].

The ability of nonlinear optical effects to generate correlated optical fields also plays a

significant role in sensing and imaging. Quantum optics techniques are applied in LIGO

gravitational wave detectors [6–8], quantum imaging [9–12], precision measurement [13, 14],

and non-Hermitian sensors [15–18].

In this dissertation, we present three projects contributing to quantum communication,
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non-hermitian physics, and imaging. At the heart of all three projects is one specific

nonlinear optical effect, so-called Four-Wave Mixing (FWM).

1.1 Historical Review of Nonlinear Optics and FWM

Like many other nonlinear optical phenomena, FWM arises from higher-order material sus-

ceptibility χ which defines the relationship between the polarization P (the dipole moment

sum signifying the medium response) and the involved electric fields. When optical fields

are coupled into a medium, the electrons in the medium beat with each field independently,

as well as with the sum and difference among the fields. In these latter cases, the polariza-

tion responding simultaneously to product of N fields (the dependence is thus nonlinear)

is described by χ(N). This response is where the name nonlinear optics emerges. For

instance, second-harmonic generation (SHG) and parametric down-conversion (PDC) de-

pend on the χ(2) nonlinearity, whereas FWM on χ(3). Beyond sum- or difference-frequency

generation, the field of nonlinear optics encompasses multi-photon absorption [19], stimu-

lated [20], and the Kerr effect [21] (in fact discovered back in the 19th century). Although

this dissertation centers on the FWM process, it is valuable to provide an overall review

[22–25].

The evolution of nonlinear optics paralleled the rapid progress of laser technology in

the 1960s. Foundational contributions from Bloembergen, Boyd, and others established

the framework of nonlinear optics [26–29]. In 1961, Franken et al. first demonstrated

harmonic generation in quartz [30]. Subsequently, parametric down-conversion and other

harmonic processes (relying on the second order susceptibility χ(2)) were shown by various

groups using nonlinear crystals, covering frequencies ranging from the infrared to the visi-

ble spectral region [31, 32]. These crystals exhibit a large χ(2) coefficient, enabling effective

parametric amplification. It is important to note that higher order interactions such as

χ(3) have also been demonstrated for crystals. Crystal-based nonlinear processes can ex-

hibit broad bandwidth and multiple competing transition channels due to vibrational and
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rotational states of the crystal lattice.

An alternative approach utilizes the χ(3) FWM mechanism in atomic ensembles. Here,

χ(2) vanishes due to lack of symmetry[33]; while the next-order nonlinear susceptibility,

χ(3) becomes exceptionally large for fields especially near resonance, at least comparable to

the χ(2) strength in some crystals. Studies on χ(3) nonlinearity in atomic vapors flourished

in the 1970s, achieving frequency generation across the UV, X-ray, and infrared regions

via optical mixing in various atomic species [34–36].

As a primary example of χ(3) interactions, FWM offers numerous practical applica-

tions. Bloembergen and Schawlow were awarded the Nobel Prize in Physics in 1981 for

spectroscopy application of FWM [37–40]. As suggested by its name, FWM is a non-

linear process involving four electromagnetic(E-M) fields. It encompasses various pro-

cesses, including coherent anti-Stokes Raman spectroscopy (CARS), stimulated Raman

spectroscopy, third harmonics generation, etc. Practically, FWM can involve three beams,

with one beam coupled to two transitions, as in the case of CARS. It is widely employed

in spectroscopic measurements to probe the energy level of materials [41, 42], UV light

generation [43, 44], etc. The focus of this dissertation is on the temporal and photon-

number correlations, which can be quantitatively described as g(2) correlation functions

(measured by photon joint or coincidence detections through two photodetectors) among

two conjugated fields. In this dissertation, however, we do not perform any g(2) joint counts

measurement–the term is brought up to help the readers to digest the concept.

1.2 Quantum Applications of FWM

1.2.1 FWM as Photon Pair and Squeezed Light Source

FWM plays a pivotal role in controlled entangled photon-pair generation. The correlated

optical fields (i.e, wave nature of light) and photon pairs (i.e, particle nature of light)

are both widely studied, and FWM is one way to generate them, both at single-photon

and bright field levels [45–47]. However, the Bell-state measurements in quantum pro-
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tocols remain probabilistic, limiting the scalability of quantum networks [48]. Hybrid

approaches that combine discrete-variable (DV) and continuous-variable (CV) systems, or

even multiple-qubit platforms mentioned above, can be extremely advantageous [49, 50].

FWM Beam 1
Photon Counts

FWM Beam 2
Photon Counts

Beam 1-Beam 2
Differential Signal

Time

Time

Time

(a)

Laser Beam 1
Photon Counts

Laser Beam 2
Photon Counts

Beam 1-Beam 2
Differential Signal

Time

Time

Time

(b)

Figure 1.1: Two mode intensity squeezing from photon correlation perspective. Each
vertical line denotes photon counts at certain time stamp. The x-axis is the time. (a) The
twin fields from FWM. The photons generated in time are always in pairs. In other words,
they have a strong temporal correlation. If we measure the differential signal over time,
then ideally the differential signal will be 0, leading to reduced temporal variance. (b) Two
uncorrelated laser (coherent state) fields. The photons generation in time are independent
in this case, and the differential signal variance has no aforementioned cancellation and is
therefore noisy.

Here we introduce the concept of two-mode squeezing, which characterize the temporal

correlations of CV entangled fields. In the case of two independent coherent state light

sources, the photon counts over time are depicted in Fig.1.1(b). The photon counts in

this scenario are independent. Conversely, Fig.1.1(a) illustrates the output of the twin

signal fields resulting from FWM. Here, photons are consistently generated in pairs over

time, exhibiting strong g(2) correlations. Consequently, the differential measurement of the

FWM signal fields demonstrates a smaller variance compared to the two coherent state

fields with the same photon flux. Thus, we can interpret two-mode intensity squeezing

as a reduction of noise attributable to the temporal correlations of photon pairs in the

two optical fields. Yuen, Shapiro and others [37, 51–53] developed a theoretical basis for

achieving squeezing through FWM. Shortly thereafter, Slusher et al. [54] provided the first

experimental report of −0.3 dB of squeezing. Further enhancements followed, culminating
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in -15 dB of intensity squeezing in crystal [55] and up to -9 dB in alkali vapors [56, 57].

In this dissertation, we focus on generating entangled fields where one field lies in the

near-infrared (NIR) regime and the other in the telecom range. This arrangement seam-

lessly integrates into quantum computation protocols and inherently alleviates transmission

losses. Although IR-telecom photon pair generation in both cold and warm atomic ensem-

bles is established [45, 58], our emphasis is on CV entangled field generation. This ap-

proach provides a promising avenue for scalable quantum computing, robust long-distance

communication, and innovative hybrid quantum architectures.

1.2.2 FWM for Quantum Imaging Applications

Another focus of this thesis is quantum imaging. Here, we offer a brief historical overview

of imaging and optics in general. Imaging has a long history with a profound impact:

early microscopy efforts by Newton, Young,Huygens, Hooke, Fresnel, and others paved the

way for modern biological discoveries [59–61]. Innovations such as scanning-tunneling and

atomic-force microscopes have expanded the boundaries of chemistry, biology, materials

science, and medical research [62, 63]. Substantial efforts have been devoted to break-

ing the resolution limit, yielding significant benefits for astronomy and biology [64–66].

Fourier optics enables novel image processing and filtering [67, 68]. Beyond intensity-only

imaging, holography incorporates phase reconstruction and allows object reconstruction

in 3-D. Furthermore, computational approaches—such as compressive sensing [69], sin-

gle photodiode imaging through mode reconstruction [70], and advanced image-processing

algorithms—are continuously propelling advancements in this domain.

Despite these intriguing achievements, photon statistics and correlations have not typ-

ically been emphasized. The objective of quantum metrology is to exploit the unique

properties of quantum light for more accurate measurements, particularly sub-shot-noise

techniques. Certain organic samples, including biological specimens, are extremely pho-

tosensitive, and traditional imaging may cause damage or alterations (for instance, retina

samples can be triggered by single photons). Additionally, in the few-photon regime, shot

5



noise becomes a major limitation on measurement sensitivity. Thus, developing sub-shot-

noise, few-photon spectroscopy and imaging methods holds significant promise for biology,

chemistry, and related biomedical fields. Two broad categories of quantum imaging meth-

Figure 1.2: Three main methods for quantum imaging. (a) Interference based quantum
imaging, (b)Correlation based quantum imaging, and (c) entanglement based quantum
imaging

ods can be identified:

Correlation-Based Imaging. This approach employs pairs of entangled photons

or optical fields, wherein only one field interacts with the target object while the other

serves as a reference. The differential between these fields facilitates sub-shot-noise imag-

ing, requiring a reduced number of photons. A prominent instance of this principle is

quantum ghost imaging (QGI), which involves the collection of the signal field by a bucket

detector, while the reference field is acquired via a spatially resolving device; the resultant

image is reconstructed through correlation [71–73]. Other examples see Ref [74–76]. This

dissertation does not cover this method.
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Interferometry-Based Imaging As the name suggests, it relies on interference among

correlated photons, often involving their indistinguishability and nonlinear interferometers.

Both parametric down-conversion (SPDC) and FWM can enable these interferometric tech-

niques. Important example is the imaging of undetected photons demonstrated by Lemos

et al [77]. Within this category, schemes vary widely depending on the targeted appli-

cation. In this thesis, we focus on quadrature-noise-based imaging [78, 79], which forms

images from noise statistics by computing the variance map.

1.2.3 FWM for Simulating Non-Hermitian system

Hermicity is originally considered as a necessary condition for a Hamiltonian to have real

energy eigenvalues. However, the concept of imaginary energy eigenvalues appear in in-

terpretation of open quantum systems, such as the studies of alpha decay and neutron

scattering interactions [80–83]. In these systems, a singularity point arises, leading to

the merging of all eigenmodes [84–86]. In 90s, C.M. Bender and colleagues demonstrated

that Hermiticity is a sufficient but not necessary condition for the existence of real eigen-

values [87–89]. A real energy spectrum may arise if the Hamiltonian Ĥ is symmetric or

antisymmetric under joint parity-time transformations. In other words, Ĥ commutes or

anti-commutes with the joint parity-time operator P̂ T̂ . [Ĥ, P̂ T̂ ] = 0 and {Ĥ, P̂ T̂} = 0

are referred as Parity-Time(PT) symmetry or Anti-Parity-Time(APT) symmetry, respec-

tively [87]. Unlike standard Hermitian Hamiltonians, which consistently exhibit real en-

ergy eigenvalues, the PT and APT systems feature exceptional points (EPs) that mark the

transition from purely real to imaginary eigenvalues [88].

If we look at Schrodinger’s equation, with form i ∂∂t |ψ⟩ = Ĥ|ψ⟩, and the paraxial light

propagation equation (more on Ch. 2), with form i ∂
∂z Ê(z) = Ĥ ′Ê(z), we notice the math-

ematical equivalence between the two. The parity and time operator can also be reinter-

preted accordingly in each optical system such that they commute or anticommute with Ĥ ′.

The optical system thus offers a convenient platform for studying non-Hermitian physics,

especially the phase-change behavior near the exceptional point (EP). This phase change
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can be extraordinarily pronounced, opening channels for novel high-sensitivity detectors,

PT-symmetric lasers, and enabling a variety of quantum simulations [90–97]. However,

most PT-system demonstrations in optical system involve spatially interleaved gain/loss

channels [82, 98–100], inevitably introducing Langevin noise that undermines sensitiv-

ity—a crucial concern for non-Hermitian sensing. In contrast, APT systems possess the

potential to circumvent gain/loss configurations [101, 102].

Notably, seeded resonant FWM can be reinterpreted as an APT system, where parity

and time symmetry correspond to seeding choices and optical field conjugation, respec-

tively. Experiments in cold Rb vapors demonstrate classical amplification under these

conditions [103]. By tuning the nonlinearity strength χ(3), the system can cross the

EP with minimal loss, thanks to on-resonance electromagnetically-induced-transparency

(EIT) coexisting for the signal fields. In this context, the phase transition does not manifest

as interleaved gain/loss; instead, it is observed as a relative energy exchange. Specifically,

within the PT-symmetric region, energy is periodically exchanged between the signal fields,

whereas in the anti-PT phase breaking region, both signal fields exhibit exponential power

growth or decay. Establishing a connection between FWM processes and anti-PT phase

symmetric thus offers a pathway to realizing novel detection schemes within established

platforms.

Beyond classical treatments, FWM-based APT systems can be extended to the quan-

tum regime via intensity or quadrature squeezing, offering predicted enhancements in de-

tection sensitivity [104]. APT system study constitutes one of the primary topics of this

dissertation.

1.3 Thesis Outline

This dissertation is organized as follows: Ch.2 reviews the fundamental theory of light–atom

interactions and FWM. A basic theoretical framework for intensity squeezing is also con-

structed, with emphasis on its connection to nonlinear gain and loss.
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Ch.3 details the analytical calculation and experimental configuration of the double-

Λ and double-ladder FWM experiments, which serve as the basis for the experiments

described in Ch.4, Ch.5, and Ch.6.

Ch.4 describes the bi-chromatic intensity squeezing experiment, including data opti-

mization and setup procedures. Here, we report the observation of -2.6 dB of squeezing,

demonstrating a highly efficient IR-Telecom entangled photon source for continuous vari-

ables.

Ch.5 discusses quadrature noise shadow imaging with a thermal field. We perform

imaging task in variance space instead of intensity space. This methodology achieves an

average photon count of 0.7 per pixel per second for object image retrieval.

Ch.6 introduces the anti-PT squeezing experiment utilizing FWM. This study reinter-

prets the system as an anti-PT model, extending the analysis into the quantum regime

through the implementation of squeezing for the first time. The results from our analytical

and computational models exhibit good agreement with the experimental data.

Ch.7 summarizes the dissertation and envisions several directions we can further ex-

plore.
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Chapter 2

Theory Overview

In this chapter, we develop the theoretical framework necessary for understanding nonlinear

light-atom interactions, with a particular focus on the FWM effect and two-mode intensity

squeezing.

The chapter is organized as follows. We begin by deriving the wave propagation equa-

tion from Maxwell’s equations under the rotating-wave approximation. Next, we discuss

the induced polarization response of the medium, which leads to FWM and the intro-

duction of a nonlinear gain. Lastly, we discuss noise theory by linking nonlinear gain

to intensity squeezing, addressing both optical and detector losses. Optical loss is mod-

eled using two complementary methods: the infinite beamsplitter approximation and the

Langevin formalism.

2.1 Classical Description of Electromagnetic Field

Here we formulate the description for nonlinear optics from Maxwell’s equations in vacuum,

which describe the electromagnetic wave behavior:
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∇ ·E =
ρ

ϵ0
, (2.1a)

∇ ·B = 0, (2.1b)

∇×E = −∂B
∂t
, (2.1c)

∇×B = µ0J+ µ0ϵ0
∂E

∂t
. (2.1d)

Here E and B are the electric and magnetic field respectively. ρ, J, µ0, and ϵ0 are the

charge density, current density, magnetic permeability of vacuum, and electric permittivity

of vacuum, respectively, with relation µ0ϵ0 = 1
c2

. We assume a source-free medium with

isotropic polarization such that Eq.(2.1a) can be reduced to ∇ · E = 0. To describe

propagation in a dielectric medium, Eq.(2.1a-2.1d) can be rewritten using the magnetic

intensity H = 1
µ0
B−M and displacement D = ϵ0E+P, where M and P are magnetization

and polarization terms. Applying the relation ∇× (∇×E) = ∇(∇ ·E)−∇2E, we derive

the wave equation in a medium,

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (2.2)

The left side of the equation corresponds to electric field propagation, the right side

decribes the medium response, The polarization P is related to the susceptibility χ and

describes the dipole moment of atoms induced by the electric field E, as follows,

P = ε0χE = N⟨d⟩ (2.3)

where N is the atomic density, and ⟨d⟩ = ⟨−er⟩ represents the average induced dipole

moment. Here, we consider electric field propagation along the ẑ-axis within Cartesian

coordinates, and that the electric field vector E is along the x̂-axis. We can then write
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down the expression for an electric field as [105, 106]:

E(z, t) =
1

2
E0(z, t)x̂e

i(kz−ωt) + c.c., (2.4)

Here c.c. stands for complex conjugate. A similar relationship is also applicable to P(z, t) =

P (z, t)ei(kz−ωt) per Eq.(2.3). We observe that E0(z, t) exhibits a relatively slow variation

in comparison to the optical frequency ω . This slowly varying amplitude approximation

can be expressed as follows:

∂E

∂z
≪ kE ;

∂E

∂t
≪ ωE ;

∂P

∂t
≪ ωP. (2.5)

Inserting Eq.(2.4) and Eq.(2.5) into Eq.(2.2) yields the propagation equation for the

slowly-varying amplitude.

i

(
∂

∂z
+

1

c

∂

∂t

)
E0(z, t) =

k

2ϵ0
P (z, t) (2.6)

Physically, we adopt a reference frame that oscillates at the optical frequency, effec-

tively removing the rapid oscillations to focus on the slowly varying amplitude. In this

dissertation, we generally assume a steady-state solution in which time derivatives are

negligible. The propagation equation becomes [105]:

i
∂

∂z
E0(z) =

k

2ϵ0
P (z) (2.7)

To get further insight of P, we can describe the electron displacement x induced by

driving a classical oscillator with an external electric field as follows,

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
e

m
E0e

−iωt. (2.8)

The driving term arises from the coupling electric field E0. ω0 and ω are the natural

frequency of electron oscillation and the coupling field frequency. Furthermore, m and e
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denote the mass and charge of an electron. After some algebra, we can find the displace-

ment to be,

x(t) =
1

2iϵ0

e2

mω0

1

γ + i(ω0 − ω)
. (2.9)

It is evident that the displacement reaches its maximum at ω0= ω, reflecting a classical

analogy with an on-resonance transition. In an atomic ensemble composed of N atoms, the

total induced polarization is equivalent to the summation of all induced dipole moments,

P = N⟨ex̂⟩ = ϵ0χE (2.10)

This gives rise to the susceptibility χ as,

χ =
i

4

Ne2E0

mω0

1

γ + i(ω0 − ω)
(2.11)

The real and imaginary parts correspond to the dispersion and linear absorption of an

ensemble of N atoms. Here we considered only the simple case with the first-order depen-

dence. Generally we can write the induced polarization P as a power series expansion,

P = ϵ0

n∑
1

χ(n)En, (2.12)

The χ(n) terms represent the higher-order nonlinear susceptibility tensor. The terms

following χ(1) decrease progressively, resulting in a convergence to a finite value for the

summation. The susceptibility terms are tensors containing 3n elements which are deter-

mined by light direction, frequency and material symmetry [33]. Of particular interest for

us, the FWM phenomenon is inherent in the χ(3) nonlinear susceptibility.
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Figure 2.1: a) Illustration of FWM in a χ(3) medium. b) geometric phase-matching
condition. c) Energy level diagram for FWM.

2.2 Classical Description of FWM

We consider a medium characterized by three copropagating input fields EP , E1, and E2,

as shown in Fig. 2.1(a). Driven simultaneously by these three input fields and their beat

signals (which act as new source terms), the polarization of the dielectric medium generates

a fourth field EC . One potential configuration is depicted in Fig. 2.1(c). Mathematically,

we can express this as:

P (3) = ϵ0χ
(3)(EP +E1 +E2)

3, (2.13)

The expansion of Eq.(2.13) contains multiple terms including the higher harmonics gen-

eration, sum-/difference frequency generation, etc. However, when accounting for material

symmetries and atomic resonance, numerous elements in the χ(3) tensor become negligibly

small. The terms responsible for FWM are given by:
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P
(3)
C = ϵ0χ

(3)
C E∗

PE1E2e
i
[
(kP−k1−k2)z−(ωP−ω1−ω2)t

]
= ϵ0χ

(3)
C E∗

PE1E2e
−i
[
(kC+∆k)z−(ωC−∆ω)t

]
. (2.14)

P
(3)
P = ϵ0χ

(3)
P E∗

CE1E2e
i
[
(kC−k1−k2)z−(ωC−ω1−ω2)t

]
= ϵ0χ

(3)
P E∗

CE1E2e
−i
[
(kP+∆k)z−(ωP−∆ω)t

]
. (2.15)

The phase-matching terms ∆k and ∆ω are defined as follows :

∆ω = ω1 + ω2 − ωP − ωC , (2.16)

∆k = k1 + k2 − kP − kC , (2.17)

Because of energy conservation in the FWM process, we generally have ∆ω = 0. The

∆k represents the geometric phase mismatch, which can be non-zero in our case. k is

modified by dispersion such that |k| = n(ω)ω
c , where n(ω) =

√
1 +Re(χ) is the refractive

index. This dispersion modification permits a nonzero geometric phase matching angle, as

illustrated in Fig. 2.1(b). By specifically selecting a rotating frame with symmetric phase

accumulation, we denote slowly-varying amplitudes as EP = EP e−i∆kz
2 and E∗

C = E∗
Ce

i∆kz
2 .

Next, we also consider E1 and E2 as strong inputs, and treat them as constant under the

undepleted pump approximation. Then, for the copropagating probe and conjugate fields,

we can express the joint propagation equations using Eq.(2.7) as follows [33, 54, 107–110],

(∆k
2

− i
∂

∂z

)
EP =

κP︷ ︸︸ ︷
kPE1E2

2
χ
(3)
P E∗

C (2.18)

−
(∆k

2
− i

∂

∂z

)
E∗
C =

κC︷ ︸︸ ︷
kCE1E2

2
χ
(3)
C EP . (2.19)

We denote the coupling constants using κP = kPE1E2
2 χ

(3)
P and κC = kCE1E2

2 χ
(3)
C for
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simplicity. The two differential equations can be recast in matrix format,

i
∂

∂z

(
EP
E∗
C

)
=

(
−∆k

2 −κP
κC

∆k
2

)(
EP
E∗
C

)
= M

(
EP
E∗
C

)
(2.20)

now we can express the solution to EP and EC using the eigenvalue λ =
√

∆k2

4 − κCκP .

Since ∆k is usually small such that the value of λ is imaginary, we define the real value

parameter η such that ±λ = ±iη. When κP = κC = κ, we can write the symmetric output

matrix as follows,

(
EP (L)
E∗
C(L)

)
= e−iML

(
EP (0)
E∗
C(0)

)
=

(
A(η) C(η)∗

C(η) A(η)∗

)(
EP (0
E∗
C(0)

)
(2.21)

Using the matrix exponential, we find A(η) and C(η) as the follows [107, 111, 112],

A = cosh(ηL) + i
∆k

2η
sinh(ηL) (2.22)

C = i
κ

η
sinh(ηL) (2.23)

For more general case with κP ̸= κC , the off-diagonal terms in Eq. (2.21) are replaced with

−iκP
η sinh(ηL) and iκC

η sinh(ηL) respectively. When seeding the probe channel only such

that EP (0) ̸= 0 and EC(0) = 0, the solutions become,

EP (L) = A · EP (0) and E∗
C(L) = C · EP (0) (2.24)

with nonlinear gain GP = |A|2 and GC = |C|2 (2.25)

GP/C are the FWM gain relative to the input field(EP ). Additionally, it is noted that

GP/C depends on ∆k, reaching its maximum at ∆k = 0, which corresponds to perfect

geometric phase matching. Under this condition, Eq.(2.23) simplifies to A = cosh(ηL) and

C = i sinh(ηL), and we have GP −GC = 1.
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2.3 Quantum Formalism of FWM

In the previous section, we described the optical fields using a classical formalism. Here,

we switch to a quantum framework, which enables the accurate analysis of quantum cor-

relations and the optical loss effects of FWM. To this end, we expand the electric field into

normal modes summation as follows [105],

Ex(z, t) =
∑
i

√
2ω2

imi

V ϵ0
qi(t)sin(kiz) (2.26)

Eq.(2.26) describes the summation of all normal modes for the x-direction linearly

polarized electric field in a cavity of length L. The amplitude qi(t) corresponds to the

normal mode amplitude for the ith mode, where i = 1, 2, 3... We have ki = iπ/L as the

momentum vector, ωi = kic as the eigenfrequency for the ith mode, and mi as a constant

included to draw an analogy to classical harmonic oscillators. We can set mi = 1. The

volume V is defined as V = L3. Similarly, we can write down the magnetic component

Hy(B = µ0H) by,

Hy(z, t) =
∑
i

√
2ω2

imi

V ϵ0

q̇i(t)ϵ0
ki

cos(kiz) (2.27)

Using Eq.(2.26) and (2.27), we can express the energy Hamiltonian as the sum of E2
x

and H2
y . The result simplifies to the follows,

H =
1

2

∑
i

[
miω

2
i qi(t)

2 + q̇i(t)
2
]

(2.28)

As in classical mechanics, we can express q̇i using the canonical momentum pi = miq̇i.

p and q, in classical analogy, carry the meaning of position and momentum [113]. Eq.(2.26)

to (2.28) describe essentially the summation of all individual modes of a harmonic oscillator.

To further simplify Eq.(2.28), we define two new operators, the creation and annihila-

tion operators,
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âie
−iωit =

1√
2miℏωi

(miωiqi + ipi) (2.29)

â†ie
iωit =

1√
2miℏωi

(mjωiqi − ipi) (2.30)

Now Eq.(2.28) can be rewritten using a and a† as

H = ℏ
∑
i

ωi

(
â†i âi +

1

2

)
. (2.31)

The n̂ = a†a is the so-called photon number operator. Physically, this energy Hamilto-

nian corresponds to the summation of from 1 to the ith mode, each mode with ni photons

with energy ℏωi.

With these, we can re-express the Eq.(2.26) and (2.27) as,

Ex(z, t) =
∑
i

(
ℏωi

ϵ0V

)1/2 (
âie

−iωit + â†ie
iωit
)
sin kiz (2.32)

Hy(z, t) = −iϵ0c
∑
i

(
ℏωi

ϵ0V

)1/2 (
âie

−iωit − â†ie
iωit
)
cos kiz. (2.33)

This solution is for a cavity of length L. In contrast, the free-space electric field solutions

correspond to a cavity of length L→ ∞. Note that the plane-wave solution has already

been included, which is Eq.(2.4),

Ex(z, t)=

(
ℏω
ϵ0V

)1/2

âei(kz−ωt) + c.c. (2.34)

Using Eq.(2.34), an analogy can be drawn to the procedures outlined in Sec.2.1 and 2.2.

The probe and conjugate fields described in previous sections correspond to the operators

a and a† respectively, which is described by the two conjugated parts in Eq.(2.34). We can

then calculate the quantum version of Eq.(2.20) by substituting EP/C(z) with operators â

18



and b̂† [105, 107, 109],

i
∂

∂z

(
âout
b̂†out

)
=

(
−∆k

2 −κ
κ ∆k

2

)(
â

b̂†

)
(2.35)

→
(
âout
b̂†out

)
=

(
A C∗

C A∗

)(
â

b̂†

)
(2.36)

Note that for the gain calculation, the two methods are equivalent. The quantum treatment

is introduced to properly account for the noise and correlations in later sections.

2.4 Theory for Noise and Squeezing

This section develops the fundamental noise theory for optical field calculations, with

a particular emphasis on two-mode squeezing using FWM, and provides the theoretical

groundwork for subsequent discussions.

2.4.1 Quantum Noise of a Single Optical Field

Noise of Coherent Field and thermal field

Laser light can be approximated as a coherent state. A thermal state is generated from

any radiating blackbody. We utilizes the thermal field in Ch. 5, while coherent states are

involved in all projects.

The physical meaning of the creation and annihilation operators for an EM field can

be intuitively understood in the space of number or Fock states,|n⟩. This state is also a

convenient basis for describing the coherent state , which takes the form[105],

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩. (2.37)

In the following, we frequently write this coherent state as a displacement from a

vacuum state by using the displacement operator, |α⟩ = D̂(α)|0⟩, where |0⟩ is the vacuum

state and D̂(α) assumes [105, 114],
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D̂(α) = e−|α|2/2eαâ
†
e−α∗â. (2.38)

We can easily calculate the photon number variance as,

⟨(∆n̂)2⟩ = ⟨n̂2⟩ − ⟨n̂⟩2 = ⟨n⟩ (2.39)

Next, we define the thermal field by considering a cavity in thermal equilibrium at

temperature T . The probability that a mode is excited thermally to the ith mode is [114],

Pi =
e
− Ei

kBT∑
i e

− Ei
kBT

, (2.40)

where Ei = niℏωi is the energy of ith mode and ni is the number of photons. Using

Eq.(2.40), we can proceed to calculate the expectation value as well as variance. For

example, ⟨n⟩ =
∑

i Pini. The variance can be written as [114, 115],

⟨∆(nth)
2⟩ = ⟨n⟩2 + ⟨n⟩ (2.41)

The photon number ⟨n⟩ is directly proportional to the photocurrent or voltage measured

in experimental settings. Consequently, a direct correlation is observed in photonvoltage

measurements, consistent with Eq.(2.39) and Eq.(2.41) for coherent and thermal fields,

respectively.

Noise of FWM Individual Probe and Conjugate Field

We begin our analysis by focusing exclusively on one of the two amplified fields from the

FWM. We start with the amplified probe field written with input (seed) fields operators.

We note that, from Eq.(2.36), we can write the output operators in terms of the input

operators as,
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âout = Aâ+ C∗b̂† (2.42a)

b̂†out = Câ+A∗b̂ (2.42b)

Then we can write down the variance for a single field output [116],

Var(nP,out) = G2
P ⟨â†â⟩+GPGC⟨ââ†b̂b̂†⟩+G2

C⟨b̂†b̂⟩ (2.43)

Here nP,out = ⟨â†outâout⟩ is the probe output mean photon number. Assuming ⟨b̂†b̂⟩ = 0

and ⟨â†â⟩ = ⟨nin⟩ ≫ 0, since we have vacuum seed for conjugate channel and weak probe

seed channel, we can expand the middle term as,

⟨ââ†b̂b̂†⟩ = ⟨(1 + â†â)(1 + b̂†b̂)⟩ ≃ ⟨â†â⟩ (2.44)

Then we can express Eq.(2.43) as follows:

Var(n̂P,out) = GP (GP +GC)⟨nin⟩. (2.45)

Similarly we find for the conjugate field,

Var(n̂C,out) = GC(GP +GC)⟨nin⟩. (2.46)

Both fields individually are much noisier than coherent field with same photon counts,

given by:

Var(n̂SNL,out) = (GP +GC)⟨nin⟩. (2.47)

By comparison of Eq.(2.45) and Eq.(2.47), variance scales quadratically with the gain,

while the coherent state variance scales linearly. This reflects the nature of intensity
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squeezing: the fluctuations in individually noisy beams canceled out when doing differential

measurement.

Another case we want to consider is with dual vacuum seed. In this case, we cannot

approximate by using ⟨â†â⟩ ≫ 0, and the probe channel becomes,

Var(n̂P,out) = G2
C +GC where ⟨n̂P,out⟩ = GC . (2.48)

Eq.(2.48) resembles Eq.(2.41) and demonstrates super-poissonian characteristics with

thermal field statistics. The field remains sufficiently weak and can thus be regarded as a

thermal vacuum, which was employed for the imaging project described in Ch.5.

2.4.2 Differential Noise & Two-Mode Intensity Squeezing

We assume initial condition with vacuum conjugate seeding and weak probe seeding

⟨â†â⟩ = nin and ⟨b̂†b̂⟩ = 0. The differential squeezing then can be easily calculated using

above expressions [116],

V ar(â†outâout − b̂†outb̂out) = ⟨â†â⟩ = ⟨nin⟩ (2.49)

Despite the fact that probe and conjugate fields are individually noisier as stated in

Eq.(2.45) and (2.46), the differential noise is actually canceled out, leaving only the noise

of the input seed. This suggest strong temporal correlations between the probe and con-

jugate field. To compare with shot noise, we assume two coherent field input with the

same intensity as the amplified probe and conjugate such that ⟨α|â†â|α⟩ = GP ⟨nin⟩ and

⟨α|b̂†b̂|α⟩ = GC⟨nin⟩, the differential variance using coherent fields can be shown to be,

V ar(â†outâout − b̂†outb̂out)SNL = ⟨nP,out⟩+ ⟨nC,out⟩ (2.50)

The intensity squeezing is defined as the variance ratio under logarithm, with the

expression,
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S = 10log10

[
V ar(nP,out − nC,out)

⟨nP,out⟩+ ⟨nC,out⟩

]
(2.51)

= 10log10

[
1

GP +GC

]
(2.52)

2.4.3 Continuous Variable Noise Analysis: Noise Quadratures

Before proceeding to the calculation of optical loss effects, we introduce the quantum

noise analysis from another direction by using the concept of optical quadratures for an

electromagnetic field. The amplitude and phase quadrature are defined as follows [105,

114, 115],

X̂1 =
1

2
(â+ â†), (2.53)

X̂2 =
1

2i
(â− â†). (2.54)

Physically, the phase and amplitude operators are position and momentum operators

scaled by a constant factor [105, 113]. Thus, the Heisenberg uncertainty principle postulate

for the quadratures is,

⟨(∆X̂1)
2⟩⟨(∆X̂2)

2⟩ ≥ 1

16
(2.55)

For a coherent state, ⟨(∆ ˆX1)2⟩ = ⟨(∆ ˆX2)2⟩ = 1
4 , same as the vacuum state |0⟩. In

other words, the coherent state represents a minimum-uncertainties state. We can define

the squeezing operator [115],

Ŝ(ζ) = e
1
2
(ζ∗â2+ζâ†2) (2.56)

Such that a squeezed state can be written as |α, ζ⟩ = Ŝ(ζ)D̂(α)|0⟩. For the noiseball

depicted in Fig. 2.2(b), the computation of the squeezed quadrature along the direction
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Figure 2.2: Illustration of quadrature squeezing. a) The coherent state representation.
b) Single mode squeezed state representation. c)Quadratures of an individual field from
the FWM correlated fields. Each shows super-poissonian statistics. The noise distribution
is broader. d)The two-mode squeezed quadrature. In our case, we always measure along
direction Z1 by conducting a differential measurement.

of dashed line can be performed as follows:

⟨(∆X̂1)
2⟩sqz =

1

4
e−2ζ (2.57)

⟨(∆X̂2)
2⟩anti−sqz =

1

4
e2ζ (2.58)

The product remains 1
16 , indicating that we are still at the uncertainty limit. However,

we have reduced the variance of one quadrature at the expense of another. The compression

of the noise ball, as illustrated in Fig. 2.2, is the origin of the terms "squeezing" and

"squeezed state."

Fig. 2.2 gives an example of the so-called "ball-on-stick" representation of a quantum

E-M field. The displacement from the origin is α, scales with the expected photon number
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⟨n⟩. The noise ball represents the uncertainty. In the coherent state case (Fig. 2.2(a)),

the noise ball is the same for all θ, meaning the noise measured is always the same and its

radius is 1/4. For the squeezed states (Fig. 2.2(b)), however, this phase term θ can be used

to rotate the noise ball such that we can measure the squeezed (least noise) or anti-squeezed

(highest noise) quadratures. Such tuning is usually achieved by using interferometry; in

this dissertation, we will not address this aspect, since we measure intensities along the

amplitude quadrature direction χ1.

2.4.4 Quadrature of Two-Mode Squeezed State

What we have introduced is the single mode quadrature squeezing. Our major interest for

this thesis is the two-mode squeezing. Analogous to Eq.(2.56), the two-mode squeezing

operator can be expressed as follows:

Ŝ(ζ)2mode = e
1
2
(ζ∗âb̂+ζâ†b̂†) (2.59)

Notice that compared to Eq.(2.56), the two-mode squeezing operator involves both

conjugate and probe operators. Physically, this corresponds to the pairwise creation and

annihilation of one conjugate photon and one probe photon. In the context of FWM, the

â and b̂ operators represent the probe and conjugate output operators, respectively, as

defined by Eq.(2.42). The quadrature of the probe operator â is annotated as X̂1 and X̂2,

while the quadrature of the conjugate operator b̂ is noted as Ŷ1 and Ŷ2, as shown in Fig.

2.2(c), we can calculate the quadrature variance of single signal field of FWM twin beams

as follows [105, 107, 115, 116],

⟨(∆X̂1)
2⟩⟨(∆X̂2)

2⟩ = ⟨(∆Ŷ1)2⟩⟨(∆Ŷ2)2⟩ =
2GP − 1

16
(2.60)

(2.61)
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It is observed that for GP > 1, the output fields demonstrate super-Poissonian statis-

tics, validating Eq.(2.45) and (2.46). However, if we define joint quadrature (Fig. 2.2(d)),

Ẑ1± = X̂1 ± Ŷ1, (2.62)

Ẑ2± = X̂2 ± Ŷ2. (2.63)

The joint variance can be calculated as,

⟨(∆Ẑ1±)
2⟩ = 1

4
e±2ζ (2.64)

⟨(∆Ẑ2±)
2⟩ = 1

4
e∓2ζ (2.65)

We are still at the total minimum variance as Z1±Z2∓ = 1
16 . Physically, the measure-

ment of joint quadrature corresponds to conducting a joint measurement of both signal

fields. In all experiments discussed in this thesis, the measurements are differential inten-

sity noise, although full joint quadrature analysis has been done in Ref [117].

2.4.5 Optical Loss: Beam Splitter Model

In this section, we review the beamsplitter formalism. An optical field passing through a

medium can be considered as passing through an non-polarizing beamsplitter with trans-

mission constant T . Optical loss may be interpreted as ejection from the other beamsplitter

input port. If we consider a beamsplitter with bright input â and vacuum input ĉ for input,

the output operator b̂ can be expressed as follows:

b̂ =
√
T â + i

√
1− T ĉ (2.66)

The variance can be easily calculated as,

V ar(⟨b̂†b̂⟩) = T 2
[
V ar(⟨â†â⟩)− ⟨â†â⟩

]
+ T ⟨â†â⟩ (2.67)
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We used the commutation relation ⟨ĉĉ†⟩ = ⟨ĉ†ĉ⟩ + 1. Eq.(2.67) involves no explicit

dependent on ĉ since ⟨ĉ†ĉ⟩ = 0[116]. The vacuum operator leads to the extra terms in

Eq.(2.67). As a sanity check, we consider the case where the input optical field â is a

coherent state such that its variance equals expected photon counts ⟨nb⟩ = T ⟨na⟩. The

first term in equation Eq.(2.67) vanishes, and we have essentially,

V ar(⟨b̂†b̂⟩) = T ⟨â†â⟩ = ⟨b̂†b̂⟩ = ⟨nb⟩ (2.68)

As expected, for a coherent state, the beamsplitter only reduces its photon counts

proportionally. The output field is still a coherent state. Assuming an equal transmission

ratio T for the two channels and no optical loss, the FWM differential variance is given

by [116],

V ar(â†outâout − b̂†outb̂out) =
[
(2GP − 1)T (1− 2T ) + 2GPT

2]⟨â†â⟩ (2.69)

We can check that it reduces to Eq.(2.49) in the limit of zero detector loss(T=1).

Optical Loss: Infinite Beamsplitter formalism

Figure 2.3: (a) Illustration of the continuous beam-splitter model: at each infinitesimal
step, the input state is modified by a fictitious beam splitter with a vacuum input. This
process is repeated over N steps to obtain the final output. (b) Detailed illustration of the
beam-splitter model for an individual step.

When optical loss is changing throughout the medium, a simple beam-splitter model

is insufficient. In this case, the loss not only affects the field strength but also impacts

both linear and nonlinear processes, which occur continuously throughout the medium.
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To account for this, we developed a continuous beam-splitter model [116], as described in

Fig. 2.3(a). In this model, we divide the total propagation distance L into N infinitesimally

small steps (indexed by i) with a step size δz. For each step (Fig. 2.3(b)), we describe the

evolution of the field operators using the following gain equations:

âi+1 = taf
′
a,iâi +

√
1− t2aĉi+1,

b̂i+1 = tbf
′
b,ib̂i +

√
1− t2ad̂n+1, (2.70)

where the gain factor f ′a/b,i represents the nonlinear gain at the ith infinitesimal step, and

ta/b =
√
Ta/b is the square root of total transmission for the probe and conjugate fields,

respectively. This equation is equivalent to Eq.(2.67).We typically assume Tb = 1 for the

conjugated field, while Ta is determined experimentally. Since the initial input state is

(â0, 0), applying the beam-splitter model iteratively allows us to express the amplification

of both the probe and conjugate fields as a product of the initial input operator â0. After

N steps, the output operators can be written as:

âN = fa,1...fa,N â0 +
√
1− t2aĉN + ...+ fa,1...fa,N−2

√
1− t2aĉ2 + fa,1...fa,N−1

√
1− t2aĉ1,

b̂N = fb,1...fb,N â0 +
√
1− t2b d̂N + ...+ fb,1...fb,N−2

√
1− t2b d̂2 + fb,1...fb,N−1

√
1− t2b d̂1.

(2.71)

For conciseness, we define fa/b,i = taf
′
a/b,i. Given that the conjugate field is more detuned,

and there is minimal population accumulation in the lower state of the transition, we

reasonably assume that the conjugate field is lossless (tb = 1). As a result, we retain only

the first term in b̂N . Additionally, we observe that the first two terms are proportional

to
√
GP/C . Finally, we rewrite Eq. (2.71) in a more compact form, representing the gain
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factors in each term as χa,i:

âN =
√
GP â0 + χa,1ĉN + ...+ χa,N−2ĉ2 + χa,N−1ĉ1,

b̂N =
√
GC â0. (2.72)

We then compute the differential intensity variance Var(â†N âN − b̂†N b̂N ). Since all ci

operators correspond to vacuum modes, we have ⟨ĉ†i ĉ⟩ = 0. In addition, the input photon

number is ⟨â†0â0⟩ = nin. After performing the calculation, we arrive at the following

expression:

S = 10 log10

[
Var(â†N âN − b̂†N b̂N )

⟨n̂P ⟩+ ⟨n̂C⟩

]

= 10 log10

[
(GP −GC)nin +

∑N
1 χa,i ∗ (nin + 1)

(GP +GC)nin

]
, (2.73)

where S is the squeezing parameter, GP and GC stand for the gains for the probe and

conjugate fields, and χa,i accounts for losses at each step. In the ideal lossless case, χa,i → 0

andGP−GC = 1, which recovers the standard expression for ideal squeezing. When ta = 0,

we essentially are measuring noise of conjugate field only, and we see super-poissonian

statistics as expected. To incorporate optical loss into this equation, we use a 2×2 matrix

H (akin to Eq. (3.25)) to relate the input and output fields, as described by

(
â(z)

b̂(z)

)
= e−iHz

(
â(0)

b̂(0)

)
=

(
A(z)â(0)
B(z)â(0)

)
. (2.74)

From Eq. (2.74), we can express χa,i in terms of the gain factor as

χa,i =
(√

1− t2a

)N−i+1
[A(δz)]N−i , (2.75)

where δz is the infinitesimal step size, and A(δz) is the gain per step. For each experi-

mental data set, we can infer the functions A(z) and B(z) by fitting them based on the
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measured values A(L) and B(L), which correspond to the total gain over the entire prop-

agation distance L. Once A(δz) is determined, χa,i can be computed accordingly, as the

transmission Ta is known from experimental measurements. This method is consistent

with the procedure used in the work [116].

2.4.6 Optical Loss: Langevin Noise Formalism

In this section, we introduce an alternative method for accounting for the optical loss by

using the Langevin formalism. This method quantitatively accounts for the atomic-induced

noise due to optical absorptions and emissions that is unavoidable when dealing with hot

atoms. The Langevin theory considers the optical field of interest interacting with an

external reservoir with closely spaced frequencies and infinite number of different mode,

in our case it is an atomic ensemble. The contribution of each atoms is expressed with

the so-called noise operator f̂ , Physically, f̂ is all atom contribution during the interaction

time τ and interaction distance z, which takes the form [105],

f̂ ≡ gc
∑
i

f(τ, z)σ̂i (2.76)

where the gc is constant,f(τ, z) represents the addition and later removal of an atom

as the atom only affects the field for certain time and range. The σi represents the ith

atom operator. Conveniently, equivalent FWM Langevin formalism has being developed

using the 2× 2 propagation matrix [111].

∂z

(
âout
b̂†out

)
=

M︷ ︸︸ ︷(
−α+ i∆k

2 iκ
−iκ −i∆k

2

)(
â

b̂†

)
+ N̂R

(
f̂a
f̂ †b

)
+ N̂I

(
f̂ †a
f̂b

)
. (2.77)

This propagation matrix M is equivalent to the 2×2 propagation matrixfrom Eq.(2.36),

with the inclusion of linear absorption and dispersion term α and imaginary sign i. In
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Eq.(2.77), f̂ †a and f̂b are Langevin noise operators that satisfy the following correlations:

⟨f̂m(z)f̂n(z
′)⟩ = 0, ⟨f̂ †m(z)f̂ †n(z

′)⟩ = 0, (2.78)

⟨f̂ †m(z)f̂n(z
′)⟩ = 0, ⟨f̂m(z)f̂ †nz

′)⟩ = δmnδ(z − z′). (2.79)

Here, the N̂R and N̂I matrices are determined by the coupling matrix M such that the

probe and conjugate field at any given position z satisfy the commutation relations [111],

in the forward (probe and conjugate propagate along the same direction) FWM:

N̂R + iN̂I =
√

−(M +M∗). (2.80)

This equation can be solved at the cell output z = L,

(
âout
b̂†out

)
= eML

(
â

b̂†

)
+

∫ L

0
eM(L−z)N̂R

(
f̂ †a(z)

f̂b(z)

)
dz +

∫ L

0
eM(L−z)N̂I

(
f̂ †a(z)

f̂b(z)

)
dz. (2.81)

Note here that eML =

A B

C D

 is the gain matrix with the same physical meaning as

in Eq.(2.36), but written in a more general format. The joint differential variance can be

then computed through the standard procedure and is included in the numerical model.

We can calculate the differential variance, V ar(â†outâout− b̂
†
outb̂out), based on the above

results. Two loss term, ηP and ηC , are applied to both probe and conjugate channels to

account for the detector loss arising from the filtering scheme as well as the non-perfect

quantum efficiency of the employed photon detector. We annotate use η for total loss to

differentiate with medium transmission T . With this modification, the differential intensity

variance takes the form:

V ar(n̂P,loss − n̂C,loss) = ⟨(ηP n̂P,loss − ηC n̂C,loss)
2⟩ − ⟨ηP n̂P,loss − ηC n̂C,loss⟩2

+ηP (1− ηP )|A|2n̂in + ηC(1− ηC)|A|2n̂in (2.82)
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The detailed steps and script for Langevin noise calculation is shown in Appendix.A.

Connection between Infinite BS Model and Langevin Formalism

In this section, we discuss the relations, similarity, and difference between two models.

Essentially, the infinite beamsplitter model is a convenient numerical approximation, while

the Langevin formalism yields a quantitative solution for atomic noise contribution. At

each location within the propagation distance, the latter accounts for the noise by con-

sidering the light field interacting with an infinite reservoir instead of applying a simple

beamsplitter model. We can also examine the form of Eq.(2.81). Physically, the integrand

of N̂ accounts for the joint effect of linear loss and nonlinear / linear gain. The overall

effect over the propagation z is accounted for by integrating from 0 to L. The physical

meaning of Eq.(2.81) is then very similar to the infinite beamsplitter formalism such that

at each discrete step with a small distance δz, except that in this case, the noise is no longer

modeled merely as a simple beamsplitter at each discrete step. In some cases, however,

if the numerical solution is done with a sufficiently large number of steps, both methods

yield a close solution. Here, we illustrate this with a simple example.

Consider an atomic medium with nonzero optical depth (OD) through which a coherent

optical field (â†) propagates. For each incremental step ∆z along the propagation path, a

certain transmission tm,dz is incurred. By repeatedly applying Eq.(2.68) over M steps, we

derive the expression for the output field ĉ† as follows:

V ar(⟨b̂†b̂⟩) =
[ M∏
m=1

tm,dz

]
⟨â†â⟩ = ⟨b̂†b̂⟩ (2.83)

In other words, when a coherent field propagates through a lossy medium, such as a

crystal or an atomic ensemble, the output state remains coherent.

We now consider the same calculation with the Langevin noise formalism. To illustrate

this, consider a coherent input state, |α⟩, propagating through a medium with a loss factor
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β. The propagation dynamics can be expressed as follows:

∂â(z)

∂z
= βâ(z) +

√
2βf̂(z), (2.84)

where z is the propagation distance, ranging from 0 to L, and f̂(z) is the noise operator

satisfying ⟨f̂(z)f̂(z′)⟩ = δ(z − z′). The annihilation operator at the output (distance L)

can be thus found to be

â(L) = â(0)e−βL + e−βL

∫ L

0
eβz f̂(z)dz. (2.85)

From this, we can determine the photon number, photon number variance, and quadrature

variance after propagation through the medium:

⟨n̂in⟩ = e−2βL⟨n̂out⟩,

⟨∆n̂2in⟩ = e−2βL⟨n̂2out⟩,

⟨∆X̂2⟩ = 1/4. (2.86)

Here, ⟨n̂in⟩ and ⟨∆n̂2in⟩ decrease proportionally with the loss factor, while the quadrature

variance remains unchanged. For a coherent state propagating through a lossy medium,

both the infinite beamsplitter model and the Langevin formalism yield identical results,

demonstrating that the coherent state remains coherent. This agreement validates the

use of the infinite beamsplitter model as an approximation. It is important to note that

the Langevin formalism is exact, while the infinite beamsplitter model is an oversimplified

approximation whose accuracy depends on the step size chosen as well as the validity of

modeling all losses using the beamsplitter model. Thus, when a precise extraction of the

first-order Hamiltonian is possible, or a more systematic noise calculation is required, we

employ the proper Langevin treatment; conversely, the infinite beamsplitter model is used

as a convenient approximation method. In this dissertation, we utilize both methods for
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noise calculation.
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Chapter 3

Fundamentals of Two-Mode

Squeezing Generation in Double-Λ

and Double-Ladder Atomic Systems

In this section, we explore two distinct FWM squeezers in 85Rb vapor: the double-Λ

squeezer and the double-Ladder squeezer, both theocratically and experimentally.

The chapter is organized as follows: we first introduce the density matrix formulism to

deal with atomic dynamics. We then provide specifications for each FWM configuration:

1)analytically solve the system, 2)detail the experiment, and 3)provide a detailed setup

guide as well as answers to frequently encounter questions. Lastly, we compare the two

configurations. The experimental setup detailed in this section is utilized fully or partially

for Ch.4, Ch.5, and Ch.6. Some of graphs used in this section are modified from the

thesis [107], as we partially shared setup during our projects, and no conflict of interest is

involved.
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3.1 Theoretical Description of Light-Atom Interaction

Let’s start with the density matrix formulism. This approach enables us to describe a

statistical mixture of atomic coherence along with atomic decays and dephasing, thereby

yielding more accurate predictions for the ensemble as a whole and allowing for the calcu-

lation of induced polarization.

Let’s first consider a pure quantum state |ψ⟩ =
∑
n
an|n⟩. The density matrix operator

is then defined as,

ρ̂ = |ψ⟩⟨ψ|, (3.1)

a matrix with density matrix element expressed as

ρij = ⟨i|ρ̂|j⟩ = ⟨i|ψ⟩⟨ψ|j⟩ = aia
∗
j , (3.2)

Physically, the diagonal elements ρii indicate the probability of populating an atom

in the state |i⟩ with an overall probability summed to unity. The off-diagonal elements

ρij , referred to as coherence terms, represent the expectation values of the atomic dipole

moments across corresponding transitions. These coherence terms can be directly related

to the total induced electric dipole moment:

⟨dtot⟩ = ⟨ψ|d⃗ij |ψ⟩ −
∑
i,j

ρij⟨i|er|j⟩ =
∑
i,j

dijρij , (3.3)

Here dij = −⟨ψ|er|ψ⟩ signifies the dipole matrix moment associated with the transition

from |i⟩ → |j⟩. This can be related to polarization via Eq.(2.3).

P = ϵχE = N
∑
i,j

dijρij (3.4)

Eq.(3.4) establishes a direct relationship between elements of the density matrix and

the polarization of the medium, forming connections with the wave equation Eq.(2.6). By

solving for the density matrix elements, one can obtain the system’s underlying dynamics.
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We next need to introduce the general formulism for finding the exact Hamiltonian

of the involved light-atom interaction. Energy of an electron with charge e and mass m

interacting with E-M field can be expressed as,

Ĥ =
1

2m
[p+ eA]2 − eϕ+ Vc(r), (3.5)

Here A and ϕ are vector/scalar potential of electromagnetic field, respectively, and

Vc(r) is the Coulomb potential. Since we work radiation gauge, in which, ϕ = 0 and

∇ ·A = 0, we can write down the Hamiltonian as [105],

Ĥ =

Ĥ0︷ ︸︸ ︷
p2

2m
+ Vc(r)+

ĤI=−d·E︷ ︸︸ ︷
Ȧ · p , (3.6)

The first two terms are the Hamiltonian Ĥ0 of the unperturbed atom. The second

term is the interaction Hamiltonian ĤI , which can be rewritten in the form of ĤI = −d ·

E [105, 115, 118]. This term corresponds physically to the interaction between the electric

dipole and the electric field. For quantized atoms with energy levels {|i⟩}, the Hamiltonian

in the interaction picture can be expressed as the following matrix [105, 106, 115]:

Ĥ =

4∑
i=1

ℏ∆i|i⟩⟨i|+
1

2
ℏ
∑
i ̸=j

Ωij |i⟩⟨j|+ H.C (3.7)

Here we removed the explicit time dependence by applying an unitary transforma-

tion [107, 113]. The Rabi frequency Ωij is defined by Ωij =
dijE
ℏ and quantifies the

strength of the light-atom interaction. Finally, we can write down the general form of the

master equation as follows [105].

∂ρ̂(t)

∂t
= − i

ℏ
[
Ĥ, ρ̂(t)

]
+

1

2

{
Γ, ρ̂(t)

}
(3.8)

Ĥ is the Hamiltonian given by Eq.(3.7). The decay matrix Γ specifies the decay or
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dephase channels. Eq.(3.8) allows us to write down a series of differential equations of

density matrices describing the system dynamics, which we can use for a comprehensive

calculation of FWM in both the double-Λ and double-Ladder configurations.

3.2 FWM in Double-Λ Configuration

3.2.1 Density Matrix Calculations for a Double-Λ Configuration

We first discuss the basic theoretical framework for the double-Λ configuration. A typical

double-Λ is shown in Fig.3.1, where we have a strong pump field coupled to both |1⟩ →

|3⟩ and |2⟩ → |4⟩ transition. Its Rabi frequency is annotated as Ω, and it creates the

strong ground-excited state coherence. We send in a weak probe field ΩP (Blue), and the

conjugate field ΩC (Black) is generated.

P C

Figure 3.1: Energy level diagram used for the FWM model. Here, atomic levels |1⟩ and
|2⟩ represent two ground-state hyperfine levels |5S1/2F = 2, 3⟩ of 85Rb, while levels |3, 4⟩
both represent the excited electron state |5P1/2⟩ [109]. In the schematic, the pump field
(Ω) applied at both transitions |1⟩ → |3⟩ and |2⟩ → |4⟩ is shown in red, and the probe
(ΩP ) and conjugate (ΩC) fields are labeled by the blue and black arrows.

In actual experiment, we construct double-Λ configuration utilizing both |5S⟩ ground

states and |5P 1/2⟩ excited levels. For analytical calculations, the excited level is treated as
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two independent levels for the sake of simplicity, following [9, 108, 109, 119, 120]. Here we

combine Eqs. (3.8) and (3.7) to obtain the Maxwell-Bloch equations for the system [109,

121–124]. Assuming a closed system, the general atomic dynamics can be expressed as

follows,

ρ̇11 = i
Ω

2
(ρ31 − ρ13) + i

Ω∗
C

2
ρ41 − i

ΩC

2
ρ14 + 2γ13ρ33 + 2γ14ρ44,

ρ̇22 = i
Ω∗
P

2
ρ32 − i

ΩP

2
ρ23 + i

Ω

2
(ρ42 − ρ24) + 2γ23ρ33 + 2γ24ρ44,

ρ̇33 = i
Ω

2
(ρ13 − ρ31)− i

ΩP ∗

2
ρ32 + i

ΩP

2
ρ23 − 2γ3ρ33,

ρ44 = 1− ρ11 − ρ22 − ρ33 → Closed System condition

ρ̇12 = i(∆2 −∆1)ρ12 + i
Ω

2
ρ32 − i

ΩP

2
ρ13 + i

Ω∗
C

2
ρ42 − i

Ω

2
ρ14,

ρ̇13 = −i∆1ρ13 + i
Ω

2
(ρ33 − ρ11)− i

Ω∗
P

2
ρ12 + i

Ω∗
C

2
ρ43 −

1

2
γ3ρ13,

ρ̇14 = i(∆2 −∆1 −∆3)ρ14 + i
Ω∗
C

2
(ρ44 − ρ11)− i

Ω

2
ρ12 + i

Ω

2
ρ34 −

1

2
γ4ρ14,

ρ̇32 = i∆2ρ32 − i
ΩP

2
(ρ33 − ρ22) + i

Ω

2
ρ12 − i

Ω

2
ρ34 −

1

2
γ3ρ32,

ρ̇24 = −i∆3ρ24 + i
Ω

2
(ρ44 − ρ22)− i

Ω∗
C

2
ρ21 + i

Ω∗
P

2
ρ34 −

1

2
(γ2 + γ4)ρ24,

ρ̇34 = −i(∆3 −∆2)ρ34 + i
Ω

2
ρ14 + i

ΩP

2
ρ24 − i

Ω∗
C

2
ρ31 − i

Ω

2
ρ32 −

1

2
(γ3 + γ4)ρ34.

(3.9)

Where Ω,ΩP and Ωc denotes the pump, probe and conjugate Rabi frequencies,respectively.

γj is the decay rate of the jth atomic level, γjk = (γj + γk)/2 is the decoherence rate of

atomic coherence ρjk, and ∆jk is the frequency detunings of the optical fields of the cor-

responding optical transition, annotated as ∆i for simplicity (see Fig.3.1). To simplify the

discussions, we set ground state decay rate γ1 = γ2 = 0 in our case.

Here we can further apply several simplifications. First, by selecting a proper rotating

frame, we have real pump Rabi frequency Ω, while ΩP and ΩC accumulates a symmetric

phase iϕ/2 and −iϕ/2 respectively. Here, Φ assumes the following format,
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Φ = ∆ωt−∆kz + ϕ0 (3.10)

where ∆ω and ∆k given in Eq.(2.17). ϕ0 denotes the initial constant phase difference

between the input fields. In our analysis, we can set ϕ0 = 0 and ∆ω = 0: The former

represents a constant phase term accumulated in the signal Rabi frequencies, which will

ultimately diminish as we evaluate photon generation. The latter is derived from the

assumption of zero-energy dissipation, implying that energy is solely transferred from the

pump field to the signal fields.

Second, time dependences are disregarded by setting ρ̇ = 0 since we are interested

in the steady-state solutions. Third, in a typical double-Λ FWM configuration, we have

Ω ≫ |Ωp| ≈ |Ωc|, which allows for the neglect of several comparatively small terms in

Eq. (3.9). These simplifications effectively decomposes the composite double-Λ system

into two independent sets of equations. Combining decay and detuning terms in Eq.(3.9)

into complex decay terms (Γ14 = γ4/2 + i(∆1 − ∆2 + ∆3), Γ12 = γ12 + i(∆1 − ∆2),

Γ32 = γ3/2− i∆2 and Γ34 = (γ3 + γ4)/2− i(∆2 +∆3)), we reach the following set of the

steady-state equations [109, 121–124]:
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Set 1



0 = γ31ρ33 + γ41ρ44 +
1

2
iΩ(ρ31 − ρ13),

0 = γ32ρ33 + γ42ρ44 +
1

2
iΩ(ρ42 − ρ24),

0 = −γ3ρ33 −
1

2
iΩ(ρ31 − ρ13),

0 = −γ4ρ44 −
1

2
iΩ(ρ42 − ρ24),

0 = −
(γ3
2

+ i∆1

)
ρ13 −

1

2
iΩ(ρ11 − ρ33),

0 = −
(γ4
2

+ i∆3

)
ρ24 −

1

2
iΩ(ρ22 − ρ44).

Set 2



0 = −Γ12ρ12 +
1

2
iΩρ32 −

1

2
iΩρ14 −

1

2
iΩPρ13 +

1

2
iΩ∗

Cρ42,

0 = −Γ14ρ14 +
1

2
iΩρ34 −

1

2
iΩρ12 +

1

2
iΩ∗

C(ρ44 − ρ11),

0 = −Γ32ρ32 +
1

2
iΩρ12 −

1

2
iΩρ34 −

1

2
iΩP (ρ33 − ρ22),

0 = −Γ34ρ34 +
1

2
iΩρ14 −

1

2
iΩρ32 −

1

2
iΩPρ24 +

1

2
Ω∗
cρ31.

(3.11)

The atomic coherence terms of Set 1 can be solved easily as a linear system [122, 123].

We focus on Set 2, the linear system that describes our signal fields. We ignore ρ34 as

levels |3⟩ and |4⟩ are physically one level, thus atomic coherence ρ34 carries no physical

meaning. The ground state coherence ρ12 does not contribute to the signal fields. We look

for the solutions of ρ14(= − iΩ3
2Γ14

ρ12) and ρ32, which are related to the two signal fields of

our interest. By rewriting Eq.3.11 in Set 2, the optical coherence terms ρ41 and ρ32 can

be obtained by solving the reduced Maxwell-Bloch equations [109, 121–124].

ρ̇12ρ̇14
ρ̇32
ρ̇34

 =


−Γ12 − iΩ

2
iΩ
2 0

− iΩ
2 −Γ14 0 iΩ

2
iΩ
2 0 −Γ32 − iΩ

2
0 iΩ

2 − iΩ
2 −Γ34


ρ12ρ14
ρ32
ρ34

+
i

2

−ρ13ΩP + ρ42Ω
∗
C

−Ω∗
C(ρ11 − ρ44)

ΩP (ρ22 − ρ33)
ρ24ΩP − ρ31Ω

∗
C

 . (3.12)

To obtain analytic expressions for the two field propagation matrix, we make several rea-

sonable assumptions. First, we consider both pairs of optical fields to be in nearly perfect

resonances, such that ∆1 ≈ ∆2 and ∆4 = ∆3 +∆1 −∆2 ≈ ∆3. Moreover, we assume that
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the first Λ subsystem, formed by the probe and pumps, is not too far detuned from the

optical transition, compare to the hyperfine ground state splitting, such that ∆1,2 ≪ ∆HF .

On the other hand, the second Λ link, formed by the pump and the Stokes fields, is far-

detuned so that ∆3 = ∆1 + ∆HF ≫ ∆1,2,Ω and γ3. In this case, the atomic population

distribution is dominated by the optical pumping on the |1⟩ − |3⟩ transition. In this case,

most atoms are in the |2⟩ ground state, while all other optical levels may be considered

empty: ρ(0)11 = ρ
(0)
33 = ρ

(0)
44 = ρ

(0)
13 = 0, and ρ(0)22 = 1.

With these simplification, we can find the steady state solutions for the optical coher-

ence terms, ρ32 and ρ14 by solving Eqs. (3.12),

ρ32 =
2iΓ12

Ω2+4Γ12Γ32
ΩP + 1

2∆3

Ω2

Ω2+4Γ12Γ32
Ω∗
C . (3.13)

ρ14 =
i

2Γ14

Ω2

Ω2+4Γ12Γ32
ΩP + 1

2Γ14

Ω2

2∆3

2Γ32
Ω2+4Γ12Γ32

Ω∗
C (3.14)

Using Eq.(2.19) and (3.4) , we formulate the propagation equations for the probe (ΩP )

and conjugate (ΩC) optical fields under the rotating wave approximation as follows [109,

121–124],

−iΩP

∂z
=

g

c
Nρ32, (3.15)

i
Ω∗
C

∂z
=

g

c
Nρ14. (3.16)

The coupling constant g is defined as g = ω
2ϵ0ℏd

2
eg. We can write down Eqs.(3.15) and

(3.16) in matrix form, and further simplify these expressions by writing Γ14 = γ4/2 +

i(∆1 − ∆2 + ∆3) ≈ i∆3 and Γ12 = γ12 + i(∆1 − ∆2) ≈ 0 to construct the propagation

equations for the probe and conjugate optical fields as follows:

i∂z

(
ΩP
Ω∗
C

)
=

(
gN
c

−2iΓ12
Ω2+4Γ12Γ32

− ∆k
2 −gN

c
1

2∆3

Ω2

Ω2+4Γ12Γ32
gN
c

1
2∆3

Ω2

Ω2+4Γ12Γ32
−gN

c
Ω2

4∆2
3

2iΓ32
Ω2+4Γ12Γ32

+ ∆k
2

)(
ΩP
Ω∗
C

)
. (3.17)
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By enforcing the resonance conditions (∆1 ≈ ∆2, ∆3 ≈ ∆4) and assuming the pump

field to be strong enough to create full EIT transparency window, but still strongly couple

only to the near-resonant Λ-link, such that ∆3 ≫ Ω ≫ √
γ12γ13 and Ω ≪ ∆3, the simplified

propagation matrix takes the desired form of the anti-PT Hamiltonian:

i∂z

(
ΩP
Ω∗
C

)
=

(
−∆k

2 − gN
2c∆3

gN
2c∆3

∆k
2

)(
ΩP
Ω∗
C

)
. (3.18)

Notably, all the diagonal atomic contributions vanish, leaving only the wave-vector mis-

match ∆k to contribute to the evolution of the two optical fields, and constituting the

lossless propagation. Indeed, for γ12 ≪ Ω, the residual absorption vanishes. Similarly, the

resonant absorption for the conjugate field also vanishes for ∆3 ≫ Ω.

We can now easily find the two eigen-propagation constants of the effective 2×2 anti-PT

Hamiltonian matrix in Eq.(3.18):

λ± = ±∆k

2

√
1−

( gN

c∆3∆k

)2
. (3.19)

While in principle, the combination of off-resonant operation and long ground-state co-

herence lifetime would allow for nearly lossless propagation, it is very hard to achieve such

conditions in practice. Indeed, a non-vanishing spin decoherence γ12 leads to the appear-

ance of a small imaginary contribution in the first diagonal term of Eq.(3.17), describing

the residual absorption coefficient α ≃ gN
c

2γ12
Ω2 :

i∂z

(
ΩP
Ω∗
C

)
=

(
gN
c

2γ12
iΩ2 − ∆k

2 − gN
2c∆3

gN
2c∆3

∆k
2

)(
ΩP
Ω∗
C

)
=

(
−iα− ∆k

2 − gN
2c∆3

gN
2c∆3

∆k
2

)(
ΩP
Ω∗
C

)
. (3.20)

As this residual absorption term scales with the atomic density N in the same way as

the FWM nonlinearity strength, its contribution results in the nonzero real parts of the

interaction matrix eigenvalues, which become more pronounced at larger N . At the same

time, applying a higher pump laser power may help mitigate this undesirable effect.

The solution to Eq.(3.17) – Eq.(3.20) simply takes exponential form. The overall
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solution takes the following form (similar to Eq.(2.21) and Eq.(2.36)) for both λs,

(
Ω(z)P
Ω(z)∗C

)
=

(
A(λ) C(λ)∗

C(λ) A(λ)∗

)(
Ω(0)P
Ω(0)∗C

)
, (3.21)

where

A(λ) = cos(λL) + i sin(λL)/

√
1−

( gN

c∆3∆k

)2
(3.22)

C(λ) = −iβ sin(λL)/
√

1−
( gN

c∆3∆k

)2
. (3.23)

When we seed only the probe channel, the nonlinear gain is defined by GP = |A|2

and GC = |C|2 as given by Eq.(2.25). The calculation in this section aligns with our

calculations in Sec.2.1 and 2.2. We note that while the presented analysis is highly idealized

and involves some rather strong assumptions, it still qualitatively predicts the behavior

of the real experimental system, as evident by the reasonable agreement between the

analytical predictions of the simplified model, the numerical simulation results, and the

experimentally measured parameters presented in Ch.6. The primary value of this analysis

lies in its transparency which can be verified for a broader range of parameters using

numerical simulations without such approximations.

3.2.2 Experiment Setup

Following previous work (e.g., Refs. [9, 108, 109, 119, 120]), we create the FWM process

at the |52S1/2, F = 2, 3⟩ → |52P1/2⟩ optical transition of 85Rb using a double-Λ interaction

scheme, as shown in Fig.3.2(a). The pump laser (red) with angular frequency ω and

Rabi frequency Ω couples the atomic transitions |1⟩ → |3⟩ and |2⟩ → |3⟩ with respective

detuning ∆1 = 0.7 to 1.5 GHz and ∆2 = ∆1 + ∆HF , where ∆HF = 3035.7 MHz is the

hyperfine splitting of the |5S1/2⟩ ground state. We also define the so-called two-photon

detuning δ = ∆1 −∆2. The two output modes, conjugate (ωs, â
†
s) and probe (ωP , âP ), are

assumed to only couple to the |3⟩ → |2⟩ and |3⟩ → |1⟩ transitions, respectively. Under the
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P

P

C

C

Figure 3.2: (a)Double-Λ atomic scheme used for describing the FWM process at the
D1 transition of 85Rb. The strong pump laser is detuned by ∆1 = 0.7 GHz and ∆2 =
3.7 GHz from the |52S1/2F = 2⟩ → |52P1/2⟩ and the |52S1/2F = 3⟩ → |52P1/2⟩ optical
transitions, respectively. And ∆HF = 3035.7 MHz is the ground-state hyperfine splitting.
(b) Geometrical arrangement of the optical fields in the FWM process with the momentum
mismatch ∆k⃗ = 2k⃗ − k⃗P − k⃗C .

two-photon resonance condition, they obey the energy conservation 2ω = ωP + ωC . The

full schematic is shown in Fig.3.3.

Our pump laser source, depicted as blue region in Fig.3.3, is a TOPTICA TApro system

with a built-in laser diode and tapered amplifier. The coarse tunning allows us to probe

wavelength range from 775 to 805nm, covering both the D1 and D2 transitions of Rb. This

system has two output ports with the main output port factory coupled to a fiberDock

coupler. Typically, we achieve a coupling efficiency of over 40%, and the power can reach

up to 400 mW after the fiber. We use this channel as our strong pump beam to create

coherence. The beamdiameter for the pump beam is ≈0.5 mm.

The diode pick-off port, with a power of ≤ 0.5 mW, is used for both wavelength mon-
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Figure 3.3: Full experimental setup diagram for double-Λ FWM generation

itoring using a wavemeter and weak seed field generation. We send the signal through an

electroptical phase modulator(EOM) powered by a Marconi Instruments 2031 RF source

generator. The RF generator is tuned to ≈1517.5 MHz with ≈-1.5dB modulation power,

which is then frequency-doubled to reach 3035 MHz, corresponding to a two-photon de-

tuning δ = 0.7 MHz. The EOM output is directed at a tunable Fabry-Parot etalon to

isolate the first order modulation sideband. The beam is then coupled into a single mode

fiber to clean the transverse spatial distribution. The output, with power usually ranging

from 40µW to 90µW and a beamsize of ≈0.3 mm, is used as our seed field. This setup

allows us to access both transitions easily with single laser device, enabling the creation of

a double-Λ system, as discussed later in Ch.6.

Next, we focus on the nonlinear amplification aspect. In our experiment, we exclusively

work with 85Rb. We utilize an AR-coated (with over 98% transmission for D1/D2 lasers)

1.9 cm long pyrex cell. The cell is positioned within a three-layer µ-metal shielding to

eliminate any influence from the background magnetic field, with thermal isolation mate-

rial interposed between the layers. The cell temperature is typically maintained between

105◦C and 110◦C using a temperature controller; this temperature range is optimized for

achieving the best squeezing, which can vary depending on other parameters, particularly

laser detuning. A strong pump beam and a weak probe beam, both tuned to have perpen-
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Figure 3.4: Close-up setup diagram for the double-Λ system.

dicular linear polarizations, are overlapped within a small angular range of 0.23 ◦ to 0.4

◦. The nonlinear interaction consequently generates a third beam, commonly referred to

as the conjugate or Stokes field in the literature, while the input probe is amplified. The

polarization of the conjugate field, which is aligned with the probe field and perpendicular

to the pump, is filtered out using a beamsplitter.

The generated conjugate and probe fields are then directed onto a Balanced Photon

Detector (BPD). Our BPD design incorporates a pair of Hamamatsu S3883 photodiodes,

which have a standard quantum efficiency exceeding 92% at the Rb D1/D2 frequencies. A

pair of f=25.4mm AR-coated lenses is employed to focus the optical fields onto the photo-

diodes. The resulting photocurrents are electronically subtracted and amplified, with the

differential voltage monitored in real-time on an oscilloscope. Additionally, a separate AC

channel—with the DC component removed electronically—feeds into a HP8596E spectrum

analyzer for intensity noise measurements.
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3.2.3 Additional Considerations

In this section, we summarize a series of frequently asked questions and encounter problems

during the squeezer setup and adjustment process.

How can you get away without laser lock?

In the double-Λ experiment, we do not use any laser locking. The TOPTICA TA pro

laser exhibits a frequency drift of ≤100 MHz, which is negligible compared to the one-

photon detuning ∆1P and the etalon transmission linewidth. Consequently, the inherent

stability of the laser is sufficient for our purposes. Similarly, no phase lock is employed

because the pump laser’s linewidth (≤100 kHz over a 100 µs period) is much narrower

than our gain bandwidth, which spans hundreds of MHz. Eliminating both frequency and

phase locks significantly simplifies the system, making long-term stabilization easier.

How does Doppler effect influence the results?

The Doppler effect has a minimal impact on FWM for two primary reasons. First, the

one-photon detuning is substantially large (on the order of GHz) compared to the Doppler

frequency shift. Consequently, the negative impact of Doppler effect IS significantly mit-

igated. Second, an all-propagation configuration is used with all lasers tuned close to

the Rb D1 line. The Doppler shift is similar in magnitude and identical in sign, result-

ing in significant cancellation. The situation is markedly different in the double-Ladder

configuration.

How do we choose the isotope and cell length, and what is the impact of buffer

gas?

In all our experiment we use a 1-inch (1.9cm effective length) pure 85Rb cell. However,

both 87Rb and 85Rb isotope have been explored in literature with squeezing observed [56,

125], with similar phase matching angles. In case that the coupling field detuning is much

larger than the hyperfine splitting (which is exactly the double-Λ case), we can essentially

consider all hyperfine levels as one level [126], which from another perspective shows that

both isotopes will work similarly.
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The selection of cell length is application-dependent, balancing linear and nonlinear

optical losses (arising from residual absorption, higher-order Raman absorption, etc.) with

gain (from FWM and potential higher-order processes). Notably, the best squeezing re-

sults to date have been achieved using a 1.2-cm cell [56]. Generally, when FWM gain is

sufficiently high, a shorter cell offers advantages for squeezing generation.

Furthermore, buffer gas is rarely employed in FWM experiments. While buffer gases

can enhance spin coherence time and the transverse time of atoms—critical in magne-

tometer experiments—FWM primarily relies on ground–excited level coherence. The use

of buffer gas, therefore, tends to reduce this critical coherence, so most FWM experiments

do not incorporate a buffer gas. Additionally, anti-relaxation coated cells, which are often

associated with buffer gases, have a lower temperature damage threshold. Since many

FWM experiments require heating the cell to between 100◦C and 120◦C, the use of this

cell type is impractical.

How do we choose the right beamsize?

As mathematically demonstrated in Ch.2, the gain is determined by both the pump

intensity and the propagation distance. Therefore, the beam size is carefully chosen based

on the specific vapor cell so that the probe and pump beams are fully overlapped along

the entire cell length. Additionally, to achieve optimal spatial overlap, the beam overlap

must occur within the Rayleigh lengths of both the pump and probe beams. Once this

condition is met, the smallest practical beam size is used. For the double-Λ case, we

deliberately choose different focus for pump and probe such that there is a point after cell

the pump is focused and separated spatially from all signal fields, allowing better pump

beam filtering. This is a consideration solely for the double-Λ case as the phase matching

angle is small (therefore the spatial separation between signal and residual pump). In the

case of double-ladder scheme we discuss in next section, pump filtering can be easily done

given long enough propagation distance as a result of large angles.

Furthermore, the spatial modes of the probe seed and pump are cleaned by coupling it

through an optical fiber, as depicted in Fig.3.3. To minimize additional spatial distortions
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and losses, it is advisable to use as few lenses as possible when adjusting the beam size.

Ideally, any necessary focusing of the pump or probe should be accomplished with a single,

long-focal-length lens that operates within its Rayleigh length.

How Do we setup/tune the Fabry-Parot Etalon?

The quality of the amplified beam—its spatial mode, frequency, and other attributes—is

largely determined by the stability of the seed laser. Therefore, it is crucial to maintain its

stability by carefully tuning the etalon to prevent both long-term and short-term drifts in

frequency and intensity. To achieve this, we use a Febory-Parot etalon that is temperature-

stabilized by a Thorlab TED 200C temperature controller. Thermal conductive paste is

applied between the etalon crystal and the temperature sensor/heater, and the crystal is

housed within a thermal isolation tube to minimize the effects of external temperature fluc-

tuations. The etalon can be adjusted either by fine-tuning its temperature or by modifying

the injection angle of the input beam.

The tuning procedure is following: we first turn on the frequency sweeping of the laser,

and we observe the transmission peak as shown in Fig.3.5,

As we adjust the etalon angle, the transmission peak—monitored on an oscilloscope (see

Fig.3.5)—shifts in one direction (either left or right) along with changes in transmission

intensity and linewidth. The optimal tuning point is reached when the shift reverses

direction; for instance, if tunning angle (in one direction) initially moves the transmission

peak in Fig.3.5 to the left, eventually the peak will shift direction and move to the right.

The shift point signifies the sweet point, exhibiting both the highest transmission and the

narrowest linewidth.

Parameter tuning: How to tune the phase matching angle, one/two photon

detuning?

Related to the phase matching angle and coupling field frequencies, the ∆k term, ∆1

and δ are the major factors influencing gain and squeezing. The ∆k term also affects sig-

nificantly the beamoverlap and coupling into the BPD detector, as the generated field may

be redirected slightly. Therefore, the optimization involves finding the best combination
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Figure 3.5: Oscilloscope image. The blue trace is the photodiode monitoring of laser
frequency using another photodiode. The orange trace is the Etalon transmission spectra,
showing the main peak, and the first order modulation peak representing pump, probe,
and conjugate.

of several interrelated parameters.

Fortunately, previous literature [13, 127] has identified a favorable parameter space.

A good starting point is: δ ≈2 MHz, ∆1 ≈1.5 GHz, and θ = 0.3◦ to 0.4◦ if using the

Rb D1 line, with Ppump = 200 mW to 400 mW. Within this parameter space, achieving a

sufficiently high FWM gain is relatively straightforward.

Once sufficient nonlinear gain is achieved, the first objective is to establish two-mode

correlation. In practice, this is verified by observing that the differential noise, as mea-

sured by a spectrum analyzer, is lower than the noise of either the conjugate or probe

beam individually. After confirming this correlation, we implement a step-by-step tuning

procedure to optimize the two-mode intensity squeezing.

• Lock the detunings, ∆1 and δ, by parking the laser and fixing the modulation
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frequency.

• Ensure the probe seed field direction is fixed. Since the probe serves as our reference,

it must be set up with the highest care.

• Carefully tune the pump laser direction using a pair of mirrors. Avoid using just one

mirror for initial adjustments when squeezing is minimal, as this may detrimentally

affect beam overlap. Once near the optimal squeezing point, fine adjustments with

a single mirror are acceptable.

• Gently adjust the coupling into the photodiode by lightly pressing the coupling mirror

in front of the photodiode. It is generally preferable to start with the conjugate

channel, given that the probe direction is already established as a reference. This

fine tuning should be performed extremely gently and can be bypassed during coarse

adjustments.

The procedure described above should be repeated for various combinations of ∆1

and δ until both optimal gain and squeezing are achieved. Notably, our observations

indicate that the settings yielding the highest FWM gain do not necessarily lead to the

best squeezing. As a result, a practical tip for squeezing optimization is to first identify

the point of maximum gain, and then deliberately adjust the parameters away from that

optimum to achieve improved squeezing performance.

3.2.4 Technical Noises and System Debugging

Even after implementing standard tuning procedures, intensity squeezing is sometimes not

observed, typically due to excessive noise. In this section, we examine, from an operational

perspective, the various noise sources in the experiment and outline the measures we take

to mitigate them. Broadly, these noise sources fall into three categories:

• Optical loss
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• Extra parasitic photons

• Classical noise and detector dark noise

1.Optical loss

Any optical loss introduces unwanted photons with super-Poissonian statistics that can

quickly eliminate the observed squeezing. To minimize optical noise, it is essential to select

a sufficiently high ∆1 and an appropriate δ; this can be verified by monitoring GP and

GC immediately after the vapor cell. Assuming conjugate transmission TC = 100%, the

probe transmission is given by

TP =
GP

GC + 1
.

In the double-Λ regime, TP typically reaches 95% or above. If TP falls below 90%, this may

indicate that either ∆1 is set too low (leading to increased linear loss) or δ is insufficient

(potentially triggering a two-photon transition), or there is clipping or scattering within

the vapor cell. The latter issues often arise from using a cell with no or a damaged AR

coating, or from improper cell positioning. Therefore, for these experiments, it is highly

recommended to use a vapor cell with a proper AR coating. It is worth verifying with an IR

viewer that no unwanted scattering/clipping occurs, since such scattering, on top of loss,

may also introduce parasitic photons—a concern that will be addressed in the following

section.

2.Extra parasitic photons

In the double-Λ configuration, parasitic photons arise predominantly from residual

pump leakage. Although an after-cell PBS (as shown in Fig.3.4) removes most of it, some

unwanted photons may still persist due to a combination of small phase-matching angles

and large pump beam sizes (see the beam size selection section). Additionally, scattering

within the vapor cell can lead to stray light that further contaminates the signal. To

assess pump leakage, we monitor the noise level with the pump field active and the probe

seed blocked. If the filtering is effective, the noise should be nearly at the dark noise

level. If not, a series of irises positioned along the probe and conjugate beam paths can
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be employed to reduce the leakage. These irises must be adjusted carefully to minimize

the total differential noise without excessively clipping the signal field, as doing so would

compromise the squeezing.

Less common sources of parasitic photons include those generated by higher-order wave

mixing processes, such as 6WM or 8WM. While these effects are typically minor when the

experimental setup is optimized according to the guidelines, they can still detract from the

squeezing level, particularly if scattered light is recoupled into the interaction region. It is

also possible, although uncommon, to observe reduced squeezing or excessive noise when

multiple competing FWM channels co-exist.

3.Classical Laser noise

Lastly, we address classical laser noise and dark noise in our system. Despite consid-

erable advancements in laser technology, practical lasers are not perfect: fluctuations in

temperature and power introduce excess intensity noise beyond that of an ideal coherent

state, even when operating well above lasing threshold. In addition, while phase noise

is generally less detrimental, it can be converted into intensity noise if ηp is frequency

dependent. For this reason, it is important to independently verify the noise level of the

probe seed, as any noise present can propagate through the system. In our experiments,

the probe seed typically shows noise levels ranging from 0.0 dBm to 0.6 dBm above SNL

when it is far detuned.

In the double-Λ configuration, the probe seed is extremely weak (on the order of µW)

and is amplified by a high gain, which minimizes the impact of residual classical noise. Fur-

thermore, a sufficiently large ∆1 helps suppress the conversion of phase noise into intensity

noise. In contrast, the noise management strategies for the double-ladder configuration are

considerably more challenging.

4.Detector Dark Noise

The dark noise level, determined by the electronics, also the accuracy of squeezing

measurements; however, we will not elaborate on the board design in this thesis. Addi-

tionally, 1/f noise results in elevated noise levels at low frequencies, and other electronic
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noise sources can produce extra peaks at specific frequencies, often due to design limita-

tions or malfunctions. Therefore, it is advisable to perform a wide-frequency sweep on

a spectrum analyzer to identify regions with minimal noise. For example, Fig.3.6 shows

a frequency band where both 1/f noise and other dark noise contributions are minimal.

Since the electronics’ dark noise is independent of and invariant with respect to the other

experimental parameters, its measured power is subtracted from the squeezing signal.

Figure 3.6: A sample dark calibration for dark noise, with the spectrum analyzer detection
range from 0 to 4MHz. The good detection region is shaded. To the left of the shade area
the noise is dominated by 1/f noise. To the right of the shaded area a noise peak is observed
for an unknown reason.

How do we calibrate the shot noise and perform dark noise subtraction

All squeezing measurements are referenced to the shot noise level. However, because

measuring shot noise repeatedly is both cumbersome and time-consuming, we perform a

calibration that allows us to compute the shot noise level for a given power.

Fig.3.7 illustrates the shot noise measurement setup, which essentially replicates the

configuration used for squeezing measurements in Fig.3.3. In this setup, the pump (or

probe, when sufficient power is available) is split equally into two paths. According to the
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derived equations, the differential noise

Var(na − nb) = ⟨na⟩+ ⟨nb⟩,

scales linearly with the mean photon numbers ⟨na⟩ and ⟨nb⟩. By ensuring that ⟨na⟩ =

⟨nb⟩ = ⟨n⟩ during calibration, any classical noise contribution is canceled out, thereby

allowing for an accurate determination of the shot noise level.

Figure 3.7: SNL calibration setup. This is the same setup used for squeezing measurement
to ensure fair comparison, but with two laser inputs of equal power. The overall classical
noise is subtracted out.

Fig.3.8 presents a sample shot noise calibration along with its linear fit. In this calibra-

tion, the noise power—which reflects the coherent-state variance—and the photovoltage,

which is proportional to the photon number, display a clear linear relationship. This linear

fit is incorporated into our analysis software to compute the shot noise level correspond-

ing to various photovoltage readings. Importantly, the observed linearity also serves as a

critical check on the calibration process and is commonly used to validate the coherence of

an optical field. For instance, a quadratic dependence of photovoltage may appear when

a near-resonance optical field propagates through an atomic medium due to phase-noise
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Figure 3.8: Shot noise data and its functional fit. This fit reveals that the noise power
(which represents the optical field variance) scales linearly with the photonvoltage (propor-
tional to the optical power/photon flux). This linear relationship is crucial for calibrating
the shot noise level and serves as a diagnostic tool to verify whether a laser field displays
super-Poissonian statistics due to extra noise sources contaminating the measurement. The
noise power reduced to the measured dark noise line instead of 0.

conversion as well as atomic noise near resonance.

3.3 FWM in Double-Ladder Configuration

3.3.1 Density Matrix Calculation and Numerical Simulation

In this section, we analyze another widely used system, the double-ladder, or "Diamond"

configuration. A schematic diagram is shown in Fig.3.9. Two strong pump fields, ΩIR and

ΩD2, couple |1⟩ → |3⟩ and |3⟩ → |4⟩ respectively. Meanwhile, a weak probe field is coupled

to the transition |1⟩ → |2⟩, leading to the generation of the conjugate field ΩC .

Following the treatment as in Ref [128], we can formulate the Hamiltonian, and use

Eq.(3.7) to write down the Bloch equations. By appropriately choosing a rotating reference

frame, we simplify the atomic dynamics by treating the Rabi frequencies of the probe, D2
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Figure 3.9: Simplified double-ladder atomic configuration of 85Rb employed in the ex-
periment. The D2 pump (ΩD2,red) and IR pump (ΩIR,blue) are linearly polarized in the
same direction and intersect inside the vapor cell with an orthogonally-polarized probe
beam (ΩP ,black). The conjugate field (ΩC ,purple) is generated with the same polarization
as the probe.

pump, and IR pump as real, except for the conjugate Rabi frequency, which carries an

accumulated phase Φ = ∆ωt−∆kz+∆ϕini. The definition is the same as in the previous

section, is given by Eq.(2.17).

Set 1



ρ̇11 = i
ΩD2

2
(ρ13 − ρ31) + γ2ρ22 + γ3ρ33,

ρ̇22 = γ42ρ44 − γ2ρ22,

ρ̇33 = −iΩD2

2
(ρ13 − ρ31) + i

ΩIR

2
(eiΦρ34 − e−iΦρ43) + γ43ρ44 − γ3ρ33,

ρ̇44 = 1− ρ11 − ρ22 − ρ33 − ρ44,

ρ̇13 = Γ13ρ13 − i
ΩD2

2
(ρ33 − ρ11)− i

ΩIR

2
eiΦρ14,

ρ̇34 = Γ34ρ34 − i
ΩIR

2
e−iΦ(ρ44 − ρ33)− i

ΩD2

2
ρ14,

ρ̇14 = Γ14ρ14 − i
ΩD2

2
ρ34 + i

ΩIR

2
e−iΦρ13,

Set 2


ρ̇12 = Γ12ρ12 − i

ΩP

2
(ρ22 − ρ11)− i

ΩD2

2
ρ32 − i

Ω∗
C

2
ρ14,

ρ̇24 = Γ24ρ24 − i
ΩC

2
(ρ44 − ρ22)− i

ΩP

2
ρ14 − i

ΩIR

2
e−iΦρ23,

ρ̇23 = Γ23ρ23 − i
ΩP

2
ρ13 − i

ΩC

2
ρ43 + i

ΩD2

2
ρ21 + i

ΩIR

2
e−iΦρ24.

(3.24)
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Here, {γ2, γ3, γ4 = γ43 + γ42} are the decay rates of the states {|2⟩, |3⟩, |4⟩}. Γij =

i(∆j −∆i)− (γi+ γj)/2 is the complex frequency detuning of the |i⟩ → |j⟩ transition with

{∆1,2,3,4 = 0,∆D1 ,∆D2 , ∆IR}. An analytical expression for ρ12 and ρ42 can be obtained,

but the exact form is too complex to present in full. In our case, since all frequency

detuning and pump field Rabi frequency terms are comparable, further simplification is

not justified. Insights into the system’s dynamics can be gained by examining the steady-

state solutions for ρ12 and ρ42, expressed in terms of other atomic coherence terms. In the

same manner as we derived Eq. (3.15) and Eq.(3.16), we have,

i∂z

(
ΩP (z)
Ω∗
C(z)

)
=

(
(iγ2−2∆2)ρ14

4∆2
2+γ2

2

(iγ2−2∆2)(ρ11−ρ22)
4∆2

2+γ2
2

ρ22−ρ44
2∆4−2∆2+iγ2+iγ4

−iρ41
2∆4−2∆2+iγ2+iγ4

)(
ΩP (0)
Ω∗
C(0)

)
+

(
− (iγ2−2∆2)ΩD2ρ32

4∆2
2+γ2

2
iΩIRρ32

2∆4−2∆2+iγ2+1γ4

)

≡
(
A B
C D

)(
ΩP (0)
Ω∗
C(0)

)
. (3.25)

The complex matrix elements A, B, C and D are determined by the parameters of the

system. In the context of a double-Λ atomic configuration and under the thin-medium

approximation, both A and D approach zero, effectively resulting in an anti-parity-time

symmetric matrix [103]. In our specific case, however, the condition A ≫ D holds, as

the linear absorption and dispersion associated with A within the Doppler range are sig-

nificantly larger than those associated with D. Furthermore, it is evident that the linear

absorption terms are governed by population differences, which can vary substantially.

The off-diagonal terms responsible for the nonlinear gain explicitly depend on ρ14, the

atomic coherence between the ground and excited states. Both absorption and amplifi-

cation processes are influenced by the density matrix element ρ32, which represents the

atomic coherence between the two intermediate states. This term reflects competing pro-

cesses that either contribute to or undermine the linear gain, particularly over a broader

frequency range and at lower amplification efficiency. In contrast, ρ14 typically exhibits

a narrower width with much higher peak amplification [129]. For the intensity squeezing
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studied here, a narrower width with higher gain is generally preferred, highlighting the

importance of enhancing ρ14 coherence. The steady-state solution for ρ14 is expressed as

ρ14 = i(ΩD2ρ34 − ΩIRe
−iΦρ13)/Γ14. This coherence is directly tied to ΩD2 and ΩIR, the

two pump fields, emphasizing the importance of strong pump intensities. Similarly, ρ32,

assuming weak ΩP and ΩC , can be expressed in a comparable form, albeit with different

decay rates Γij . As the IR pump frequency is tuned, a transition is observed from a regime

where ρ14 dominates at small detuning to one where ρ32 dominates at larger detuning.

3.3.2 Experiment Description

In this section we are giving a brief outline of the experimental method and setup. A

simplified schematic of our experimental arrangements is shown in Fig. 3.10. For these

experiments, we use 85Rb atomic vapor as nonlinear medium. To facilitate the FWM

process in a double-ladder interaction system, we use the following energy levels: |5S1/2⟩,

|5D1/2⟩, |5D3/2⟩, and |6S1/2⟩ states. Two intense pump fields couple the ground state

5S1/2 and the highly excited state 6S1/2: the first laser, (referred in the text as “D2 pump”,

wavelength: 780nm, Pmax = 320 mW) is tuned near the |5S1/2F = 3⟩ −→ |5D3/2⟩ transition,

and the second laser (referred in the text as “IR pump”, wavelength: 1367nm,Pmax =

35 mW) is tuned to the |5D3/2⟩ −→ |6S1/2⟩ transition. The D2 pump field is generated

by a Vitawave ECDL laser or by a TOPTICA DLCpro system and amplified using the

TOPTICA BoosTApro system, which provides the total output up to 370 mW of power.

The 1367 nm pump field is generated by a Toptica DLCpro system, providing up to 35mW

power at the cell.

In this arrangement of the ladder system, the correlated optical fields are generated

at the other lbranch, involving |5P1/2⟩ intermediate stage. In our experiments, we seed

the lower transition |5S1/2F = 3⟩ −→ |5P1/2⟩ with a weak probe laser field (wavelength:

795nm, Pmax = 2 mW). This field is generated by either a New Focus Vortex 6000 laser

or a TOPTICA DLCpro. The D1 795nm field undergoes amplification at the output,

simultaneously producing a conjugate field at 1324 nm. In this experiment all optical
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Figure 3.10: a) Simplified experimental setup. Non optional input fields are shown as
solid lines. Blue: 1367nm pump field. Red:780 nm (D2) pump field. Black: 795 nm (D1)
probe field. The generated 1324 nm conjugate field is displayed as purple dotted line.
Two optional coupling fields can be coupled into the system to manipulate the atomic
populations or activate the higher order wave mixing. The repump field(shown as black
dashed line) is counter-propagating with the D1 seed, while the dressing field is coupled.
Blue dot: 780 Repump. b) Atomic level diagram

fields are linearly polarized: the two pumps are vertical polarized, while the probe field, as

well as the generated conjugate field are horizontally polarized. The exact frequencies of

all lasers are monitored using either a saturation spectroscopy reference cell for the probe

and D2 pump lasers, or using a Bristol 621 wavemeter (with precision up to 10−4 nm) for

the 1367nm pump laser.

The laser beams intersect within the Rb vapor cell at nonzero angles, as shown in

Fig.3.10(a). Note that the phase matching angles in this system are larger than those in the

double-Λ configuration(0.2 to 0.4◦ ). The required phase-matching angles are even larger

if a counter-propagating configuration is chosen, which are default in most ladder-type

schemes [130]. Here, we choose to work with all copropagating beams to minimize these

angles and increase the beam overlap. Beam focusing also requires careful optimization–

tight enough to achieve sufficient intensity, while wide enough to ensure an extended in-

teraction length. The beams shall be adjusted to be nearly collimated over the interaction

zone to reduce the spread of k vectors.

We focus the D1 field with a single lens to ensure best beam quality, whereas the D2

field is collimated using a two-lens system (f = 500mm/150mm pair, d≈ 0.6 mm). The
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1367 nm pump is focused with two cylindrical lenses, with f = 1000 mm in the horizontal

direction (dhor≈0.34 mm) and f =500 mm in the vertical direction. To maximize the

overlap, we maintain relatively large beam sizes for the IR and D2 fields, while the D1

seed beam is comparable or smaller focused (with f =400 mm single lens, d ≈ 0.28mm).

All beams have a Rayleigh length over 1 inch to guarantee good phase-matching.

After the Rb cell the intensities of the amplified probe and generated conjugate beams

are monitored using Hamamatsu S3883 and EXT500 photodiodes, respectively. These

photodiodes have quantum efficiency exceeding 95% for Rb D1 line and 85% for 1367 nm,

respectively. The responsivity of S3883 is very low in the IR range, and the same for

EXT500 at the D1 line. Combined with the large phase-matching angle, this allows for

effective pump leakage filtering. We quantify the interaction strength using the generation

efficiency (G, or gain), defined as the ratio between the amplified output probe power

and input probe seed power: GP = P795nm, output/P795nm,seed input. The conjugate gain

is defined similarly, GC = PC/P795nm,seed input. In an ideal lossless case, we have relation

GC−GP = 1. However, in our experiment, the D1 field suffers strong linear absorption due

to near-resonant operation at very high temperature (100 to 115 ◦C), where the absorption

peak is broadened even more. In contrast, the conjugate field is assumed to be loss less,

as it corresponds to an upper transition from an intermediate state with small population.

We measure the probe transmission (TP ) with either the D2 or IR pump turned off as to

estimate probe field optical loss. The actual loss at the gain point could be different due

to population difference as well as field intensity difference.

3.3.3 Experiment Setup How-to Guide

In this section we give a comprehensive, step by step guide for setting up the experiment

described above. It serves as a tutorial for readers who are interested in reproducing the

results presented in this thesis.

A major difficulty in the current experiment is optimizing a large parameter space. The

inclusion of three lasers instead of two, as in the double-Λ case, exponentially increases
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the complexity of optimization and tuning. We present in this work a set of optimized

parameters and should serve as decent starting point.

Tunning the phase matching angle

It is generally easier to start with angular optimization and aligning the beam into

photodiode. The geometry, once optimized, is only subject to minor adjustments. By

using parameters detailed in previous section, one should be able to achieve some level of

FWM signal. After obtaining initial FWM gain, the gain peak is optimized by fixing the

probe seed direction along with tunning the other two fields. We usually use the conjugate

channel as a metric for gain optimization;however it is advantageous during the tunning

stage to monitor both the probe and conjugate channels. Before gain is fully optimized,

the probe channel is often subject to strong self-focusing effect , which sometimes affects

the beam alignment into the diode. Besides, the gain peak may be significantly attenuated

by strong residual absorption, making it difficult to detect during initial alignment. The

conjugate field direction usually won’t shift too much to impact the photonvoltage, but it

is safe to always check the beam alignment into the photodiode after few adjustments.

The general procedure of tunning the two pump fields directions alternatively:

• Adjust 1367 nm pump angle with mirror pair

• Adjust 780 nm pump angle with mirror pair to maximize the gain. It is easier to

perform this type of task with both pump field locked while sweeping the probe seed

field thus we can not only clearly observe the gain amplitude but also the line shape

as well as transmission. From experience, the GP/C peaks can develop significant

imbalance for certain frequency, which we wish to avoid for squeezing purpose. We

perform usually the angular optimization to get the highest gain before move to the

next stage.

Squeezing optimization

In this section,we discuss the process for squeezing optimization. The following proce-

dure is usually followed:
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• Parking D1 and IR input while sweeping the D2 pump laser, monitoring the probe

channel only. We adjust the D1 seed laser frequency until the gain peak and trans-

mission at the gain peaks are both sufficiently high. The reason we do this is to

closely monitor the transmission and gain, as the presence of the intense D2 pump

can affect the transmission significantly.

• Look at the probe and conjugate differential signal. Lock the D2 laser to the fre-

quency where the FWM gain peaks are best balanced.

• Fine-tune the IR pump frequency until you have the lowest differential noise.

• Adjust the probe and conjugate transmission using an independent waveplate (WP)

and PBS combination until optimal squeezing is achieved.

• Check the squeezing, then adjust the probe seed power accordingly. Repeat previous

step and this step until best squeezing is achieved.

• Adjust gently the coupling into photodiode for final optimization.

By following the above procedures, one should be able to achieve a measurable level

of squeezing. The squeezing within the Doppler range is a complicated interplay between

increased gain, loss, and residual classical noise, all of which are very sensitive to the probe

frequency. If one still doesn’t achieve squeezing after following the above procedures, we

recommend to slightly adjust the IR frequency to improve the transmission (of course, the

gain will be lower). It is not uncommon that multiple adjustments need to be done until

squeezing is achieved.

Lastly, if one still doesn’t observe squeezing, it is also worth to check the classical noise

of coupling fields, especially in the probe seed. The phase noise conversion in the double-

ladder case is significantly stronger. Since we have lower gain and usually use a stronger

probe seed, the situation worsens even more. We recommend to use the quietest laser as

seed, and to use a phase-lock to get narrower linewidth and less phase noise conversion (if
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this is an option). We also recommend to double-check that the polarization of the probe

seed field is well-defined. Extra classical noise can be added due to polarization filtering

before the detector.

3.4 Comparison between two Configurations

Double-Λ FWM is widely used for intensity squeezing generation [56, 57]. The two-mode

intensity squeezing with different color utilizing the double-Ladder configuration is, on the

other hand, demonstrated for the first time in our work. In this section, we compare the

traditional double-Λ squeezing with the diamond configuration. The major differences are

summarized in Table 3.1.

The most important difference, of course, is the large difference in optical frequency

between the signal fields and pump fields. The Doppler factor k = 2π/λ is vastly differ-

ent between ground-to-intermediate level transitions and for intermediate-to-excited level

transitions. Even using proper geometry won’t lead to full cancellation of the Doppler

terms, leading to stringent selection of atomic velocity groups. Additionally, we are using

a co-propagating geometry for the ladder configuration in which the Doppler term adds

up instead of cancel out. Therefore, the double-ladder configuration is more susceptible to

Doppler effect.

One additional problem brought by frequency difference is the exaggerated difference in

the detector loss. The vapor cell coating gives over 99% transmission for D1/D2, yet only

90% transmission for the O-band frequency (e.g., the 13xxnm fields). Similarly, the two

photodiodes also have a difference in quantum efficiencies. The total detector efficiency of

the 1367 nm channel is 85% of that for the probe channel. Since this difference further

degrades the squeezing [116], we need to manually adjust the detector loss of both channels

to achieve best squeezing. Given the lower squeezing levels in our case, we usually need to

introduce an independent loss rate control for both channels to enhance the squeezing.

Also, for double-Λ configuration we can fully push the gain peak out of the Doppler
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range while for the double-ladder configuration, the gain peak still resides in the Doppler

range with a significant amount of absorption, leading to more significant optical loss as

well as phase noise conversion. Our solution is to use a stronger probe seed far above the

saturation, typically in the range of 400µW to 2 mW. This is much higher than the probe

seed power usually used in the double-Λ case. We note that the FWM generation is most

efficient for ΩPump ≫ ΩProbe. Thus applying a strong probe seed can gradually break this

assumption and eventually lead to the reduction in gain. The probe seed power thus needs

to be carefully selected.

Another impact of the stronger absorption is the more pronounced phase noise con-

version for the double-ladder scheme compared to the double-Λ configuration. With the

Vortex 6000 laser as the seed field, for example, we sometimes observe shot noise when the

system is far detuned and +6 to +10 dB of extra noise when transmission drops to 70%.

The lower gain in our case means that the residual classical noise can be a dominating

source of excess noise, but this is not a problem at all for the double-Λ configuration.

Double-Ladder Double-Λ
Signal Field λ Difference Few hundred nm 10−3 nm

Gain (GP/C) Low, typically 1-2 High, easily above 10
Laser phase Noise conversion Significant Not Significant

Probe Seed Power 400 µW to 2 mW 40-90µW
Doppler Effect Influence Heavily Influenced Lightly Influenced

Probe Transmission 60%-85% 95% or more

Table 3.1: A point by point comparison between the double-Λ and ladder configurations

66



Chapter 4

Bi-Chromatic Intensity Squeezing

using FWM in Hot 85Rb Vapor

4.1 Introduction

The results presented in this section are published in [131].

The advancement in quantum information science (QIS) over the past two decades has

significantly increased the number of potential applications. These applications encompass

various fields, including quantum computing, quantum information processing, quantum

cryptography, and quantum sensing.The variety of physical platforms for these applications

is steadily increasing. Most quantum information carriers are based on electromagnetic

radiation at specified frequencies, making direct interfacing between different platforms

challenging or even impossible [132, 133]. This has renewed interest in addressing the

problem of interconnects—both local and remote—between various platforms [134, 135].

An efficient frequency converter, capable of shifting the frequency of a quantum state

without inducing decoherence, offers an ideal solution. Several such systems have been

proposed and realized [48, 136], many of which rely on nonlinear optical materials and

often require a waveguide or cavity to achieve sufficient nonlinearity [137, 138].

Nonlinear processes in hot or cold atoms present a promising alternative due to the

67



strong enhancement of nonlinear interactions near atomic resonances. A double-ladder

(or diamond) scheme in Rb or Cs atoms is particularly appealing for frequency conver-

sion [45, 130, 139]. Given that alkali metal atoms have emerged as a versatile platform for

quantum information science (QIS), the double-ladder system could facilitate the con-

version of their natural optical quantum carriers to the telecom bandwidth, enabling

low-loss integration into quantum networks. In this context, several experiments have

successfully demonstrated single-photon conversion using both cold and hot Rb ensem-

bles [45, 58, 130, 139–141].

In this work, we focus on generating quantum fields, rather than single photons, to

facilitate the implementation of quantum protocols based on continuous variables (CV),

or qumodes [142–146], instead of discrete variables (DV) qubits [147–149]. Specifically,

we investigate the generation of two optical fields at different frequencies with correlated

quantum fluctuations, resulting in two-color, two-mode intensity squeezing. This process is

driven by FWM in a double-ladder scheme in 85Rb, as illustrated in Fig.4.1(a). The detun-

ings are referenced to |5P3/2, F
′ = 4⟩, |5P1/2, F

′ = 2 and 3⟩ centroid, and |6S1/2, F ′ = 3⟩,

respectively. In this scheme, two strong pump lasers at 780 nm (D2 Pump) and 1367 nm

(IR Pump) excite atomic coherence between the 5S ground state and the 6S excited state,

amplifying the probe field at 795 nm and producing a new conjugate field at 1324 nm. The

photon numbers in these two fields are quantum-mechanically correlated. Conceptually,

this approach is similar to FWM-based two-mode squeezing and entanglement generation

in a double-Λ system, where up to 9 dB of squeezing has been demonstrated [9, 76, 109].

However, FWM in the double-ladder scheme is less efficient [128, 150] due to faster decoher-

ence, weaker available laser power, and larger Doppler mismatch. One potential solution is

to operate closer to atomic resonance, but this leads to increase residual resonant absorp-

tion of the probe field, which degrades nonclassical correlations [116]. Consequently, the

main experimental challenge in this project was optimizing conditions where the FWM gain

is sufficiently high and resonance losses are sufficiently low to observe two-mode squeezing.

After optimization, we obtain a maximum intensity squeezing of -2.6 dB, corresponding
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to the FWM gain of approximately 2.1 (or ≈ 2.45 when accounting for losses).These re-

sults are in qualitative agreement with our numerical model and suggest that even better

squeezing could be achieved with higher pump laser power.

D2 Pump

𝜆    =780 nmD2

     Probe

𝜆  =795 nmP

5S1/2

ΔD2ΔD1

5P1/2

5P3/2

    Conjugate 

𝜆  =1324 nmC

a) b)

c)

6S1/2
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Figure 4.1: (a) Double-ladder atomic configuration of 85Rb employed in the experiment.
(b) Experimental setup: The D2 pump (red) and IR pump (blue) are linearly polarized in
the same direction and intersect inside the vapor cell with an orthogonally-polarized probe
beam (black). The conjugate field (purple) is generated with the same polarization as the
probe. (c) Phase-matched FWM geometry of the optical fields within the vapor cell.

4.2 Numerical Modeling of FWM with Complete Hyperfine

Level Structure

When comparing experimental results with theoretical predictions, it is essential to account

for the atomic hyperfine level structures in our theoretical model. In this regard, we present

a fully numerical model based on Rydiqule [151], with the explicit level diagram shown in

Fig.4.2. The full Python script of this model is shown in Appendix.B.

This model extends the simplified treatment discussed in the previous section by in-

corporating all relevant hyperfine levels for a more accurate representation of the system’s

overall behavior. Specifically, we include the states |1a⟩, |1b⟩, |3a⟩, |3b⟩, |3c⟩, |4a⟩, and |4b⟩,

which correspond to these following hyperfine levels: |5S1/2, F = 2, 3⟩; |5P3/2, F
′ = 4, 3, 2⟩;
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|6S1/2, F = 2, 3⟩; and |5P1/2, F = 2, 3⟩. The |1b′⟩ is excluded from coupling as it is far

detuned from all atomic resonances and has a negligible effect on the overall interaction.

Figure 4.2: Detailed level diagram used in the numerical model. Level |1b⟩ does not
participate in the interaction but acts as a reservoir, accounting for population changes
due to optical pumping, decay, and atomic motion.

To properly describe the system dynamics, it is essential to accurately account for the

Rabi frequency which can be related to intensity through I = 1
2cϵ0E

2 [118, 126],

Ωij =

√
2Id2ij
ℏ2ϵ0c

(4.1)

Next we need to determine correct dij to calculate the correct Ωij . Because the incident

light is linearly polarized, only a single component of the dipole moment(dij has three

components:dij,xx̂, dij,yŷ and dij,z ẑ ) contributes to the interaction. A factor of 1
3 is

therefore added to account for it with the assumption that our pump field is isotropic

and identical in all three directions. The dipole moment for any ground levels F → F ′

can be expressed as the hyperfine transition strength SFF ′ such that
∑

F ′ SFF ′ = 1. The

effective dipole moment can then be expressed as follows[126],

dF→F ′ =

√
1

3
SFF ′ |⟨J |er|J ′⟩|2 . (4.2)
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If the input optical field is tuned far away from transition, a significant simplifica-

tion arises from the condition that the detuning is considerably larger than the hyperfine

splitting. Under this approximation, one can effectively sum over all possible transition

channels to the excited states. For a linearly polarized field, the overall factor is denoted

by [126].

∑
F ′

(2F ′ + 1)(2J + 1)

{
J F ′ J ′

F 1 I

}2 ∣∣⟨F mF | F ′mF ′⟩
∣∣2 = 1

3
. (4.3)

Essentially, the far-detuned field interacts with all the hyperfine sublevels together.

Since all SFF ′s sum to unity, the only factor left is the 1
3 -factor. It is critical to emphasize

that this calculation is valid exclusively within the far-detuned regime. For scenarios

with smaller detuning, it is essential to treat each hyperfine level independently to ensure

precision. Depending on the specific scenario, it is necessary to correct the dipole moment

accordingly to achieve an accurate Rabi frequency. In the diamond scheme simulation, we

account for all hyperfine levels individually with SFF ′ .

We assume linearly polarized input for both the pump and probe beams, with the

approximation that all m-levels are equally populated and treated collectively. An equal

branching ratio is assumed for all decay channels with multiple possible pathways. An

effective repump rate of 2π × 0.56 MHz is coupled from |1b⟩ to |1a⟩ to match the linear

absorption level, accounting for repumping due to atomic motion. In other words, |1b⟩ is

treated as a reservoir that tracks the atomic population, while all other levels, responsible

for the behaviors of interest, are treated as an open system exchanging atoms with |1b⟩.The

atom escape rate due to thermal motion is calculated as Γatom ≈ 1 MHz, based on an

average atomic velocity of 270 m/s and a beam waist of 0.28 mm. All excited states (except

|1a⟩) decay into |1b⟩ with an additional decay rate of Γatom on top of the natural decay

rate. The propagation equations for the conjugate field (involving transitions |2a⟩ → |4a⟩,

|2b⟩ → |4a⟩, |2a⟩ → |4b⟩, and |2b⟩ → |4b⟩) and the probe field (involving transitions

|1a⟩ → |2a⟩ and |1a⟩ → |2b⟩) are solved using two coupled differential equations for z = 0
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Figure 4.3: Experimentally measured (solid lines) and simulated (dotted and dashed
lines) probe and conjugate gains, GP (a) and GC (b), are shown as functions of probe
detuning ∆D1. Zero detuning corresponds to the maximum resonance absorption, with
vertical lines marking the positions of the |5S1/2, F = 3⟩ → |5P1/2, F

′ = 2, 3⟩ optical
resonances. For these measurements, the two pump detunings are set at ∆D2 = −280 MHz
and ∆IR = 800 MHz [152], with their respective powers: PD2 = 260 mW and PIR = 33
mW. The maximum measured FWM gain values are GP = 1.73 and GC = 1.05 at a probe
detuning of ∆D1 ≈ 600 MHz. The calculated spectra account for photodetector quantum
efficiencies and probe light’s resonant absorption. Simulation data for ∆k = 0 (dashed)
and ∆k with approximations (dotted, small in the gain region and large elsewhere) are
also presented.

to z = 1.83 cm. The propagation distance is corrected for overlapping for a 1.9-cm long

cell. The contributions from each transition are weighted by their respective hyperfine

transition strengths. A rotating frame is chosen such that the accumulated phase factor
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(e−i∆kijz) is applied only to the conjugate wave. The final propagation equations we solve

numerically, similar to Eq.(3.25), takes the form:

∂ΩP

∂z
= igN(S1a2aρ1a2a + S

1a2b
ρ
1a2b

),

−∂ΩC

∂z
= igN(S2a4aρ2a4a + S

2b4b
ρ
2b4b

+ S
2a4b

ρ
2a4b

+ S
2b4a

ρ
2b4a

), (4.4)

where g represents the effective coupling constant, N is the atomic number density, and Sij

is the hyperfine coupling constant. During the numerical ODE solving process, we recast

Eq.(4.4) as

−∂ΩC

∂z
= igN

[
S2a4aρ2a4ae

i∆k2a4az + S
2b4b

ρ
2b4b

ei∆k
2b4b

z + S
2a4b

ρ
2a4b

ei∆k
2a4b

z + S
2b4a

ρ
2b4a

ei∆k
2b4a

z
]
,

(4.5)

with an explicit dependence on the dynamic phase ∆kijz. To prevent the repetitive accu-

mulation of phase, we remove it at each step of the numerical computation by multiplying

by ei∆kijz. For simplicity, we assume the momentum mismatch affects the same in the

closed loop involving states |2a⟩ and |2b⟩, rather than accounting for each closed loop

separately. In other words, we have

∆k2a4a = ∆k2a4b = ∆k1,

∆k2b4a = ∆k2b4b = ∆k2. (4.6)

The value of ∆kj above is frequency-dependent and is related to the real refractive

index n(ω) by the relation k = kvacuum/n(ω), where n =
√
1 + χ. The linear susceptibility

χ is calculated using the following equation [126, 151],

χ =
4gNρijc
ωijΩij

. (4.7)

This equation is derived from the polarization per unit volume and expressed in terms of
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the coupling constant g. For the simulation shown in Ch.4, we used the experimental values

ΩIR = 4800 MHz·rad, ΩD2 = 2200 MHz·rad, and ΩP = 350 MHz·rad, which allow us to

calculate χIR, χD2 , and χP , respectively. The calculation of χC is more challenging, as ΩC

varies from z = 0 to z = L. As an approximation, we assume a small testing field with ΩC =

120 MHz·rad, and we obtain minimal ∆kj in the gain region. Consequently, we utilized

the approximated values ∆k1 = 30 rad·m−1 and ∆k2 = 10 rad·m−1 for computations

in the gain region. For other regions during the D1 sweeping, we approximated ∆k1 =

3000 rad·m−1 and ∆k2 = 100 rad·m−1. In Fig.4.3, we present the numerical results that

match the experimental data using ∆k1 = ∆k2 = 0, alongside the aforementioned ∆kj

approximations. The overall fit around the FWM gain peak is reasonable in both cases;

however, with these adjustments, we achieve a better match for smaller ∆D1 . We discuss

this further in Fig.4.3 and the simulation results in next sections.

4.3 FWM Gain Optimization

The experimental details are described in Ch.4, and a simplified schematic is shown in

Fig.4.1. To better understand the system and to enhance the FWM strength, we nned to

carefully deal with a number of experimental parameters including: laser intensities and

detunings, beam sizes and overlap, relative beam angles, cell temperature, etc. The effects

of varying these parameters are often not independent, and some of them are harder to

control or vary than the others. For example, the FWM interaction strength increases

with the available pump power, so we need to focus the beam as tightly as possible. At the

same time, we must ensure sufficient longitudinal overlap of all laser beams to maximize

the interaction length, meaning the Raleigh length cannot be too short. We also need to

make sure that the seed beam size does not exceed the sizes of pump fields so that its

amplification is spatially uniform. In the process of optimization, we adjust the laser beam

sizes using focusing lenses, and then keep them constant while varying other experimental

parameters. We use a similar approach for optimizing the angles between the three laser
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beams, which are crucial for satisfying the phase-matching conditions. We begin by roughly

tuning all the phase matching angles as in Fig. 4.1, followed by sequential adjustments of

the D2/IR beam directions while keeping the D1 field direction fixed in space. This tuning

is performed in both the vertical and horizontal directions, ensuring we have the highest

possible gain under the given experimental conditions.

4.3.1 Operational Temperature

Since the FWM nonlinearity is proportional to the number of atoms, it is beneficial to work

at the highest possible temperature to increase Rb vapor density. However, higher temper-

atures also increase resonant optical losses for the D1 optical field, which is detrimental to

intensity squeezing and entanglement. Because both absorption and residual optical losses

increase near to atomic resonance, optimizing the cell temperature and laser detuning must

be done together. Previous work on FWM in a double-Λ system has demonstrated the ef-

fectiveness of increasing atomic density while tuning the lasers far from atomic resonances.

Following the same principle, we heat the Rb cell to a relatively high temperature (from

100 to 115 ◦C), limited by the physical properties of Pyrex cell windows. The optimal

temperature for squeezing is found to be 100.5◦C.

4.3.2 Laser Detunings

Since the interaction scheme involves three independent lasers, we have a large parameter

space with three intertwined variables. A straightforward measurement procedure would

be to sequentially change all three laser in small increments within a reasonable parameter

space. However, this approach requires precise frequency control of all three lasers with

high accuracy and stability over potentially long data acquisition periods. For example,

dividing the target detuning range for all three input fields into 20 divisions (which gives

us only moderate precision) would yields 8000 output transmission spectra, requiring more

than 20 hours of uninterrupted acquisition given the communication speed with the de-
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vices. Under these conditions, the system stabilization, especially the laser locks, can be a

problem.

Instead, we employed an alternative method that involved sweeping of two of the

three laser fields (D2 pump and D1 probe), while parked the third laser (IR pump) at a

particular frequency that was monitored using a wavemeter. Two sample datasets shown

in Fig.4.4 illustrate this method. Fig.4.4(a) shows the simpler case: here we lock both D2

and IR pump fields and sweep only the D1 seeded probe field. The top graph displays

the normalized probe gain GP , showing that a clear gain peak appears as the D1 seed

is tuned to ∆D1 ≈ −400 MHz from the optical resonance. To find the optimal gain

for a different D2 laser detuning, we need to repeat the scan with the D2 laser locked

at a new frequency. Fig.4.4(b) shows the case when we sweep both the D2 and D1 field

simultaneously. For each gain peak, we can read out the precise laser detunings of both D1

and D2 field using corresponding saturation spectroscopy references. As a result, a single

spectrum in Fig.4.4(b) contains the detuning information of both sweeping fields.

To scan the parameter space, however, we modify the relative phase between the D1

and D2 sweeps in each consecutive scan, as shown in Fig.4.4(b). The blue and orange

traces are two different sets of data. In this particular case we digitally align the sweeps

of the D2 laser, while a small phase delay is added between the two D1 sweeps, causing

the orange trace in D1Ref shift to the right compare to the blue trace. The gain peak now

appears for slightly different D1 and D2 values. We then change the IR laser frequency by

a small amount, and record a trace for each step. Then, we reset the IR laser frequency

to its initial value, add another constant phase delay, and repeat the above procedure.

This method gives us several practical advantages. On one hand, it streamlines the

data acquisition process: in each data set such as Fig.4.4(b), we find the optimal FWM gain

parameters simultaneously for both D1 and D2 detunings. To scan the full parameter space

with a relatively good precision, we divide both the phase delay range and IR frequency

scan range into 40 segments (λIR from 1366.8720nm to 1366.8765nm), with total 1600 sets

of data that can be accomplished in a reasonable time and involve all information of the
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Figure 4.4: Sample data traces used for experimental optimization process. (a) Measured
normalized probe transmission GP with only the D1 laser sweeping while frequencies of
both D2 and IR pumps fixed. (b) Recorded normalized probe GP and conjugate GC gain
spectra, recorded with both D1 and D2 frequencies sweeping while IR frequency locked.
For each gain peak, the D1 and D2 detunings can be mapped precisely using the saturation
spectroscopy as reference signals. The blue and orange traces represent two data sets with
shifted sweeping phase between D1 and D2, causing the gain peak amplitudes and locations
to change accordingly.

desired parameter space. On the other hand, we automatically account for any slow drifts

of the lasers, thus increasing the operational stability drastically during data collection.

Lastly, the laser detunings can be precisely recorded with a straightforward saturation
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spectroscopy reference even for off-resonance case. The data presented throughout this

thesis is generally in this form, with one or two field sweepings and corresponding gain

peaks.

Figure 4.5: Measurements of the FWM gain for the conjugate field (a) and for the probe
field (b) as a function of the two-photon pump detuning ∆Pump = ∆D2 +∆IR in the low-
intensity regime. Two ovals indicate the regions of highest conjugate gain GC . The cell
temperature is 100 ◦C (corresponding Rb density N = 4.76×1012cm−3), pump powers are
26mW and 33mW, respectively, for D2 and IR pump.

To gain a comprehensive understanding of the laser detuning effects on the system, we

track five essential values from a single dataset corresponding to the highest gain peak: the

detunings of all three lasers (∆D1,∆D2, ∆IR), and the magnitudes of the normalized probe

and conjugate field outputs (GP/C). Though we often observed multiple gain peaks due to

different hyperfine levels, as shown in Fig.4.4(b), only the highest one for each spectrum was

included in the analysis. A total of 1600 data points are shown in FIG.4.5 as a 2D-scatter

plot, with x-axis showing the frequency detuning of the probe laser ∆D1 from centeroid

frequency of hyperfine splitting, and the y-axis associated with two-photon detuning of

the sum pump laser frequencies ∆Pump = ∆D2 + ∆IR from the |5S1/2 F = 3⟩ −→ |6S1/2⟩

transition. In each graph, the values of GP/C are color-coded and within the same range
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for a convenient comparison. In Fig.4.5(a), we can see clearly two peaks separated by

approximately 400 MHz. It is reasonable to assume that these two peaks correspond

to the |5P1/2⟩ hyperfine levels (with 361 MHz separation). The region with maximum

gain shows a clear correspondence between ∆Pump and ∆D1, visually represented as two

diagonal maximum gain regions centered at ∆Pump = 250 MHz and ∆Pump = 0 MHz.

This separation may result from the hyperfine structure of the intermediate |5P3/2⟩ state,

though a more precise explanation requires more detailed modeling. In general, we prefer

∆Pump,or more specifically ∆D2, to be large in order to avoid optical pumping and induced

absorption. We note that this laser detuning optimization was done using collimated

laser beams with diameters exceeding 1 mm, and relatively low pump power (PD2 =

26 mW,PIR = 33 mW,PD1 = 2.3 mW ). This ensured good beam overlap at the cell and

all spatial gradient of wavefront are removed. However, in this arrangement the FWM

gain was quite low. So even though it was easy to isolate the FWM peak in the generated

conjugate field, if we look at the normalized probe field transmission GP in Fig.4.5(b), the

FWM peak is barely distinguishable, with the spectrum largely dominated by the resonant

absorption of the D1 Rb transition. In later sections, when we used more a intense D2

pump field, the FWM peak becomes much more prominent, as in Fig.4.4(a). Across all

regime, ∆D1 remains the lead influencing factor for D1 field absorption. The comparison

between Fig.4.5(a) and (b) indicates a rapid drop in interaction strength as we increase

∆D1. However, the conjugate gain GC remains significant with sufficiently low absorption,

for example at ∆D1 = ±400 MHz.

Figure 4.6 provides further insights into the FWM dependence on the frequencies of

the two pump lasers at higher laser intensities. We shrink the pump beam sizes for the

transitions: |1⟩ −→ |3⟩ (λD2 = 780 nm, PD2 = 260 mW, d≈ 0.6 mm) and |3⟩ −→ |4⟩

(λIR = 1367 nm, PIR = 35 mW, d≈ 0.3 mm).Here, we focus on the higher frequency region

(∆P ≈ +500 − 800 MHz, whereas in the low-power case, detuning was negative), which

corresponds to higher FWM gain and lower resonant absorption. Fig.4.6 also illustrates the

necessary trade-off between FWM gain and probe field resonant absorption. For instance,
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Figure 4.6: FWM gain map: Maximum measured values of probe gain GP (a) and
conjugate gain GC (b) as a function of optimal probe detuning ∆D1 (horizontal axis) and
two-photon pump detuning ∆D2+∆IR (vertical axis). (c) Unamplified probe transmission
(without pump fields). The region where maximum intensity squeezing is achieved is
highlighted with a black circle. The same pump laser powers as in Fig.4.3 are used:
PD2 = 260 mW and PIR = 33 mW.

the highest values of GC occur near the D1 line transition of 85Rb, while maximum GP

shifts toward higher probe detunings. This shift can be explained by the probe field’s

behavior near the optical resonance (as shown in Fig.4.6(c)), which directly affects its

output power. In contrast, the conjugate field experiences negligible atomic absorption, so
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its output power is primarily determined by the strength of the FWM process. To observe

intensity squeezing, we need to equalize the FWM gains for both optical components,

which can be maximally approached within the experimental parameter region marked by

circles in Figs. 4.6(a) and (b). We see that in this case, the probe peaks surpass saturation

and remains clearly visible, signifying the importance of laser intensity–a topic which we

discuss in next section.

4.3.3 Laser Intensities

The analysis of the FWM dependence on the laser detunings indicated the need to operate

at higher pump powers to increase the nonlinear gain, allowing us to work farther from

the optical transition. We operated a higher D2 pump power (maximum 320 mW), and

also employed the lens combination listed in the previous sections to achieve tighter focus

for both pump beams (as the available laser power for the 1367 nm IR pump was limited

to 35 mW). Under these conditions, much stronger FWM gain was achieved, as shown in

Fig.4.3. Two strong gain peaks can be clearly observed, with the highest GP ≈ 2.1 at the

marked location. We also notice that the highest gain peak occurs at ∆D1 ≈ 0.6MHz,

which corresponds to the probe absorption without the pumps (TP ≈ 85%).

Nevertheless, unlike in the traditional double-Λ FWM, we were not able to shift the gain

the FWM gain peak fully outside the Doppler absorption range, even with the maximum

available laser power. In principle, one may compensate for the losses by increasing the

D1 seed intensity to increase the saturation of the optical transition. However, increasing

the seed power gradually breaks the weak probe assumption, and as a result, GP becomes

smaller. For this experiment, the D1 seed is in general no more than 2 mW before the

vapor cell. The optimal squeezing discussed in the next section is obtained with 0.6 mW

of power.

Boosting the pump power is another potential method for increasing the gain without

increasing the optical loss. This is particularly true for the IR pump laser, whose available

power did not exceed 35-40mW, a value significantly lower than the power range (300-
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Figure 4.7: Dependence of the FWM gain GP/C (a, b) and relative intensity squeezing
(c, d) on the pump laser powers. The left column shows data for varying D2 pump
power with fixed IR pump power at PIR = 35 mW, while the right column corresponds
to varying IR pump power with fixed D2 pump power at PD2 = 290 mW. The solid
lines represent theoretical gain predictions from the numerical model, while the dashed
lines in the squeezing data provide a visual guide. The small hollow circles denote the
experimentally measured values.

600 mW) typically used in the double-Λ FWM experiment [153]. However, this approach

requires substantial hardware upgrade.

The dependence of the FWM gain on the power of both pump lasers is shown in

Fig.4.7(a,b). Each spectrum is taken with the other pump power kept at a constant level.

For this measurements, we use the conjugate field gain GC , as this parameter is less affected

by the residual resonance losses. We observed that the gain increased almost linearly with

the pump power, as expected based on the previous work [45]. However, a high-power

laser is not easily accessible for this particular wavelength due to strong water absorption
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line, posting difficulty in accessing higher-power laser system. We will show later simulated

results with a numerical model for the higher power range.

4.4 Results: Bi-chromatic Intensity Squeezing
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Figure 4.8: The variance of the relative photocurrent noise spectrum (red), Var(n̂P −
n̂C), for the probe and conjugate fields, along with their individual intensity noise levels,
Var(n̂P/C) (black/purple). As reference, the black straight line marks the shot-noise level,
Var(n̂(coh)P − n̂

(coh)
C ), measured for two coherent laser fields. The relevant detunings are

∆D1 ≈ 800 MHz, ∆D2 = −280 MHz, and ∆IR = 800 MHz, with two pump laser powers
of PD2 = 350 mW and PIR = 32 mW, respectively.

After identifying the optimal experimental configuration to maximize FWM efficiency,

the next step involved measuring and analyzing the relative intensity noise of the probe

and conjugate fields. To determine the presence of nonclassical photon-number fluctuation

correlations between these two fields, we electronically subtracted their photocurrents and
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analyzed the resulting noise power spectrum using a spectrum analyzer. We characterized

the degree of quantum correlations using Eq.(2.82). In line with quantum optics, both the

probe and conjugate fields exhibit super-Poissonian statistics, implying that each field is

noisier than a coherent field with the same mean photon number.

Fig.4.8 presents representative measurements of the relative intensity noise for both

the probe and conjugate optical fields, along with their respective individual noise levels.

The shot-noise level (indicated by the horizontal black line) is computed based on the

photodiodes’ calibration using coherent state inputs. As anticipated, each of the probe

and conjugate fields displays an excess noise of +9 dB above the shot-noise level when

measured independently. In contrast, the differential photocurrent noise is reduced by -2.6

dB below the shot-noise level, indicating the emergence of quantum correlations. This

degree of squeezing was achieved with a probe field gain of GP = 2.08 and an 85% trans-

mission without the occurrence of FWM (measured with the IR pump laser blocked). The

corresponding gain for the conjugate field was GC = 1.45, with no observable resonant

absorption.

To compare the measured squeezing values with the theoretically expected performance,

it is imperative to account for optical losses during beam propagation. Neglecting the

contributions of Langevin forces due to minor resonant absorption, we employ a distributed

beam-splitter model. In this approach, the interaction volume is divided into N slices, and

the output quantum fields are calculated using the FWM gain and loss in each slice,

as described in Ch.2. Under these approximations, we apply Eq.(2.73). For parameters

similar to the experimental conditions in Fig.4.8, the predicted two-mode squeezing level is

approximately -3 dB. Typically, the model predictions are 1-2 dB below the experimentally

measured values.

The primary source of additional noise is the phase noise of the probe laser, which

is converted into intensity noise near the atomic resonance. When only the probe field

is present in the cell, its intensity noise increases by 1 to 3 dB at this detuning, while

it remains at the shot-noise level when the laser is far-detuned. This noise is carried
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out through the amplification process, causing each individual beam to exhibit more noise

than anticipated. Although this extra technical noise is partially canceled in the differential

intensity measurements, the cancellation is incomplete due to the differing gain values for

the two fields. Additional technical noise also arises from thermal fluctuations and laser

polarization instabilities.

For our system to become practical for QIS applications, its performance must improve

to achieve a level of squeezing (and eventually entanglement) suitable for real-world use.

For instance, an entanglement threshold of around -9 dB is demanded for implementing

hybrid photon conversion protocols [136]. To enhance squeezing, we need to acquire higher

gain and reduce losses. However, adjusting laser detunings can only optimize one at the

expense of the other. The most promising and straightforward approach is increasing

the pump laser intensity. Fig.4.7(a)-(d) shows experimental results alongside numerical

simulations of the FWM gains GP and GC , as well as the measured squeezing parameter

S over a range of pump powers. The results clearly demonstrate that increasing laser

power improves not only gain as mentioned in the previous section, but also the quantum

squeezing.

4.5 Gain and Squeezing at High Power: Simulation

To explore potential improvements in achievable FWM gain and squeezing levels at higher

laser powers, we performed simulations over an extended pump power range (beyond what

is currently attainable with the lasers available for this experiment). In these simulations,

the laser detunings were fixed near the experimental values: ∆D1 ≈ 400 − 800 MHz,

∆D2 = −280 MHz, and ∆IR = 800 MHz. The results are presented in Fig.4.9. It is

evident that increasing the IR pump power consistently leads to higher FWM gain for

both the probe and conjugate fields, resulting in greater levels of squeezing. Initially,

increasing the D2 pump power also boosts the gain, but it eventually reaches a peak at

a value that depends on the available IR pump power. As the IR power increases, the
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Figure 4.9: Theoretically predicted FWM gain values for the probe (a) and conjugate (b)
output fields are shown over a wider range of pump laser powers. The calculations assume
detunings of ∆D2 ≈ −280 MHz, ∆IR ≈ 800 MHz. To locate the maximum FWM gain
peak, we adjust ∆D1 from approximately 400 to 800 MHz, accounting for the light shift
caused by the vastly different pump powers. (c) Predicted differential intensity squeezing
is shown, based on the calculated gain values and the residual resonant absorption of the
probe field, using a beam-splitter model. The black squares represent the range of pump
powers used in the experiment.

maximum FWM gain shifts to a higher D2 power range, as shown in Figs. 4.9(a) and (b).

The predicted squeezing values in Fig.4.9(c), obtained using Eq.(2.73) and accounting for

probe field optical losses calculated for each configuration, indicate that with reasonable

laser powers, up to 6.5 dB of two-mode intensity squeezing can be achieved.
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4.6 Possible Improvements in FWM Gain and Squeezing:

Preliminary Results

In this section we discuss potential modifications that we can employ to further boost GP/C

beyond simply increasing the pump laser power. As discussed in previous sections, boosting

the pump laser powers is a straightforward approach; nevertheless, it requires significant

hardware upgrades. Here we introduce several alternatives that used to circumvent the

power limitation. Besides, these methods can be use as potential control methods. For

example, the wave-mixing method and the repeated seeding method can strongly change

the nonlinear gain, even with relatively weak fields. Therefore, these methods can not only

enhance the gain but also be employed as effective control mechanisms for the system.

4.6.1 Improved Atomic State Preparation via Velocity-Selective Optical

Pumping

CC

C

Figure 4.10: Normalized FWM gain for the probe and conjugate optical fields with/with-
out the presence of velocity-selective optical pumping. Experimental settings: input laser
powers PD2 ≈80mW, PIR ≈37mW, PD1 ≈0.6mW, PRepump ≈7 mW, the cell temperature
T = 96◦C(corresponding Rb density N = 3.6× 1012cm−3) , and λIR = 1366.8640 nm
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One approach is to improve the atomic state preparation by engaging velocity-selective

optical pumping. For the double-ladder scheme, the D2 pump laser also efficiently optical

pumps atoms from F=3 to F=2 ground level. Only atoms trapped in the cyclic transition

remain in the F=3 level, while the rest of the atoms tend to aggregate at the F=2 level,

effectively excluding them from the FWM process. FWM is also hampered by the thermal

motion of the Rb vapor. Due to the relatively large angular separation between the three

laser beams, each laser is more likely to address different velocity groups within the Doppler

profile so that the atomic population interacting with all three beams simultaneously is

only a small fraction of all atoms. In addition the Doppler mismatch between different

velocity classes is further enhanced in the co-propagating configuration (required to satisfy

the phase-matching conditions), leading to a larger two-photon Doppler broadening.

To partially alleviate these issues, we introduce an additional counter-propagating D2

field coupled from |5S1/2F = 2⟩ −→ |5P3/2⟩, as shown in Fig.4.1. Such a repump field can

then transfer atoms back to the F = 3 ground state without the need of increasing the cell

temperature. Moreover, the optical pumping process, induced by the counter-propagating

repump beam, is velocity-selective. By carefully adjusting the repumping laser parameters

we can repopulate the F = 3 state only for the velocity group contributing to FWM, while

leaving other velocity groups unaffected. This can be done by setting the repumping beam

at a particular angle or frequency [154]. This method has some advantages, especially

when the FWM-amplified field is off-resonance. In such cases, atoms participating in the

FWM process “see” the probe field as off-resonant, so their contribution to the resonant

losses is small. At the same time, for other atoms the probe field frequency is Doppler-

shifted closer to the optical transition, increasing the absorption, but without contributing

to the nonlinear amplification. Just increasing the vapor temperature broadens increases

the number of atoms for all velocity groups, enhancing both nonlinear interaction strength

and optical losses simultaneously. Using the velocity-selective repumping, it is possible

to increase the number of atoms in the F = 3 state only for the “useful” atoms without

affecting the rest of the atomic population, boosting the FWM gain without significantly
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increasing the optical absorption.

An example of the FWM gain enhancement due to the repump field is shown in Fig.4.10.

This dataset is recorded at T = 96◦C. We can see that with a moderate amount of repump

power, the conjugate gain peak is boosted by ≈3.7 times for both peaks. The width of

each gain peak remains narrow as compare to the wide gain peak seen in Fig.4.3. This

demonstrates the possibility of operating at higher atomic density without risking for higher

temperature. However, we did also observe an overall increase in probe field absorption,

which deteriorates the entanglement. A comparison between GP and GC indicates that

the absorption is significant, and achieving intensity correlations may require optimizing

the gain peak position further.

4.6.2 Gain Improvement by Multiwave Dressing with Weak Field

An additional coupling field can offer other possible benefits. If we couple a weak coprop-

agating field to |5S1/2F = 2⟩ −→ |5P1/2⟩, it forms a Λ configuration with the probe field.

The atomic polarization for |5S1/2F = 3⟩ −→ |5P1/2⟩ transition can be effectively modified

to have either higher or lower gain depending on the dressing field detuning. This is the

so-called dressing-method [155]. One explanation is the new field serving as a cyclic transi-

tion field to activate the 5th-order nonlinearity responsible for the six wave mixing (SWM),

which has been experimentally proved to double the gain i the double-Λ system[156].

The preliminary results of such dressing effects are shown in Fig.4.11, with the D1 probe

locked for 83% transmission(PD1,Input= 1.8mW) and the D2 frequency swept(yellow line

in (b)). The IR pump is parked at λIR=1366.8640 nm. We use a weak dressing field with

≈1.9 mW power, red shifted ≈0.4GHz away from the |5S1/2F = 2⟩ resonance.The probe

transmission with and without the dressing field is shown in Fig.4.11(a) in blue/orange line,

respectively. With this small modification, we observe that the gain peak is significantly

boosted. Fig.4.11(b) shows the probe transmission without FWM (with the IR pump

blocked) using same color coding. We observed that the presence of the dressing field

can potentially increase the probe absorption at certain the two-photon detuning values,
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TP

TP

Figure 4.11: Modification of the FWM gain via the dressing laser field, tuned to∣∣5S1/2 F = 3
〉
−→
∣∣5P1/2

〉
transition. (a) Normalized probe transmission under the FWM

conditions TP with and without the dressing field. (b) Similar normalized probe trans-
mission without FWM (no IR pump present) in the presence of the/no dressing field. (c)
Saturation spectroscopy D2 laser frequency reference. All trace are recorded with D1 laser
tuned to the 83% transmission level. We used f=400 mm lens for D1 seed in this set of
data. Experimental settings: input laser powers PD2 ≈320mW, PIR ≈35mW, PD1 ≈2mW,
the cell temperature T = 100◦C (corresponding Rb density N = 4.76 × 1012cm−3), and
λIR = 1366.8640 nm

potentially due to atomic population change or more complex multi-photon effects. On

the other hand, the probe transmission near the gain peak is minimally impacted, making

this method a seemingly harmless addition to the existing system.

4.6.3 FWM Gain Manipulation with the Repeated Seeding

All the results discussed above assume that only the probe channel is seeded with a weak

coherent field. The gain, however, can be greatly enhanced if both channels are seeded

with phase-coherent optical fields. The FWM input to output transformation matrix is

shown in Eq.2.36.

The output is larger if both â†P âP and hat â†C âC are nonzero, whereas in our case,

â†C âC = 0. This illustrates, at a rudimentary level, how seeding both channels can greatly

enhance the gain. The full consideration of the phase difference between the two seeding
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Figure 4.12: (a) Schematic arrangements for a double-seeded FWM, where the generated
conjugate field is fed back into the input. The singly seeded case is shown in Fig.4.1(b).
(b) Measured normalized probe transmission GP for a regular (orange) and double-seeded
FWM (blue), where the relative phase of the conjugate field is adjusted to produce maxi-
mum FWM gain. The saturation spectroscopy reference D1 laser signal is shown in yellow.
Experimental settings: input laser powers PD2 ≈250mW, PIR ≈32mW, PD1 ≈2 mW, the
cell temperature T = 92◦C(corresponding Rb density N = 2.78 × 1012cm−3) with 26mW
repump field , and λIR = 1366.8590 nm.

fields, on the other hand, introduces quantum interference effects meaning the gain can

actually be boosted, or degraded depending on the relative phase of the optical fields

involved [157].

In Fig.4.12 we show the proof of principle demonstration of the double seeding method.

In actual applications, we need a two-stage amplification in order to read out both channels.

This approach brings additional benefits, as wave mixing is by nature a phase coherent

process that stabilize that the two input seed need to be phase-locked to ensure constructive

interference. In our case, due to the lack of physical space and apparatus we use a single

cell with the generated conjugate field being fed back to the input, essentially forming a

cavity, as shown in Fig.4.12 (a). In this case, we can read out only the probe channel.

We can see that when we have constructive interference, the double seeding GP (blue) is

almost increased by 33% compare to the single seeding (orange) case. A secondary gain

peak, which is not visible in the single seeding case, appears at ∆D1 = 0.72 GHz, with

terrific transmission.

Using the conjugate channel as a feedback, of course, presents several problems. Not
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only the are generated conjugate photons confined inside the cavity, but the accumulated

phase also disturbs the gain in an uncontrollable way. In order to make this method useful,

a two-or-more stages cascade method involving more than one vapor cells is required. With

more than one vapor cell, the gain can be enhanced at each stage with the benefits of

multi-seeding. Moreover, strong squeezing enhancement has been demonstrated using the

cascade method[158]. This method brings us another potential option if a higher-power

1367 nm pump is not available.

4.7 Conclusion

In conclusion, we have demonstrated an atom-based narrowband source of two-mode in-

tensity correlations between optical fields at different wavelengths: a 795-nm probe field

resonant with the 85Rb atomic transition and a 1324-nm conjugate field, falling within

the O-telecom band. This was achieved using FWM in a double-ladder configuration,

driven by two pump lasers of moderate power (up to 350 mW for the 780-nm laser and

up to 35-mW for the 1367-nm laser). The maximum achieved gain GP exceeded 2, with

up to 85% residual resonant absorption for the probe field. Under optimized conditions,

we observed up to -2.6 dB of relative photocurrent noise suppression below the shot-noise

level, clearly demonstrating nonclassical correlations between the intensity fluctuations of

the two optical fields. Our theoretical model predicts that up to 6 dB relative-intensity

squeezing could be reachable with higher laser power and reduced residual noise.
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Chapter 5

Weak thermal state imaging

In this chapter, we present a low-photon-count imaging experiment based on a super-

Poissonian light state. Please refer to ref [79] for the published work. Here, we primarily

discuss the experimental aspects carried out by our group. All figures featured in this

chapter were prepared solely or collaboratively by the dissertation author, ensuring no

conflict of interest.

Conventional imaging methods normally use order of 103 to 105 photons per pixel [159].

It would be either impractical or impossible to use such a high number of photons in variety

of situations e.g. while imaging fragile samples such as biological specimens, photosensitive

chemicals or performing covert military operations. Furthermore, using low-intensity light

usually incurs high image-acquisition time. All things considered, low-light imaging is a

promising field of inquiry.

Traditionally, imaging is accomplished by comparing the transmitted intensity of a

probe beam that examines the sample with the intensity of a reference beam. Classical

lower bound on the sensitivity of such method is established by employing probe with

Poissonian statistics [160, 161]. Absorption measurement methods [162–164] and quan-

tum imaging methods [159, 165–168] have successfully proven the enhancement in the

sensitivity over classical methods using quantum resources such as spatial correlations in

twin-beam light produced by spontaneous parametric down conversion (SPDC) process
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and high sensitivity CCD array detectors.

Reduction in number of photons used for imaging in low-light regime are limited, among

other factors, by intrinsic dark noise of a CCD camera. Origin of dark noise lies in electrons

generated in silicon lattice that makes up CCD regardless of absence of any light falling

on the detector. In any imaging scheme, dark noise would represent the noise floor above

which signal will be detected.

QSI method makes use of the information carried in the noise of the probe state. Image

is reconstructed by detecting the changes in quadrature noise profile of the probe beam after

its interaction with the object. This technique gets rid of detrimental effects of dark noise

of the CCD camera and enables imaging at photon levels as low as 800 photons, utilizing

less than one photon per frame on average [169] with significantly short acquisition time

using squeezed vacuum probe.

5.1 Quantum Imaging Model

In this section we describe the detailed protocol of the QSI scheme in terms of density

matrix. This is a general formalism that allows to analyze the performance of any kind of

probe state, both quantum and classical. A low intensity probe field illuminates the object

to be imaged. The object transmits some part of it and scatters the rest. Noise statistics

of the transmitted field is analysed with a homodyne-like scheme. This is achieved by

letting the transmitted field interfere with a strong local oscillator (LO) on a balanced

beam splitter and consequent detection by a CCD camera [170]. Intensity maps of two

output beams, recorded at multiple time instants by the camera, are subtracted to get a

series of "beam difference" maps as shown in Fig.5.7, as shown in Fig.5.1. A temporal

variance map of this time series data, normalized by the total intensity, is the signal for

this imaging scheme. Since this scheme employs quadrature variance of the probe state,

essentially any state with quadrature variance different from coherent state should work as a

probe. Thermal state with its super-Poissonian photon statistics and simple, cost-effective
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producibility is one such notable candidate. Moreover, availability of thermal probes in

wide range of wavelengths makes them promising, particularly for imaging applications.

Figure 5.1: Simplified experimental setup. We show here only the detector side which
contains a black-box probe and local oscillator source.

5.1.1 Calculation of Normalized Variance

Fig.5.2 represents the theoretical model we use to model the imaging process. A single-

mode thermal probe (ρ̂1) with ⟨n̂th⟩ of average photons, interacts with an object to be

imaged (T̂1) in mode 1 and mixed with a strong, mode-matched LO (D̂2(α)|0⟩) in mode

2 on a balanced beam splitter (B̂12). Since we aim to calculate the variance (signal) and

the variance of variance (noise) of the photon number difference detected by camera pixels

at position x⃗ = (x, y), operators Û1,2(x⃗) facilitate the basis transformation from the probe

and LO beam basis to the pixel basis. The eigenfunction of the ith beam mode, Ui(x⃗),

connects the annihilation operators in the beam and pixel basis as â†i =
∑

x⃗ Ui(x⃗) â
†
x⃗

[170, 171]. Defining N̂1,2(x⃗) as the number operator for mode 1 or 2, correspondingly

at the output ports, we can write moments of the photon-number difference operator

N̂ (x⃗) = N̂1(x⃗)− N̂2(x⃗) as: 〈
N̂ (x⃗)

〉
= 0,
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〈
N̂ 2(x⃗)

〉
= Tr

[(
N̂1(x⃗)− N̂2(x⃗)

)2
Û2(x⃗)Û1(x⃗)B̂12 (5.1)

T̂1(x⃗)D̂2(α)|0⟩⟨0|ρ̂1D̂†
2(α)T̂

†
1 (x⃗)B̂

†
12Û

†
1(x⃗)Û

†
2(x⃗)

]
.

Figure 5.2: Block diagram of operator actions in QSI scheme: T̂1 acting on probe state
ρ̂ in mode 1 represents the object-probe interaction. In mode 2, operator D̂2(α) displaces
vacuum state. Resulting states in both modes are allowed to interfere by the beam splitter
operator B̂12. Two output modes of the beam splitter are transformed from the beam basis
to the pixel basis by the mode transformation operators, Û1 and Û2.

Using intensity of the LO for normalization and by neglecting O
(
|α|−2

)
terms, it can

be shown that normalized variance is:

V (x⃗) = 1 + 2 ⟨n̂th⟩
∣∣∣Ũ1(x⃗)

∣∣∣2 (5.2)

with Ũ1(x⃗) = U1(x⃗)·T1(x⃗). This is the normalized variance measured by any individual

pixel of the camera and represents the smallest unit of the entire noise statistics. Variance of

this variance can be directly calculated with the fact that fourth moment of the Gaussian

probability distribution is three times the square of the second moment. Measurement

sensitivity can be further improved by effectively increasing the detection area by combining

the readout of several nearby pixels, in the process we call "binning". Details of the
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calculation of binned variance are discussed later in this Ch.C.

5.1.2 Theoretical Signal-to-Noise Ratio (SNR)

In differential imaging scheme, object is illuminated with a probe field and its transmitted

intensity is compared with that of a reference beam to infer spatial profile of the object.

Denoting the mean value of the probe photons as ⟨n̂⟩, theoretical SNR for differential

imaging can be defined as

SNR =
S1 − S0√
∆S2

1 +∆S2
0

(5.3)

with signal, S0 and S1 being the detected intensities of the probe and reference beams,

respectively. Corresponding noises are quantified by variance terms, ∆S2
1 and ∆S2

0 with

definition, ∆S2
i =

〈
S2
i

〉
− ⟨Si⟩2. To compare our method to a conventional method, we

cannot just replace the thermal probe with a laser probe, since this would not produce any

image (as the shot-noise variance of a coherent states cannot be distinguished from the

shot-noise variance of the vacuum state). The closest alternative is to modify the setup

by removing the beam splitter, so that the image is obtained by comparing intensities

rather than field amplitudes (in homodyne detection). This is equivalent to the classical

differential imaging (CDI) and is often used as a benchmark [165, 172]. For CDI with

coherent state probe of ⟨n̂coh⟩ average photons, Eq.(5.3) gives

SNRCDI =
(1− t) ⟨n̂coh⟩√

⟨n̂coh⟩ (1 + t) + 2(∆N2
d )

(5.4)

where t is the object transmittance and ∆N2
d is the variance of the dark counts. We

expect lower SNR if the input state has more noise than a coherent state, e.g., a thermal

state [173]. In the context of QSI, we adapted Eq.(5.3) by defining signal S0 and S1 as the

variance of the photon number difference in the presence and absence of the object in the

setup, respectively. Corresponding ‘noise’ terms, ∆S2
1 and ∆S2

0 , are given by the variance

of variance terms. For a thermal probe of ⟨n̂th⟩ average photons, SNR can be calculated
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Figure 5.3: Theoretical plot of single-shot SNR as a function of averaged probe photons.
QSI with a thermal probe (orange) is compared with a coherent state differential imaging
for dark- count standard deviation (∆Nd) ranging from 0 to 10 per pixel. For the CCD
camera used in our experiments ∆Nd = 10 per pixel. Object is assumed to be completely
opaque (i.e. t = 0).

as:

SNRQSI =
2(1− t) ⟨n̂th⟩√

4 + 8 ⟨n̂th⟩2 (1 + t2) + 8 ⟨n̂th⟩ (1 + t)
(5.5)

Fig.5.3 shows comparison in terms of theoretical SNR, between QSI (with thermal state

probe) and CDI (with coherent state probe). When dark noise is taken into account, QSI

method offers higher SNR than the classical method.

5.2 Experimental verification

5.2.1 General Description

In this section, we describe the experimental verification of the theory discussed in the

previous section. A close-up layout of the setup is depicted in Fig.5.4. Operationally,

the super-Poissonian vacuum probe field passes through an object, then combines with a

strong local oscillator at a polarizing beam splitter (PBS). Next, the resulting beams pass

through a λ/2 waveplate(WP) set at 45◦, where they interfere before being split again
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by a polarizing beam displacer (PBD) and subsequently collected on a Princeton Pixis

1024 camera. This effectively implements a classical homodyne detection scheme using a

camera. The FWM setup remains the same as presented in Ch.3. For the actual data

acquisition, we replace the bright seed with a vacuum seed.

Figure 5.4: Detailed experimental setup using FWM as the thermal field source.

The key distinction between our approach and traditional homodyne detection is the

the use of a camera rather than a single photodiode, thereby enabling spatially resolved

measurements. Essentially, camera-based homodyne detection applies standard homodyne

principles to every pixel pair in two pixel arrays, M1 and M2. Consequently, each pixel

pair M1(a, b) and M2(a, b) can be viewed as an individual homodyne detector, mirroring

the functionality of traditional homodyne setups but scaled to an entire camera’s field of

view.

5.2.2 Frequently Asked Technical Details

In this section we discuss the essential technical details of the experiment setup. The goal

is to provide sufficient information for researchers who wish to reproduce the results of this

work.

Imaging System setup

To maximize the resolution of the reconstructed mask or object, we implement a 2F

lens system. First, an f=150 mm lens is positioned immediately after the polarizing beam
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displacer(PBD). By illuminating the setup with a bright probe seed (for calibration), we

carefully adjust the lens position to minimize distortion in the recorded image. Another

f=150 mm lens is placed before the object/mask, ensuring that more thermal photons enter

the detection region when the system operates with a vacuum seed. This arrangement helps

maintain high-resolution imaging while optimizing photon collection efficiency.

Figure 5.5: Classical image of an opaque knife edge. The two images have no observable
difference even though a slight difference in optical path.

We note that our method assumes the twin beams can be recombined with perfect over-

lap, i.e., no discrepancies in dispersion or focusing before they reach the camera. Math-

ematically, a focus discrepancy after separation implies that additional transformations

after B̂12 as in the flow chart in Fig.5.2, introducing additional errors when we calculate

everything in the camera’s pixel basis.

In practice, discrepancies in the twin beams do arise.The PBD can also introduce

variations in optical path length. Another source of these discrepancies is the use of a

single lens with relatively large curvature (short focal length f = 150mm to focus both

beams onto the camera, which can cause potential distortion.

We consider these differences negligible for two reasons: first, the optical path and

distortion discrepancies remain sufficiently small, and second, because the distance between

the lens and camera is only 150 mm, any minor focusing variation has not fully developed.

Indeed, as seen in the classical image of an opaque block (Fig.5.5), the twin images remain

effectively equivalent.

We note that, when imaging finer targets in the 10–50 µm range, imperfections in the
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Figure 5.6: Classical image of the bug wing. In this case we see slight difference in the
twin images due to a finer target(10 µm)

optical system become more significant. As an example, Fig.5.6 shows a classical image of a

wasp wing, where the left beam region appears sharp, whereas the right side exhibits slight

smudging due to combined effects of optical path differences. This represents a fundamental

resolution limitation in our setup. However, we did not pursue finer resolutions in this

thesis. For future studies aimming for higher resolution than presented here, correcting

discrepancies due to the optical path length difference will be necessary.

Data Acquisition and Analysis Procedure

All imaging data are recorded using the Princeton Pixis 1024 CCD camera, which

features low dark noises counts (standard deviation ≈ 10 dark counts per pixel) and high

quantum efficiency (95%). To compensate for the camera’s relatively low speed, we record a

quick sequence of images in clusters, with 1.7 µs exposure time for a 544 µs duty cycle. Each

cluster consists of 6 images, although only the second through fourth images are suitable for

the analysis due to leakage contamination. Further steps are shown in Fig.5.7: the recorded

images are spatially matched and subtracted pairwise across the beam region (similar to

the traditional homodyne detection). We then calculate the normalized temporal variance

within one cluster (6 images total, 3 matched pairs) as:

V (x⃗) =

〈(
N1(x⃗)−N2(x⃗)

)2〉〈
N1(x⃗) +N2(x⃗)

〉 . (5.6)

Here we assume that the two recorded beams have identical spatial distributions and
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are perfectly matched. N1(x⃗) and N2(x⃗) are photon counts at the point x⃗ within the

corresponding beams. V (x⃗) is further averaged over all kinetic clusters in a given set

to obtain the final variance map. We can construct the transmission map of the object

Figure 5.7: Illustration of data acquisition and processing sequence.

from the variance map using Eq.(5.6). Experimentally, the SNR is calculated using the

transmission map by selecting two regions of interest (ROI), each within the blocked and

unblocked halves (We selected only a small central area with a proper spatial overlap

between the probe beam and LO. With this, the experimental SNR is given by,

SNRsingle =
Sunblocked − Sblocked√

∆S2
unblocked +∆S2

blocked

√
M

(5.7)

with Sunblocked and Sblocked being the means and ∆S2
unblocked and ∆S2

blocked being the spatial

variances of the two ROI in the blocked and unblocked halves of the transmission map. M

is the total number of datasets.

The spatial mode of the thermal state can be directly explored by seeding the input

probe channel,allowing us to optimize the spatial overlap between the LO and the thermal
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field. This optimization is achieved by maximizing the visibility of the interference fringes

between the seeded,amplified probe field and the LO. Mode matching between thermal

and LO modes is quantified by the normalized overlap,

O(x⃗) =

∫
A LO

∗
ThdA√∫

A LO
∗
LOdA

(5.8)

The normalized variance detected at any pixel location x⃗ is affected by the overlap

value at that location,

V (x⃗) = 1 + 2n̂tht(x⃗) · O(x⃗). (5.9)

In the current work, the overlap was close to unity, thus maximizing the SNR and ensuring

good agreement between theory and experiment. However, poor mode matching will reduce

the overlap and deteriorate the SNR.

Here we list step by step how we do the image processing. For each duty cycle, we use

four intermediate images, each containing two beams separated by the PBD, to calculate

the variance. The first step is to perform a pairwise subtraction of the two images to remove

the classical noise, analogous to the same subtraction process in homodyne detection.

As we have briefly mentioned above, the two beams need to be properly overlapped

before subtraction. The process is done by calculating the center of mass of both beams

within the ROI. Such an overlap, however, in many cases are not good enough for our

purposes. The reason is the two ROI of beams has a strong spatial correlation, but the

pixel size fundamentally limits how good we can shift and overlap.

We thus perform the sub-pixel shift in post-processing. In practice, we artificially

divide each physical pixel into several sub-pixels in post-processing process so we can do

finer adjustment when doing beamoverlap. In other words, adjustments for smaller than

one physical pixels is made possible. Despite a small change, this method in fact greatly

improves the overall-variance calculation.
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The next step we do is to select a proper ROI. There are two main reasons for consid-

eration.

First, we want to exclude the boundary regions with very low photon counts. In these

regions, when we calculate the variance, due to the contribution of dark noise (through

relatively small for our purposes) and weak LO (causing potential error in normalization),

we frequently observe nonphysically large variance.

Second, we observe an inhomogeneity of visibility. The LO has a distinct spatial mode

compared to both the vacuum seed and the bright probe used. Since the interference is

done without explicit spatial mode matching, our assumption of unity O(x⃗ is not always

valid. However, we observe in experiment that the visibility can be vastly different between

the beam center and peripheral regions. One example is shown in Fig.5.8

Figure 5.8: Sample interference pattern between the weak probe seed(test beam) and
the local oscillator. We observe that instead of displaying a full black(destructive) or
bright(constructive) interference pattern, the interference occurs exclusively at the center
region. The visibility is generally over 98%.

We see clearly that a destructive interference occurs only at the beam center. We

intentionally tune the LO beam path such that the interference pattern is optimized at

this location for the probe channel. Since the probe seed, as part of the squeezer(see
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Ch.3), shows the strongest FWM gain, we ensure that in the vacuum case, the LO can

amplify the thermal vacuum as well. Thus, at the beam center, the visibility is high and

our assumption of unity O(x⃗) remains valid if we select the ROI around only the center.

Besides, due to the interference nature of our method, only the portion of signal field with

high O(x⃗) will be used.

Based on these two reasons, we usually apply a mask after doing the pairwise subtrac-

tion and shift.

This allows us to reconstruct the transmission map of the object using the measured

quantum noise map, given by:

t =
Vprobe − 1

Vref − 1
, (5.10)

where Vref is the normalized quadrature variance of the unobstructed thermal beam, and

Vprobe is the normalized quadrature variance measured with the object inserted in its path.

This formulation is essentially derived from Eq.(5.6). For a coherent state or vacuum field

we have t = 0; while for a super-poissonian or sub-poissonian field, we saw positive or

negative values, respectively. We therefore can map out the beam shape based on the

variance map easily.

Procedure of Laser Pulsing

The major reason we choose this pulsing sequence is to minimize the residual pump

leakage. It is true that the leaked pump can still be considered as coherent states. Nev-

ertheless, given that we are working with small photon counts as small as ⟨n̄|n̄⟩ ≈ 0.1 per

pixel, the existence of pump leakage can easily wash away any features after normalization

as stated in Eq.(5.6). The key to minimize pump leakage is to minimize the pump field on-

time by pulsing. We achieve the pulsing by utilizing an acoustic-optical modulator (AOM)

in the pump path, with an 80% power conversion efficiency into the 1st-order modula-

tion. Ideally, we prefer to turn on the pump only when the camera is recording the data.

However, we notice that there is delay time between the pump field turning on and FWM

output stabilizes, a joint effect of atomic coherence, AOM response and camera response
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Figure 5.9: Representative pulsing sequence of the data acquisition illustratings the pro-
cess. All pulses(green: pump, red: camera trigger, yellow: LO) are triggered from the
camera acquisition trigger. Later the pulses are adjust such that the probe pulse is over-
laped with the camera pulse.

time. Since the camera data taking time per shot is only 2.7µs, the system will not reach

a steady state if the pump is turned on for each camera shot. The local oscillator is also

pulsed using an AOM. However, unlike the pump field pulsing which is limited by the

atomic coherence stabilization time, the local oscillator pulsing time can be much shorter.

Pulsing also allows us to modulate the signal and stay away from the 1/f noise.

We end up turning on the pump before the beginning of a 544µs full data acquisition

cycle. A sample pulsing sequence for one camera shot (not the full cycle) is shown in

Fig.5.9. The pump (green trace) has a much longer on-time compared to the camera

trigger time (orange) and LO pulse time (yellow). We notice a delay between the camera

trigger and the probe pulse, which is due to the response time of the probe. We therefore

adjust the pulse time such that the probe pulse is slightly shorter and fully overlapped with
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the pump pulse. In most cases, the first and last images in a full duty cycle are discarded

due to an excessive amount of pump leakage. In the first image, the pump is turned on for

a longer duration since it is on before the camera’s data-taking sequence. The last image,

on the other hand, is usually contaminated due to the pump and camera not turning off

on time properly. The remaining four intermediate images are generally clean, and we use

them for our variance calculation.

Camera Binning Method

In a CCD camera, each pixel acts as an independent detector, collecting only the light

falling on its surface. Since the mode size of thermal field is much larger than the pixel size

(13 µm × 13µm), the average number of photons per pixel ⟨n⟩pxl is proportionally small,

and the variance value is close to one, making it hard to distinguish from the coherent

vacuum. To improve the sensitivity of our measurements, we group pixels together to

effectively increase their cumulative detection area.

There are two types of pixel binning: square binning, and circular binning. In our data

processing process, we used the circular binning to preserve the resolution. Here we first

introduce the basics of both binning methods.

Method 1: Square Binning Square binning probably is the most intuitive binning

method. Essentially, it groups several pixels in a square shape into a effective larger pixel.

For example, if we have a camera detection region of 100×100 pixels, and conduct a 2×2

pixels square binning, we effectively have a camera detection region of 50×50 pixels with

eacj pixel 4 times larger. We note that in this case, each pixel in original basis is grouped

into one and only one larger, new pixel with no repetitive counting. This which is one

major difference from the circular binning.

Method 2: Circular Binning Circular binning, on the other hand, is a bit harder to

digest conceptually. A basic illustration of this procedure is shown in Fig.5.10. In short,

it is a running average method that can be effectively view as a spatial low-pass filter.

In this binning protocol, the photon count of each pixel at x⃗ is replaced by the sum of

photon counts from all neighboring pixels within a binning radius, R. Since all pixels are

107



Figure 5.10: Illustration of the circular binning procedure. We assign all pixels in a
gaussian circle as one. The inset illustrates the case of R = 2 circular binning.

square shape, the number of pixels included is approximated by a Gaussian Circle. This

binning method improves the SNR but at the cost of reduced spatial resolution, as we are

reassigning value to, not grouping a certain number of, pixels.

Nevertheless, it is often questioned why we can perform circular binning like this, as

we are counting pixels repetitively. To see why such circular binning is justified, let us

consider the following simple case as illustrated in the inset of Fig.5.10.

We observe that the variance is zero at the knife-edge boundary, while the unblocked

region shows nonzero variance. In the ideal case, we should see a sharp cut at the center

boundary, resembling a step function. The SNR is related to the contrast between the

two regions, as defined in Eq.(5.7). Circular binning can be understood as enhancing

the contrast in the non-zero region of the step function, while the resolution (it is still

a step function after multiplying the factor) is unchanged. However, for the resolution

remain unchanged, we have assumed that the circular binning does not mix the pixels

from the blocked and unblocked region. In other words, we are assuming within each

binning region, all pixels are from the same region (either blocked or unblocked), thus the

recounting doesn’t hurt the resolution.
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Figure 5.11: Variance map (a) of the insect wing is generated with R = 1 and 0.03
photons per pixel per 1.7 µs exposure. Images (b-d) are generated with values of the
binning radii R =2, 4, and 8, respectively.

This assumption, however, is not always true. When pixels from both regions are

mixed, the sharp boundary is smudged, and the resolution decreases proportionally to the

binning radius R. One clear example of this is shown in Fig.5.11, where different binning

sizes are used. We see the contrast increases but the resolution drops, especially in Fig.5.11

(d). We also see that in (d) that the left veins are completely smudged together and not

differentiable anymore. This shows the limit of our circular binning method. The binning

size is also limited by, and needs to be comparable to , the size of light spatial mode, which

we look into the thermal vacuum source and photon calibration sections. See Appendix.C

for details of binning variance calculation.

Fig.5.11 shows variance maps of an insect wing at different levels of binning. To

construct this variance map, we recorded 0.006 photons/pixel/frame (a total of ≈ 27,000

thermal photons over 600 frames, generated by the FWM method). Since the binning
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process combines photon counts from all neighboring pixels within the binning radius R,

the ‘effective’ photon/pixel/frame count to generate as in Fig.5.11(a) is 0.006 × 5. Since

the variance of the coherent field in the blocked region and the unobstructed weak thermal

beam are not very different, smaller bin sizes yield low contrast. Larger binning radii yield

better contrast between the two regions, as shown in the last row of Fig.5.11, although

their boundary is smoothed by the binning process thus degrading resolution.

Sources of thermal vacuum

In this section, we discuss different methods for generating a thermal vacuum, which is

a key component of experiments using low-intensity super-Poissonian optical fields. One

approach involves producing a pseudo-thermal state by employing a rotating scatterer.

Alternatively, we can utilize one of the twin beams generated by FWM. This beam is a

true thermal field, as demonstrated in Ch.2.

Method 1: Pseudo-Thermal Field From Rotating Diffuser

The setup for this method is shown in Fig.5.12(a). To see more details, please refer to

citation[176]. Thermal field photons, from the phase coherence perspective, have essentially

randomized phase, among each photon. The idea is to send a monochromatic, coherent

field through a rotating diffuser. A narrow filter is then applied afterward to select only a

small section of the total beam. The transmitted portion, scattered by random spots on the

diffuser across the beam profile, acquires random phase while remaining monochromatic.

There are two important things to note. First, the super-poissonian state is only a

pseudo-thermal state. The phase, which is highly dependent on the aperture size and the

rotation speed of the scatter, is still not fully randomized to approach the extent of a true

thermal state.

Let us consider two extreme cases. In the first case that the motor is not turned on,

no matter how small the aperture is, the transmitted light is always scattered by the same

region on the diffuser, leading to a constant phase delay. In the second case, if no aperture

is not applied, all input photons–originally a coherent state–are collected, so there is no

change in photon statistics. In this case, only the spatial coherence is destroyed, but the
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Figure 5.12: Experimental setup for a weak thermal state generation. (a) Pseudo-thermal
state generated by scattering a coherent beam with rotating polishing film with grain size
≈ 0.1µm. b) Thermal state source using FWM process: vacuum input is used as seed
to generate weak thermal state. Inset: atomic level diagram of FWM process. ∆HF is
the hyperfine splitting between 5S1/2F = 2 and 5S1/2F = 1 level. ∆ is the one-photon
detuning and δ is the two-photon detuning. The red line stands for the pump laser. The
blue and black lines represent probe and conjugate beams, respectively [174, 175].

temporal coherence remains intact. In conclusion, we need both a sufficiently high rotation

rate and the smallest aperture to approach a true thermal state. Nevertheless, since both

parameters have limitations, we can never reach, but can only get infinitely close to, a real

thermal state. Thus, we refer the output of this method as a Pseudo-Thermal state. In

the actual experiment, we sent a coherent input field (λ ≈ 795 nm) through a rotating

diamond polishing film with a grain-size of 0.1 µm.

Method 2: True thermal state using FWM

Another method for generating a super-poissonian state is by utilizing the FWM pro-

cess. In the case of a vacuum input seed, the output fields are entangled, but each probe

and conjugate field individually displays thermal statistics with normalized photon count
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variation ∆n2/ ⟨n̂⟩ = 1 + ⟨n̂⟩. The squeezer setup is the same as discussed in Ch.3, and

is shown in Fig.5.12(b). The pump field (λ = 794.7930 nm) is collimated (beam diameter

0.55 mm) and directed to a 2.5 cm-long 85Rb vapor cell, maintained at 104.5◦C. A fraction

of the same laser output is used to produce both, the LO at probe field frequency and the

input probe field, when necessary. For this, the split beam is phase-modulated at 3035 MHz

(corresponding to the 85Rb 5S1/2 hyperfine splitting) using a fiber electro-optical modu-

lator (fEOM), and the lower modulation sideband is filtered using a Fabry-Perot (FP)

etalon. Under these conditions, the FWM gain is sufficiently strong G ≥ 7 for ≈ 80 mW

pump power, with no significant atomic absorption at the probe field frequency. After

the vapor cell, the pump field is filtered using the polarization and spatial filtering, and

only the output probe field is directed first to the imaged object and then to the detection

unit. Both the pump and the probe fields are pulsed using AOMs, synchronized with the

camera’s image-taking sequence.

Possible Output Modes Pump Field
Vapor Cell

Figure 5.13: Illustration of different thermal vacuum mode generation. Due to the pres-
ence of all possible vacuum modes, the output spatial modes show intrinsically multimode
behavior, and can occur within a cone region. Here the blue and pink cones show the
thermal vacuums for the probe and conjugate fields.

It is convenient to use this source for precise comparison between theory and experi-

ment, since it provides a reliable and repeatable way to control the average photon number

in a specific spatial mode through the FWM gain by adjusting the pump beam strength

or laser detuning.
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It is worth discussing the difference between vacuum-seeded FWM and the seeded

FWM described in previous sections. The strong atomic coherence and dispersion created

by the pump field allow for a nonzero ∆k. Physically, this means that the thermal vacuum

is generated over a wide range of angular spreads, as shown in Fig.5.13. Mathematically,

the output state for different spatial modes |0⟩i can be expressed as

|0⟩1 ⊗ |0⟩2 ⊗ |0⟩3 . . . |0⟩i (5.11)

In contrast, in the seeded case, one bright spatial mode is fixed by the probe seed field

[177], so that the output field can be represented as

|n⟩1 ⊗ |0⟩2 ⊗ |0⟩3 . . . |0⟩i (5.12)

Here, the other vacuum fields are much weaker. In our experiment, we must consider

infinitely many different thermal states. This intrinsic spatial multimode behavior directly

affects our variance calculations and photon number calibration. For example, if the circu-

lar binning size is chosen to be too large, it begins to mix different thermal modes. Further

details are provided in the next section.

Photon Number Calibration

To compare the experimental SNR values with Eq.(5), we need to accurately estimate

the average photon number in the thermal probe field. This requires taking into account

the bin size and the number of physical pixels integrated during the binning process. If

⟨n⟩pxl is the average number of photons in the unobstructed thermal beam per physical

pixel, then the number of photons in each binned pixel scales as ⟨n̂⟩ = a ⟨n̂⟩pxl =
a
A ⟨n̂tot⟩.

Conveniently, this allows us to vary the average photon number by varying the binning ra-

dius. Since our measurement procedure involves subtraction of the two outputs before the

camera, the measured normalized variance of the photon counts as a function of transmis-

sion coefficient is given by Eq.(2), where it maps to
∣∣∣Ũ1(x⃗)

∣∣∣2. Fig.5.14 shows the measured
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Figure 5.14: Normalized variance (V ) as a function of the detection area (a). The best
linear fit is V = a× (0.01242± 0.0018) + (1.10± 0.11), matching the prediction of Eq.(2).
Inset: the same plot for a wider range of detection areas, displaying the V saturation by
increasing a.

normalized variance as a function of photon number (black dots) for a set of experimental

data obtained with the FWM method. As expected, the variance depends linearly on the

bin area for small binning radii. The slope of this curve allowed us to extract informa-

tion about ⟨n⟩pxl = 6.2×10−3 for a pump power ≈ 80 mw. However, for large binning

(R > 10), the variance starts to deviate from the linear behavior and exhibits signs of

saturation (Fig.5.14 inset). This behavior can be explained by noting that the outputs of

the FWM process are expected to contain multiple spatial modes [178, 179]. Assuming

j such thermal modes are to be equally populated, theoretical normalized variance satu-

rates as V = 1 + 2 ⟨n̂th⟩
j [180]. Thus, for larger binning radii, the measured variance must

contain contributions from multiple thermal modes, deviating from the predictions of a
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single-mode theory.

5.2.3 Experimental Results

(a) (b)

(c) (d)

Figure 5.15: (c) Image of an insect wing with dimensions indicated for reference. (d)
Inset shows an enlarged image of the region of interest, obtained with a bright beam.
(e) Normalized variance map of the wing obtained with ≈301,600 photons and without
any processing. The resolution is around 10 µm, limited by the optical setu, and can be
further improved. (f) Normalized variance map after binning all the pixel values within
one pixel radius (i.e. R = 1). The image contrast increases at the expense of spatial
resolution. Note that a thermal state with 0.1 photons/pixel/exposure on average is used
for generating image (e).

In this section, we present main results of this project. We experimentally demonstrate

QSI with a weak thermal state, produced using two different sources. Fig.5.15 shows an

image of a semi-transparent insect wing, obtained using a pseudo-thermal light, generated

by passing a coherent laser field through a rotating diffuser. The corresponding normalized

variance map is constructed using 200 image clusters (3 images/cluster, with an time of

1.7 µs per image ) and an average photon number per pixel per frame ⟨n⟩pxl ≈ 0.1, which
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is well below the dark noise level of 10 photons per pixel. Thus, this image required

total of a 60 photons per pixel. The finer details of the wing structure (width ≈ 17µm)

can be clearly resolved without further processing, as shown in Fig.5.15 . However, we

can boost the image contrast by increasing the effective number of photons per detected

area following the binning process. The same image, post-processed with the smallest

binning radius R = 1 is shown in Fig.5.15, demonstrating a significant improvement in

quality, without much deterioration in the spatial resolution. Considering the simplicity

of producing such pseudo-thermal light across a wide range of optical frequencies, this

imaging technique can be easily adopted for various low-light imaging applications where

resources like squeezed state are unavailable.

The variance is calculated based on Eq.(5.10). If a portion of the beam is blocked by a

completely opaque object, we expect to have, on average, t ≈ 0 for the blocked region and

t ≈ 1 for the unblocked region. The inset of Fig.5.16 is an example of the transmission

map of a half-blocked thermal beam. Since we use M = 600 image clusters to calculate the

SNR, it is divided by a factor of
√
M to compare it to the single-shot theoretical case and

ensure fair a comparison with theory. We compare these experimental SNR measurements

with theory by setting t = 0 in Eq.(5.5) for a completely opaque object:

SNRQSI =
2 ⟨n̂⟩√

2 + 2[1 + 2 ⟨n̂⟩]2
. (5.13)

In such a case, the SNR is determined only by the average number of the detected pho-

tons ⟨n̂⟩. We employ two different strategies to verify this experimentally. One approach

is to vary the effective detection area by binning multiple pixels together. The number of

photons in detection area can be expressed as ⟨n̂⟩ =
(
a
A

)
⟨n̂tot⟩, where a is the detection

area, A is the whole beam size, and ⟨n̂tot⟩ is the total average incoming photon counts.

While a is determined by binning radius, ⟨n̂tot⟩ is controlled by the FWM gain. For these

measurements, we carefully select the ‘dark’ and ‘bright’ areas in a partially blocked ther-

mal beam, as shown in the inset of Fig.5.16, and verify that for a detection area with
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less than a 10-pixel radius, the recorded optical field is strictly single-mode, and ⟨n̂⟩pxl is

calibrated independently. In second approach, we fixed a and varied ⟨n̂tot⟩ by changing

the FWM gain with different pump powers. Fig.5.16 shows the experimental SNR as a

function of ⟨n̂⟩ for both methods. Black circles are recorded with a fixed detection area

and varying FWM gain. Red triangles are recorded by changing the detection area while

the FWM gain is held fixed at its maximum value. Remarkably, both approaches yield

experimental data matching very well with each other, proving their equivalence. They

are in reasonably good agreement with the theoretical SNR values from Eq.(5.5).

In the context of QSI, the contrast (C) of the images can be calculated as:

C =
(Vbright − 1)− (Vdark − 1)

V(bright − 1) + (Vdark − 1)
, (5.14)

with Vbright and Vdark being spatial averages of the normalized variances recorded by pixels

in the bright and dark regions, respectively. We measured C = 0.88 ± 0.02 for the image

inset in Fig.5.16.

5.3 Conclusion

To summarize, we theoretically developed an approach to a low-exposure imaging using

classical or quantum states that differ from a coherent one, and experimentally demon-

strated its realization using thermal and pseudo-thermal light. We showcased this ability

by imaging a biological sample, detecting as low as 0.03 photons/pixel/exposure on aver-

age, with just 27,000 photons making up the entire image. We also showed that in the

low photon number regime, QSI with thermal light outperforms the classical differential

imaging method when dark counts are taken into account.

The ability of image reconstruction using very low photon flux is desirable for numerous

scientific, commercial, and defense imaging applications. The proposed method offers sev-

eral attractive features. First and foremost, the wide availability of thermal light sources
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broadens the scope of applications, potentially extending it in the visible and UV frequen-

cies. Second, since thermal light does not have a fixed phase, our method does not require

the LO phase stabilization, substantially increasing in reliability. Finally, since a portion

of the thermal field still displays the thermal statistics with lower photon numbers, the

spatial resolution can be optimized depending on the required SNR, as given by Eq.(5.5).
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Figure 5.16: SNR for opaque object imaging in QSI scheme as a function of averaged
thermal photon number per detection area ⟨n̂⟩. The detected photon number was con-
trolled by either changing the total FWM gain (black circles) for detection area size of
a = 113 pixels, or by changing the detection area size (red triangles) for the highest FWM
gain value. Solid blue curve is the theoretical SNR of Eq.(5.13). Experimentally measured
SNR values are divided by

√
600 to be compared with the theoretical values. Inset (a):

Transmission map of the opaque object by blocking the left half of the thermal probe and
calculated with the binning radius 6 (a =113 pixels). A central circular region is selected
based on a good overlap between the probe and the LO. Central shaded region is excluded
from the analysis.
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Chapter 6

Anti-Parity-Time Symmetry in Hot

Rubidium Vapor

6.1 Introduction

This chapter presents our investigation into Anti-Parity-Time(APT) Symmetry in hot

Rubidium vapor. For the published work, please refer to Ref [127].

While all Hermitian operators possess real eigenvalues, being Hermitian is not a requi-

site condition for this property. Recent findings indicate that any Hamiltonian Ĥ, whether

symmetric [82, 87, 89] or anti-symmetric [181, 182] under joint parity-time (P̂ T̂ ) trans-

formations, can yield a real energy spectrum, corresponding to either [Ĥ, P̂ T̂ ] = 0 or

{Ĥ, P̂ T̂} = 0. Both classifications of systems experience a phase transition at which the

Hamiltonian’s real eigenvalues become imaginary at a singular point in parameter space,

referred as an exceptional point (EP). Notably, even minor perturbations of the inter-

action parameters near the EP can result in significant alterations in system observable

behavior, thereby facilitating the enhancement of various sensors [15–18] and many other

applications [183]. The mathematical equivalence between the Schrödinger equation and

paraxial wave propagation equation in materials characterized by complex refractive in-

dices has facilitated the experimental realization of PT and anti-PT symmetric optical
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and photonic structures through manipulation of their spatially varying optical properties.

PT-symmetric structures often utilize spatially interleaved gain and loss channels [82, 98–

100], showing exciting opportunities for practical applications such as EP-enhanced sensing

and PT-symmetric lasers [92, 184–188]. However, unavoidable optical gain and loss pose

challenges to many sensing schemes that hold great theoretical promise, since the associ-

ated Langevin noises disrupt PT symmetry in the quantum regime [101, 102]. In contrast,

anti-PT symmetric systems provide a promising alternative to address this challenge, as

they can potentially be implemented without loss or gain by exclusively manipulating the

spatial variation of the real part of the refractive indices [181, 189, 190].

Recently, a fascinating alternative realization of anti-PT symmetry, without the need

for spatially alternating regions with different refractive indices, has been demonstrated

in cold Rb atoms [103]. In this system, the coupling between two optical fields (referred

to as probe and conjugate) is established via resonant FWM with the help of two intense

pump laser fields, and a nearly lossless propagation of a resonant field and tunable non-

linearity is achieved thanks to strong coupling of light and long-lived ground-state atomic

coherence under the conditions of electromagnetically induced transparency (EIT). By

varying the nonlinearity strength, the system exhibited an anti-PT phase transition with

the eigenvalues transforming from imaginary to real at the EP. However, implementing

such a lossless FWM scheme in inhomogeneously broadened optical systems is challeng-

ing due to unavoidable residual absorption, even under the EIT resonances. Here, we

recreated similar conditions for anti-PT symmetry braking by operating away from exact

optical transition, thus mitigating the adverse effects of inhomogeneous broadening. This

allows us to use a Rb vapor cell and a single strong pump laser field, rather than a cold

atomic ensemble, which greatly reduces the complexity of the experiment and can oper-

ate in continuous regime. This system also enables experimental studies of the quantum

properties of anti-PT phase breaking by measuring intensity squeezing and entanglement

of the two output optical fields [153, 191–194]. Theory predicts distinct behaviors in their

quantum fluctuations near the EP, offering promising avenues for precision quantum sens-
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ing [195, 196]. This knowledge can be used to gain additional insights into the operation

of a wide range of quantum sensors based on this FWM system [153, 197–200]. In this

work, we first characterize the anti-PT features classically by tracking the FWM gain for

both probe and conjugate optical fields, and then present theoretical and experimental

analysis of nonclassical correlations in their relative-intensity noise. We consider a more

realistic scenario, accounting for residual optical loss and associated Langevin noise, which

inevitably reshape the emergence of the anti-PT phase transition and modify squeezing

attributes. Finally, we identify the parameter space where the distinct anti-PT breaking

features around the EP can be observed more clearly.

6.2 Anti-PT FWM Overview

6.2.1 Connecting FWM with Anti-PT Symmetry

To explore the analogy between the time-dependent Schrödinger equation for a two-level

system and the propagation equations for two coupled optical fields in the FWM case,

we need to find the interaction matrix Ĥ that governs the propagation of the probe and

conjugate optical fields with Rabi frequencies Ωp and Ωc,:

i∂z

(
ΩP
Ω∗
C

)
= Ĥ

(
ΩP
Ω∗
C

)
(6.1)

To obey anti-PT symmetry, its accompanied Hamiltonian operator Ĥ should anti-

commute with the parity-time product operator. For the two-mode case, the action of

the parity operator is equivalent to a “spatial flip”: P̂ =

0 1

1 0

, while the time reversal

operator conjugates the two output fields, such that T̂ ĤT̂ = Ĥ∗.

From previous calculations in Ch.2 and Ch.3, the nonlinear FWM interaction between

the probe and conjugate field operators, âP and âC , is described by the following coupled
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equations [103, 111],

i
∂

∂z

(
âP
â†C

)
=

(
−∆k

2 −κ
κ ∆k

2

)(
âP
â†C

)
, (6.2)

where ∆k is the phase mismatch. Note that, unlike most previous FWM studies, we

operate at non-zero ∆ks. This is required for achieving APT symmetric interaction and

the existence of the EP. In simulation, we extract ∆k by fitting the classical gain data,

as its value can be effectively modified by the medium. At the two-photon resonance,

κ = gN/2c∆2 is a real and tunable parametric interaction amplitude with the optical

transition coupling strength g, atomic density N , and speed of light in vacuum c.

Eq.(6.2) clearly resembles the Schrödinger-like equation with an effective Hamiltonian:

HAPT =

(
−∆k

2 −κ
κ ∆k

2

)
, (6.3)

that anti-commutes with the joint parity-time operator [103], {HAPT, P̂ T̂} = 0. Since

Eq.(6.3) does not contain any gain or loss, the commutation relations remain intact, and

the Langevin noise is unnessary in Eq.(6.2).

The Hamiltonian (6.3) has two eigenvalues,

±λ = ±∆k

2

√
1− β2, (6.4)

where β = |2κ/∆k| characterizes standard anti-PT features in parameter space: β = 1

indicates the EP of the regular anti-PT phase transition, marked by both eigenvalue and

eigenstate coalescence.

We begin with this idealized APT model to gain some insights. We alter the atomic

density N to tune β and so the eigenvalue λ. In this experiment, all the detunings are

achieved by changing the atomic density, or at the operational level changing the cell

temperature. This is because the experimental complications, which we will specify in

later sessions.

For β < 1, ±λ are real, placing the system in the anti-PT phase-broken regime; β > 1

123



yields imaginary ±λ, preserving anti-PT symmetry. In addition to the aforementioned anti-

PT phase transition with ±β, we also expect clear variations of quantum properties of the

probe and conjugate fields after interaction with the atomic medium. These variations

depend on a transfer matrix connecting output fields at z = L to their corresponding

inputs at z = 0,

(
âP (L)

â†C(L)

)
= e−iHAPTL

(
âP (0)

â†C(0)

)
=

(
A C∗

C A∗

)(
âP (0)

â†C(0)

)
, (6.5)

where A = cos(λL) + i sin(λL)/
√
1− β2 and C = −iβ sin(λL)/

√
1− β2, equivalent to

Eq.(2.36). To evaluate anti-PT breaking, we focus on two experimentally-achievable pa-

rameters: the gain coefficients and relative-intensity fluctuations of the strongly correlated

probe and conjugate fields for different β values, and compare their behaviors with ideal

double-Λ system considered earlier.

We first examine the classical traits of anti-PT behavior using probe and conjugate

field gain values. The gain GP/C is defined in Eq.(2.25). As a reminder, physically it is

the ratio of the measured output power to the input power of the seeded input field. In

this way, we define the normalized gains GN
P and GN

C as:

GN
P =

GP

GP +GC
=

|A|2

|A|2 + |C|2
,

GN
C =

GC

GP +GC
=

|C|2

|A|2 + |C|2
.

(6.6)

For β > 1, both output fields grow exponentially due to the presence of imaginary com-

ponents in the eigenvalues. Since |A|2 ≈ |C|2 for a larger β, the two powers increase at

a similar rate, and both GN
P and GN

C tend to converge to 0.5. Below the EP (β < 1),

coherent power oscillations emerge in both fields. Moreover, as β varies, the normalized

gain for one field increases while for the other decreases. When β → 0, a weak FWM

strength results in |A|2 → 1 and |C|2 → 0.

Given the capability of this experimental system for generating strong quantum cor-
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relations and entanglement between probe and conjugate fields [109, 191, 192], it is an

ideal platform for investigating the quantum aspects of an anti-PT-symmetric system by

monitoring the reduction of the relative-intensity fluctuations between the two fields below

the shot noise level. This reduction is described by the squeezing parameter S which is

defined in Eq.(2.52).

In this ideal case, it is easy to predict the quantum noise behavior. When β < 1, S

follows sinusoidal oscillations of the classical relative gains, occasionally dropping below

the shot noise level (when the output powers of the probe and conjugate fields become

equal), indicating the emergence of moderate quantum squeezing. However, when β > 1,

S monotonically decreases, implying growing quantum correlations in relative photon-

number fluctuations. A larger κ corresponds to better intensity squeezing. Near the EP,

S can undergo rapid variations as β → 1, offering intriguing opportunities for quantum

sensing [195].

6.2.2 Numerical Model

In practice, however, optical loss and imperfect detection efficiency limit the achievable

squeezing level, and any further growth in κ only leads to deterioration of squeezing and

eventually excess noise. For example, the simplified model predicts maximum FWM gain

at zero two-photon detuning, yet the actual detunings have to be corrected for light shifts

of the atomic energy level. Thus, to meet experimental requirements, we develop a model

that incorporates the effects of these imperfections.

In the numerical modeling, we reduce the amount of absorptions to match with the

real experimental data. However, we still assume that ΩP/C ≪ ΩPump, since the pump

is 4 orders of magnitude larger than the probe seed. This assumption is fully justified

and we show later we have a reasonable fit with data. The model constructed under

this assumption allows us to extract the anti-PT Hamiltonian for all analysis as well as

simplifies the calculation significantly. The ability to extract the 2×2 matrix also allows us

to quantitatively compute the Langevin noise contribution following the formulism given
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in Ref[111], as discussed in Ch.2.

Note that in this work, most experimental parameters–such as the pump laser frequency

and Rabi frequency, and two-photon detuning δ = ω − ωP −∆HF = ωC − ω −∆HF have

been optimized to maximize the relative-intensity squeezing for different atomic densities.

Parameters used for the numerical simulations are derived from independent experimental

characterizations. Since in our model we do not take into account the detailed hyperfine

structure of 85Rb D1 line, the theoretically predicted values for the two optimal two-photon

detunings (δ ≈ −28 MHz for maximum squeezing and −17 MHz for highest gain) differ

from the corresponding experimentally measured ones (1 MHz and 12 MHz). However,

that in both cases these values are 11 MHz apart from each other.

Another factor to consider is the Doppler effect. Unlike the case of cold or ultracold

atoms, hot atomic dynamics can be significantly influenced by the Doppler broadening,

with the Doppler range reaching up to several hundred megahertz. The Doppler effect is

given by ∆atom = ∆atom,v=0+k ·v. In our case, we selected all beams to be copropagating.

Since the involved fields are near D1 transitions, the relative Doppler shift cancels out,

thereby reducing the Doppler broadening effect. Furthermore, the large detuning ∆ we

used also mitigates the influence of the Doppler effect. Nevertheless, we include the Doppler

effect for completeness and accuracy in the model.

Next, we solve Eq.(3.11) numerically without further simplification for all propagation

matrix elements. The calculated anti-PT matrix usually takes the form,

M =

(
−α+ i∆k

2 iκN
−iκN −i∆k

2

)
(6.7)

where α/N , ∆k, and κ represents, respectively, the optical absorption, momentum vec-

tor mismatch, and nonlinear coupling coefficient. Eigenvalues ,GP/C and squeezing S are

computed accordingly for comparison with experiment. We annotate the numerically com-

puted Hamiltonian with M to distinct from the HAPT. Notice that for Eq.(6.7), we also

included the imaginary term i for the propagation matrix. The gain and Langevin noise
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can be calculated from Eq.(6.7), as outlined in Ch.2.

6.2.3 Comparison between Traditional and Anti-PT Squeezing

Our prior discussion has focused exclusively on classical nonlinear amplification. The

present objective is to extend the study of anti-PT symmetry into the full quantum regime

by incorporating two-mode squeezing.

As described in Ch.2, squeezing is directly related to gain. Therefore, it is expected

that oscillations in squeezing will emerge as a function of the parameter λ. However, a key

difference exists between conventional and anti-PT squeezing. Traditional squeezing is typ-

ically optimized for ∆k = 0 (or very small ∆k) with GP/C near maximum gain—although

squeezing often deteriorates at the absolute maximum gain and is optimal when tuned

slightly away from it. In contrast, for the FWM system to exhibit anti-PT characteristics,

a variable ∆k is required, allowing λ to shift from real to imaginary within the parameter

space.

This necessity for a larger ∆k highlights the difference between traditional squeezing

and squeezing under anti-PT conditions. The anti-PT system represents a new regime that

extends beyond the typical two-photon correlation picture found in conventional squeezing.

For instance, in traditional squeezing, detection sensitivity is enhanced by maximizing gain

and minimizing noise. In the proposed anti-PT system, however, enhanced sensitivity is

achieved via an oscillatory squeezing response in the anti-PT-symmetric region near the

exceptional point. Specifically, it has been shown that when λz = nπ (with n an integer),

enhanced sensitivity occurs due to the strength of the squeezing response rather than

the squeezing value alone [104]. This approach also permits the observation of strong

squeezing under non-optimal conditions—namely, with a large ∆k in both the anti-PT-

symmetric and anti-PT-broken regimes—which is generally not possible with traditional

methods. In summary, anti-PT intensity squeezing offers a unique interpretation that

differs significantly from conventional squeezing.
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6.3 Experiment Design

Further experimental details of the squeezer are described in Ch.3, so we will not repeat the

technical details of the setup here. Instead, this section focuses on the specific modifications

made to transform our system into a pseudo anti-PT system and how we tune the system

between its anti-PT symmetric and broken regions.

The primary modification is that we intentionally tune the phase-matching angle slightly

larger than the one corresponding to maximum gain, thereby optimizing the squeezing un-

der this condition. This deliberate detuning introduces a non-zero ∆k into our system.

Ideally, to achieve a larger λz—which is desirable for observing a sharp phase change—we

would prefer ∆k to be as large as possible, as λ is proportional to ∆k (see Eq.(3.19)).

In practice, however, increasing ∆k is not always feasible because altering the phase-

matching angle also changes the beam overlap and interaction length. For a fixed beam

size, an increase in ∆k (and consequently λ) is typically accompanied by a reduction in

the propagation length and beam overlap, thereby limiting the extent to which ∆k can be

increased in our setup.For the same reason, tuning ∆k by changing the phase-matching

angle is not realistic. Tuning the beam direction can potentially also introduce additional

detector loss or residual pump leakage, adding uncertainties to the experiment.

To overcome these issues, we tune the system by adjusting the atomic density—or,

equivalently, the vapor cell temperature—which allows us to vary the system around the

exceptional point. Because the atomic density is independent of other experimental param-

eters, it provides a means of probing the anti-PT Hamiltonian with minimal disturbance.

It should be noted that a systematic error exists between the measured temperature and

the actual temperature; the measured value is corrected by adding +3.7◦C.

Another parameter available for tuning is the pump power (or Rabi frequency). Since

the pump field establishes atomic coherence between the ground and excited states, varying

the pump power affects the nonlinear strength, represented by the off-diagonal term κ in

the pseudo anti-PT Hamiltonian. Besides, the pump Rabi frequency directly affects the
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Autler–Townes splitting, thereby influencing all detunings when altered. As a result, it

is less decoupled from other system parameters than the atomic density, making it a less

favorable parameter for tuning the anti-PT system, even though adjusting the laser power

is more convenient and rapid.

6.4 Results and Discussion: Experimental anti-PT squeezing

Figure 6.1: (a) Anti-PT Hamiltonian eigenvalues ±λ versus atomic density N , calculated
using experimental parameters. (b,c) Experimental (markers) and calculated (lines) abso-
lute (c) and normalized (b) gain values for the probe and conjugate optical fields versus
N . (d) Relative intensity squeezing parameter S versus N , showing experimental data
(markers) and simulated results from the full quantum model with imbalanced (solid line)
detector efficiencies (tP = 78% and tC = 83%), from the full quantum model with bal-
anced (dash line) detector efficiencies (tP = tC = 83%), and from the model using only
imbalanced detector loss(tP = 78% and tC = 83%, 100% transmission in atomic medium)
[116](dotted). In all cases the imperfect detector efficiencies are accounted for using a
beamsplitter model. In (a)–(c) the dashed vertical lines indicate the predicted EP loca-
tions. Experimental parameters: θ = 0.39◦, pump Rabi frequency Ω = 2π×0.42 GHz, cell
length z = 1.9 cm. Temperature range: 100◦C to 108.7◦C, corresponding to the atomic
density range of N = 5 × 1012 − 9 × 1012cm−3. Numerical model used ∆k = 210 rad/m
extracted from fitting experimental data.
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Fig.6.1(a)-(d) present the variation of the classical and quantum characteristics of the

probe and conjugate fields during the anti-PT phase transition as functions ofN . Fig.6.1(a)

show the calculated real (green) and imaginary (purple) components of ±λ. Under the

given experimental conditions, the real part of λ± above EP does not completely disap-

pear, as expected in the ideal anti-PT scenario. This non-vanishing deviation is caused by

additional contribution of α to the diagonal term of the matrix(see Eq.(6.7) above), intro-

duced to account for residual optical losses for the probe field. Nonetheless, its presence

does not fundamentally disrupt the optical field dynamics, and, under certain conditions,

does not significantly deteriorate the expected application performance. Fig.6.1(b) and (c)

depict the net gains, GP = |A|2 and GC = |C|2, along with the normalized gains, GN
P,C ,

for the probe and conjugate fields, respectively. Both numerical simulations and experi-

mental data exhibit close agreement. Notably, we do not observe any oscillations in the

probe and conjugate fields power below EP; instead, the output power of the seeded probe

field gradually decreases while the generated conjugate field slowly grows. In principle,

right after the EP, their normalized gains rapidly converge to 0.5 as the two optical fields

tend to equate and grow together, signifying the system’s transition into the unbroken do-

main of the anti-PT phase. Before EP, oscillatory conversion between probe and conjugate

is anticipated in the low-atomic-density region for small κ, stemming from spontaneous

symmetry breaking. However, observing these periodic oscillations as well as rapid con-

vergence require longer optical path L (as discussed later) or a significantly larger phase

mismatch ∆k. Under these conditions the FWM gain below the EP is very low, posing

experimental challenges. While understanding of this FWM gain dependence on Rb den-

sity does not require analysis of its internal symmetries, casting it in the light of anti-PT

symmetry breaking provides valuable insights into the principle characteristics of the two

distinct regimes. For instance, it provides a clear distinction between energy-conserving

probe-conjugate propagation in the anti-PT symmetric regime and the common-mode am-

plification once the anti-PT symmetry is broken. Also, this allows for straightforward

prediction of the experimental conditions corresponding to the EP, where the system can
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exhibit maximum sensitivity to its parameter variations. The anti-PT symmetry analysis

also connects the experimental observation to the broader field of non-Hermitian physics.

Fig.6.1(d) presents the experimentally measured relative intensity squeezing parame-

ter S as well as its numerical simulations for various scenarios. The solid line shows the

predictions of the full theoretical modelthat assumes the experimentally measured imbal-

ance between probe and conjugate detection efficiencies. For completeness, we also plot

the model predictions for the case of the identical detector efficiency, shown as a dashed

line. The dotted line gives the predictions of a simplified calculation [116] that neglects

the atomic Langevin noise correction terms (N̂R,I). As previously mentioned, in an ideal

case, quantum correlations between the probe and conjugate intensify with increasing N .

However, as shown here, in reality the squeezing parameter S reaches its optimal value of

≈ 5 dB at a certain N , above which quantum correlations continuously deteriorate. This

shift primarily originates from residual optical loss (particularly for the probe field) that

increases quantum noise of each individual optical field and detector losses that hamper

fully capturing the generated relative intensity squeezing.

From Eq.(2.82), We can then solve the propagation equations for quantum operators

and obtain the differential photon-number variance in terms of the gain coefficients |A|

and |C|:

Var(n̂P − n̂C) = (|A|2 − |C|2)2⟨n̂P (0)⟩+ ⟨LN ⟩, (6.8)

where ⟨n̂P (0)⟩ and ⟨LN ⟩, respectively, denote the mean photon number of the seeding

probe field and the grouped Langevin noise contributions.

In the ideal lossless case (|A|2 − |C|2 = 1) without additional noise terms, Eq.(6.8)

matches Eq.(2.52) as ⟨n̂P ⟩ + ⟨n̂C⟩ = (|A|2 + |C|2)⟨n̂P (0)⟩. However, higher N enhances

probe-field optical loss, leading to increased excess noise (with super-Poisson statistics)

in both probe and conjugate fields, and hence prevents further squeezing improvements.

Moreover, small imbalanced detector losses for the probe and conjugate channels (tP = 78%

and tC = 83%, respectively) further shift the conditions for optimal detectable squeezing
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further towards lower temperature (atomic density). Eventually, relative intensity noise

exceeds the shot-noise level, as depicted by the dotted and solid curves in Fig.6.1(d). In

the case of perfectly balanced detection better squeezing level can be achieved at higher

atomic density. As a side note, one can notice that for low FWM gain slightly higher

detection losses for the probe field compensate for unity gain difference between probe

and conjugate fields, and allows for minuscule improvement in the detected squeezing.

Overall, we observe reasonable agreement between the experimental and theoretically pre-

dicted squeezing density dependence. The overall ≈ 2 dB difference between the measured

and calculated noise level is observed. We can attribute it to experimental imperfections,

including laser drifts, beam self-focusing, and residual pump field leakage. Additionally,

other parasitic nonlinear effects, such as self-focusing or alternative wave-mixing channels,

can emerge at higher atomic densities. Nevertheless, the model achieves a reasonably ac-

curate prediction for the overall squeezing trend. This preliminary study is focused within

the anti-PT symmetric region, since accurate measurements of quantum noise deviations

from the shot noise in the low-gain regime was not possible due to technical noises, such

as detector dark noise.

The pump laser power is another experimental parameter that we can use to control

the FWM strength. For sufficiently powerful pump field, the FWM gain is independent of

the pump laser intensity, but for weaker pump this approach holds potential advantages

for much faster tuning across the anti-PT EP, compared to the temperature tuning of the

atomic density. Unfortunately, the reduction in pump power generally results in higher

optical losses. Fig.6.2 compares the simulation and experimental results of the pump power

dependence. While the experimental normalized gain and measured squeezing align well

with the simulations, it is clear that, at lower laser powers, the calculated eigenvalues

deviate more substantially from the ideal expectations (Re(±λ) = 0 above the EP, and

Im(±λ) = 0 below the EP).

To demonstrate the capability of our proposed system in simulating near-perfect anti-

PT Hamiltonian, we employ the developed numerical model to identify the required ex-
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perimental conditions, as shown in Fig.6.3. We find that operating at sufficiently large

one-photon detuning ∆1 ≤ 4 GHz provides necessary reduction in residual loss. How-

ever, to achieve necessary FWM gain, one will have to operate at higher cell temperature

(≥ 120◦C) and greater pump laser power than what was available in the current experi-

ments. Under these conditions, the calculated eigenvalues become symmetric and switch

from almost entirely real to predominantly imaginary at the EP. For a longer vapor cell

(z = 7.6 cm), ±λz attains sufficient magnitude to enable relative oscillation in the normal-

ized gain plot within the anti-PT symmetry breaking region. The negligible optical losses

make it possible to observe corresponding variations in relative-intensity noise below the

EP [103], under certain conditions even dipping below the shot-noise level. Realization of

this regime will allow us to explore the alternative mechanisms for quantum enhancement

related to extreme sensitivity of the system near the EP in addition to a more traditional

benefits of high two-mode intensity squeezing above EP. Previous theoretical analysis pre-

dicts that operating near the EP enables optimal quantum sensing, even when low FWM

gain produces negligible amount of intensity squeezing. Ref. [195] proves that by compar-

ing the inverse variance (akin to the Cramer-Rao bound) with the corresponding quantum

Fisher information and showing that they converge in the ideal case. However, under the

same parametric gain, traditional squeezing-based sensing deviates significantly from the

quantum Fisher information, indicating suboptimal performance, and it requires signifi-

cantly higher parametric gain to also saturate the quantum Fisher information [201].

It is important to note that complete elimination of the Langevin noise contributions

proves to be challenging. Although in an ideal lossless scenario, squeezing continually

improves with N , our model predicts that even under more favorable conditions the in-

escapable optical losses will cause rapid squeezing degradation above certain atomic density

as shown in Fig.6.3(c). Operating at larger laser detuning only pushes this optimal squeez-

ing point to higher atomic densities, (compare, e.g., the horizontal scales in Figs.6.1 and

6.3). Nevertheless, in the vicinity of the EP, the ability to reproduce rapidly changing

quantum squeezing behavior, as identified in Ref. [195], remains feasible. Thus, the exten-
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sion of the original quantum Fisher information analysis accounting for optical loss and

Langevin noise remains an open question for future theoretical and experimental work.

6.5 Conclusion and Outlook

In conclusion, our preliminary work establishes the practicality of modeling the anti-PT-

symmetric Hamiltonian by utilizing two correlated optical fields generated through the

near-resonant forward FWM process in hot Rb atoms, particularly for studying its quan-

tum properties. We demonstrated that it is possible to tune the interaction parameters

across the anti-PT phase transition, verifying that both classical and quantum behavior of

the probe and conjugate fields exhibit the expected characteristics below and above the ex-

ceptional point. Namely, we observe two-mode relative-intensity squeezing at the anti-PT

symmetric regime, when both output fields experience matched exponential FWM gain.

We also analyze the influence of excess noise resulting from residual optical absorption,

which imposes constraints on the attainable level of squeezing in distinct domains. Finally,

we identified reasonable experimental parameters for the observation of the nearly lossless

oscillatory behavior, that can be used for advanced quantum sensor applications.
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Figure 6.2: System tuning across anti-PT symmetric and symmetry-breaking regimes via
pump laser power modulation. (a) Simulated eigenvalues ±λ of the anti-PT Hamiltonian
vs. pump Rabi frequency Ω. Power-dependences of (b) the relative-intensity squeezing
parameter S and (c) normalized probe/conjugate gain GP,C : experimental measurements
(markers) vs numerical simulations (lines). Experimental parameters, also used for the
numerical model: ∆ = 0.7 GHz, δ = −28 MHz, N = 7.9 × 1012cm−3 (vapor temperature
∼108◦C), ∆k = 210 rad/m.
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Figure 6.3: Optimized FWM parameters for nearly ideal anti-PT realizations, using
higher pump power (Ω = 2π × 0.6 GHz) and larger one-photon detuning (∆1 = 4 GHz),
in z = 1.9 cm and z = 7.6 cm vapor cells. Additional parameters: δ = −3.5 MHz,
∆k = 210 rad/m. (a) Real/imaginary components of the eigenvalues as functions of the
atomic density N . (b) Normalized probe/conjugate gain vs. N . (c) Relative-intensity
squeezing parameter S vs. N . Solid/dashed lines show the predicted squeezing with the
Langevin noise ⟨LN ⟩ at a z = 7.6/1.9 cm vapor cell. No detector losses are considered.
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Chapter 7

Conclusion and Future Work

In this dissertation, we discussed the development of quantum information and sensing

tools utilizing FWM in ensembles of warm atoms. We formulated a theoretical framework

for FWM and associated two-mode squeezing, emphasizing the impact of optical loss.

With these, we extended the applications of squeezing to quantum communication and

non-Hermitian systems by developing a bi-chromatic two-mode squeezer.

The bichromatic squeezer contributes to the long-distance quantum communication

applications and has significant implications for hybrid constructions. We experimentally

achieved strong quantum correlations up to -2.6dB for two distinct wavelengths. We also

show theoretically that more than 6dB of squeezing can be achievable, which is promising

for real-world quantum communication applications.

We also explored the realization of APT Hamiltonian using an FWM system. The APT

squeezer opens the door for the investigation near exceptional points in non-Hermitian

systems. We theoretically calculated and experimentally verified the practicality of using

FWM as an ant-PT system, and outlined the practical limitations. Most importantly, we

extend the study into the quantum regime by looking at the squeezing response near EP.

Finally, we developed a few-photon imaging method utilizing quantum noise by extend-

ing the homodyne detection method to account for spatial distributions. We successfully

imaged a wasp wing sample, with 50µm resolution and on average 0.006 photons per pixel.
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Moving forward, there are several interesting directions to be explored, as many prac-

tical applications can be developed based on the materials presented in this thesis. For

example, the efficient bichromatic squeezer can be modified as an IR-Telecom wavelength

conversion device, which is another important aspect of quantum communications. Both

the bichromatic squeezer and the wavelength converter can be easily integrated into existing

quantum information experiments. Further investigations into quantum transduction can

include microwave-IR-Telecom conversion. We can also advance the FWM-based APT

studies by developing sensors with enhanced sensitivity near EP. What’s more, we can

study the FWM system at the single-photon level instead of in the bright-mode squeezing

regime. In this case, The EP crossing behavior could be used as a control mechanism for

biphoton waveform shaping.
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Appendix A

Squeezing Calculation Matlab Script

with Langevin Correction

A.1 Analytical Calculation for Langevin Terms

From Eq. (2.77), the noise matrix N̂R and N̂I are determined by the coupling matrix:

N̂R + iN̂I =
√
−
((

−α+ i∆k
2 iκ

−iκ −i∆k
2

)
−
(
−α∗ − i∆k

2 −iκ∗
iκ∗ i∆k

2

))
=

(
αr κi
−κi 0

)
(A.1)

Where αr represents the loss, the real part of α, and κi is the imaginary part of

the nonlinear coupling coefficient κ. Noise operators, defined by considering atoms as

reservoirs[115], have the following relationship,

⟨f̂m(ω, z)f̂n(ω
′, z′)⟩ = ⟨f̂ †m(ω, z)f̂ †n(ω

′, z′)⟩ = ⟨f̂m(ω, z)f̂ †n(ω
′, z′)⟩ = 0 (A.2)

⟨f̂ †m(ω, z)f̂n(ω
′, z′)⟩ = δmnδ(ω − ω′)δ(z − z′) (A.3)

We can write the Eq.(2.77) with matrices as,
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∂

∂z

(
âP
â†C

)
=

M︷ ︸︸ ︷(
−α+ i∆k

2 iκ
−iκ −i∆k

2

)(
âP
â†C

)
+

(
N̂R11 N̂R12

N̂R21 N̂R22

)(
f̂P
f̂ †C

)
+

(
N̂I11 N̂I12

N̂I21 N̂I22

)(
f̂ †P
f̂C

)
(A.4)

The solution to Eq.(A.4) is,

(
âp(L)

â†c(L)

)
= eML

(
âp(0)

â†c(0)

)
+

∫ L

0
eM(L−z)

(
N̂R11 N̂R12

N̂R21 N̂R22

)(
f̂P
f̂ †C

)
dz

+

∫ L

0
eM(L−z)

(
N̂I11 N̂I12

N̂I21 N̂I22

)(
f̂ †P
f̂C

)
dz (A.5)

If we define matrices,

eML ≡
(
A B
C D

)
, eM(L−z) ≡

(
A1(z) B1(z)
C1(z) D1(z)

)
(A.6)

We can solve the output matrix as following,

(
âP (L)

â†C(L)

)
=

(
A(L) B(L)
C(L) D(L)

)(
âP (0)

â†C(0)

)
+

∫ L

0

(
A1(z) B1(z)
C1(z) D1(z)

)(
N̂1r N̂2r

N̂3r N̂4r

)(
f̂P (z)

f̂ †C(z)

)
dz

+

∫ L

0

(
A1(z) B1(z)
C1(z) D1(z)

)(
N̂1i N̂2i

N̂3i N̂4i

)(
f̂ †p(z)

f̂c(z)

)
dz (A.7)

The noise terms are defined as follows:

N̂1r = A1N̂R11 +B1N̂R21, N̂2r = A1N̂R12 +B1N̂R22,

N̂3r = C1N̂R11 +D1N̂R21, N̂4r = C1N̂R12 +D1N̂R22,

N̂1i = A1N̂I11 +B1N̂I21, N̂2i = A1N̂I12 +B1N̂I22,

N̂3i = C1N̂I11 +D1N̂I21, N̂4i = C1N̂I12 +D1N̂I22 (A.8)
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Finally, we can write down our âP (L) and âC(L) as,

âP (L) = A(L)âP (0) +B(L)â†C(0) (A.9)

+

∫ L

0
dz N̂1r(z)f̂P (z) +

∫ L

0
dz N̂2r(z)f̂

†
C(z)

+

∫ L

0
dz N̂1i(z)f̂

†
P (z) +

∫ L

0
dz N̂2i(z)f̂C(z)

â†P (L) = A∗(L)â†P (0) +B∗(L)âC(0) (A.10)

+

∫ L

0
dz N̂∗

1r(z)f̂
†
P (z) +

∫ L

0
dz N̂∗

2r(z)f̂C(z)

+

∫ L

0
dz N̂∗

1i(z)f̂P (z) +

∫ L

0
dz N̂∗

2i(z)f̂
†
C(z)

âC(L) = C(L)âP (0) +D(L)â†C(0) (A.11)

+

∫ L

0
dz N̂3r(z)f̂P (z) +

∫ L

0
dz N̂4r(z)f̂

†
C(z)

+

∫ L

0
dz N̂3i(z)f̂

†
P (z) +

∫ L

0
dz N̂4i(z)f̂C(z)

â†C(L) = C∗(L)â†P (0) +D∗(L)âC(0) (A.12)

+

∫ L

0
dz N̂∗

3r(z)f̂
†
p(z) +

∫ L

0
dz N̂∗

4r(z)f̂c(z)

+

∫ L

0
dz N̂∗

3i(z)f̂P (z) +

∫ L

0
dz N̂∗

4i(z)f̂
†
C(z)

Using the aforementioned solutions, we can compute any desired quantities, such

as gain and squeezing by following the same procedure as in Ch.2. Calculating the

(⟨âP (L)âP (L)−⟨âP (L)âP (L)⟩)2 and ⟨
[
âP (L)âP (L)−⟨âP (L)âP (L)

]2⟩ terms involves many

high-order correlation terms; thus, we will not detail these calculations, even in the Ap-

pendix. In next section, we will provide the complete code in which all Langevin noise

components are explicitly defined. We will compute the value of each component and sum

them to derive the total noise contribution.
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A.2 MATLAB Function Script

The subsequent Matlab code was used to compute the Langevin noise. The function takes

four variables, with the corresponding script parameters shown in parentheses: the prop-

agation matrix M (Propagation_mat), propagation distance L(L), input photon number

nP during collection time (np), and probe and conjugate detector efficiency (Dloss_p and

Dloss_s). The output is the probe and conjugate gain GP/C(G_p and G_c) and the

squeezing S (Sqz) with all loss term accounted. Note that we do not include any addi-

tional noise terms such as converted laser phase noise; this code deals with only the atomic

and detector loss.

1 function [G_p ,G_c ,Sqz]= Langevin_Correcton_Intensity_Squeezing(

Propagation_mat ,L,np ,Dloss_p ,Dloss_s)

2 %Prepare the Langevin terms for corrected -noise calculation

3 %G_p: Probe Gain

4 %G_c:conjugate gain

5 %Sqz:two_mode squeezing

6 %Propagation_mat: 2 by 2 propagation matrix

7 %L: propagation distance

8 %np: input photon number

9 %D_loss_p: probe channel detector efficiency

10 %D_loss_s:conjugate channel detector efficiency

11 %It takes the propagation matrix as an input.

12 %This propagation matrix should be of float/double/integer numbers , no any

13 %sort of symbolic expression invovled.

14 %IMPORTANT: This version includes the imbalanced detection method we have

15 %not included in previous version.

16 %%

17 %Here we prepare all the general matrix and noise terms that we can use for

18 %later time

19 tic;

20 syms z %create the propagartion distance z we can integrate over

21 syms x %Create a variable for purely computational reason , this prevents
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error at integrand = 0 case

22 assume ([x z],’real’);

23 %=======

24 Gain_Mat_out = expm(Propagation_mat*L); %gain at the output , added 07272023

for eliminating imaginary parts test

25 Gain_Mat_in = vpa(expm(Propagation_mat *(L-z)));%gain at a certain point

26 A = Gain_Mat_out (1,1);B = Gain_Mat_out (1,2);C = Gain_Mat_out (2,1);D =

Gain_Mat_out (2,2);%Define the matrix elements of amplification matrix

27 A1 = Gain_Mat_in (1,1);B1 = Gain_Mat_in (1,2);C1 = Gain_Mat_in (2,1);D1 =

Gain_Mat_in (2,2);%Define the matrix elements of intermidiate amp matrix

28 EMat = vpa(sqrtm(-Propagation_mat -conj(Propagation_mat)));%Caculated the

overall error matrix

29 NFR = real(EMat);NR11 = NFR(1,1); NR21 = NFR(2,1); NR12 = NFR(1,2); NR22 =

NFR(2,2);

30 NFI = imag(EMat);NI11 = NFI(1,1); NI21 = NFI(2,1); NI12 = NFI(1,2); NI22 =

NFI(2,2);%Define error matrix as in (A.1) to (A.7)

31 N1r = A1*NR11+B1*NR21;N2r = A1*NR12+B1*NR22;N3r = C1*NR11+D1*NR21;N4r = C1*

NR12+D1*NR22;

32 N1i = A1*NI11+B1*NI21;N2i = A1*NI12+B1*NI22;N3i = C1*NI11+D1*NI21;N4i = C1*

NI12+D1*NI22;%Define terms in (A.8)

33 %%

34 apc = 1*sqrt(np); %define <\alpha|a^\ dagger value

35 ap = 1*sqrt(np);%define a|\alpha > value

36 %%

37 %Define function form.

38 N1rN1i = matlabFunction(vpa(N1r*N1i+x*z));

39 N2iN2r = matlabFunction(vpa(N2i*N2r+x*z));

40 N1icN1rc = matlabFunction(vpa(conj(N1i)*conj(N1r)+x*z));

41 N2rcN2ic = matlabFunction(vpa(conj(N2r)*conj(N2i)+x*z));

42 N3icN3rc = matlabFunction(vpa(conj(N3i)*conj(N3r)+x*z));

43 N4rcN4ic = matlabFunction(vpa(conj(N4r)*conj(N4i)+x*z));

44 N3rN3i = matlabFunction(vpa(N3r*N3i+x*z));

45 N4iN4r = matlabFunction(vpa(N4i*N4r+x*z));

46 N1rsqr = matlabFunction(vpa(abs(N1r)^2+x*z));
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47 N2isqr = matlabFunction(vpa(abs(N2i)^2+x*z));

48 N1iN3rc = matlabFunction(vpa(N1i*conj(N3r)+x*z));

49 N2iN4ic = matlabFunction(vpa(N2i*conj(N4i)+x*z));

50 N1rN3i = matlabFunction(vpa(N1r*N3i+x*z));

51 N2iN4r = matlabFunction(vpa(N2i*N4r+x*z));

52 N1icN3rc = matlabFunction(vpa(conj(N1i)*conj(N3r)+x*z));

53 N2rcN4ic = matlabFunction(vpa(conj(N2r)*conj(N4i)+x*z));

54 N3isqr = matlabFunction(vpa(abs(N3i)^2+x*z));

55 N4rsqr = matlabFunction(vpa(abs(N4r)^2+x*z));

56 N1icN3i = matlabFunction(vpa(conj(N1i)*N3i+x*z));

57 N2rcN4r = matlabFunction(vpa(conj(N2r)*N4r+x*z));

58 N1isqr = matlabFunction(vpa(abs(N1i)^2+x*z));

59 N2rsqr = matlabFunction(vpa(abs(N2r)^2+x*z));

60 N3icN1i = matlabFunction(vpa(conj(N3i)*N1i+x*z));

61 N4rcN2r = matlabFunction(vpa(conj(N4r)*N2r+x*z));

62 N3icN1rc = matlabFunction(vpa(conj(N3i)*conj(N1r)+x*z));

63 N4rcN2ic = matlabFunction(vpa(conj(N4r)*conj(N2i)+x*z));

64 N3rN1i = matlabFunction(vpa(N3r*N1i+x*z));

65 N4iN2r = matlabFunction(vpa(N4i*N2r+x*z));

66 N3rN1rc = matlabFunction(vpa(N3r*conj(N1r)+x*z));

67 N4iN2ic = matlabFunction(vpa(N4i*conj(N2i)+x*z));

68 N3rsqr = matlabFunction(vpa(abs(N3r)^2+x*z));

69 N4isqr = matlabFunction(vpa(abs(N4i)^2+x*z));

70 N1icN1i =matlabFunction(vpa(conj(N1i)*N1i+x*z));

71 N1rN1rc = matlabFunction(vpa(N1r*conj(N1r)+x*z));

72 N2rcN2r = matlabFunction(vpa(conj(N2r)*N2r+x*z));

73 N2iN2ic = matlabFunction(vpa(N2i*conj(N2i)+x*z));

74 N3rN3rc = matlabFunction(vpa(N3r*conj(N3r)+x*z));

75 N3icN3i = matlabFunction(vpa(conj(N3i)*N3i+x*z));

76 N4iN4ic = matlabFunction(vpa(N4i*conj(N4i)+x*z));

77 N4rcN4r = matlabFunction(vpa(conj(N4r)*N4r+x*z));

78 N1rN3rc = matlabFunction(vpa(N1r*conj(N3r)+x*z));

79 %%

80 %calculate the integrand
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81 N1rN1i = integral(@(z) N1rN1i(0,z) ,0,L);

82 N2iN2r = integral(@(z) N2iN2r(0,z) ,0,L);

83 N1icN1rc = integral(@(z) N1icN1rc(0,z),0,L);

84 N2rcN2ic = integral(@(z) N2rcN2ic(0,z),0,L);

85 N3icN3rc = integral(@(z) N3icN3rc(0,z),0,L);

86 N4rcN4ic = integral(@(z) N4rcN4ic(0,z),0,L);

87 N3rN3i = integral(@(z) N3rN3i(0,z) ,0,L);

88 N4iN4r = integral(@(z) N4iN4r(0,z) ,0,L);

89 N1rsqr = integral(@(z) N1rsqr (0,z) ,0,L);

90 N2isqr = integral(@(z) N2isqr (0,z) ,0,L);

91 N2iN4ic = integral(@(z) N2iN4ic (0,z) ,0,L);

92 N1rN3i = integral(@(z) N1rN3i (0,z) ,0,L);

93 N2iN4r = integral(@(z) N2iN4r(0,z),0,L);

94 N1icN3rc = integral(@(z) N1icN3rc(0,z),0,L);

95 N2rcN4ic = integral(@(z) N2rcN4ic(0,z),0,L);

96 N3isqr = integral(@(z) N3isqr(0,z),0,L);

97 N4rsqr = integral(@(z) N4rsqr(0,z),0,L);

98 N1icN3i = integral(@(z) N1icN3i(0,z),0,L);

99 N2rcN4r = integral(@(z) N2rcN4r(0,z),0,L);

100 N1isqr = integral(@(z) N1isqr(0,z),0,L);

101 N2rsqr = integral(@(z) N2rsqr(0,z),0,L);

102 N3icN1i = integral(@(z) N3icN1i(0,z),0,L);

103 N4rcN2r = integral(@(z) N4rcN2r(0,z),0,L);

104 N3icN1rc = integral(@(z) N3icN1rc(0,z),0,L);

105 N4rcN2ic = integral(@(z) N4rcN2ic(0,z),0,L);

106 N3rN1i = integral(@(z) N3rN1i(0,z),0,L);

107 N4iN2r = integral(@(z) N4iN2r(0,z),0,L);

108 N3rN1rc = integral(@(z) N3rN1rc(0,z),0,L);

109 N4iN2ic = integral(@(z) N4iN2ic(0,z),0,L);

110 N3rsqr = integral(@(z) N3rsqr(0,z),0,L);

111 N4isqr = integral(@(z) N4isqr(0,z),0,L);

112 N1icN1i =integral(@(z) N1icN1i (0,z),0,L);

113 N1rN1rc = integral(@(z) N1rN1rc(0,z),0,L);

114 N2rcN2r = integral(@(z) N2rcN2r(0,z),0,L);
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115 N2iN2ic = integral(@(z) N2iN2ic(0,z),0,L);

116 N3rN3rc = integral(@(z) N3rN3rc(0,z),0,L);

117 N3icN3i = integral(@(z) N3icN3i(0,z),0,L);

118 N4iN4ic = integral(@(z) N4iN4ic(0,z),0,L);

119 N4rcN4r = integral(@(z) N4rcN4r(0,z),0,L);

120 N1rN3rc = integral(@(z) N1rN3rc(0,z),0,L);

121 %%

122 %2nd order square terms

123 %Now included the detection efficiency value

124

125 S1 = (Dloss_p*abs(A)^2-Dloss_s*abs(C)^2) ^2*np ^2+...

126 (Dloss_p ^2* abs(A)^4+ Dloss_s ^2*3* abs(C)^4+ Dloss_p ^2*3* abs(A)^2*abs(B)^2-

Dloss_p*Dloss_s *4*abs(A)^2* abs(C)^2-Dloss_p*Dloss_s *2*abs(B)^2* abs(

C)^2+ Dloss_s ^2* abs(C)^2*abs(D)^2 ...

127 -Dloss_p*Dloss_s*A*conj(B)*conj(C)*D-Dloss_p*Dloss_s*conj(A)*B*C*conj(D

))*np+...

128 Dloss_p ^2*abs(B)^4+ Dloss_s ^2*abs(C)^4-Dloss_p*Dloss_s *2*abs(B)^2* abs(C)

^2+ Dloss_p ^2*abs(A)^2*abs(B)^2+ Dloss_s ^2*abs(C)^2* abs(D)^2- ...

129 Dloss_p*Dloss_s*A*conj(B)*conj(C)*D-Dloss_p*Dloss_s*conj(A)*B*C*conj(D)

;

130 %%

131 %2nd order correlation/field operator required terms

132 T1 = conj(A)^2* apc*apc*( N1rN1i+N2iN2r)*Dloss_p ^2;%checked.

133 T2 = A^2*ap*ap*( N1icN1rc+N2rcN2ic)*Dloss_p ^2;%checked

134 T3 = C^2*ap*ap*( N3icN3rc+N4rcN4ic)*Dloss_s ^2;%checked

135 T4 = conj(C)^2* apc*apc*( N3rN3i+N4iN4r)*Dloss_s ^2;%checked

136 T5 = (abs(A)^2*np+abs(B)^2)*( N1rsqr+N2isqr)*Dloss_p ^2;%checked

137 T6 = -(conj(A)*C*np+conj(B)*D)*( N1rN3rc+N2iN4ic)*Dloss_p*Dloss_s;%checked

138 T7 = -conj(A)*conj(C)*apc*apc*( N1rN3i+N2iN4r)*Dloss_p*Dloss_s;%checked

139 T8 = -A*C*ap*ap*( N1icN3rc+N2rcN4ic)*Dloss_p*Dloss_s;%checked

140 T9 = abs(C)^2*(np+1)*( N3isqr+N4rsqr)*Dloss_s ^2;%checked

141 T10 = -A*conj(C)*(np+1)*( N1icN3i+N2rcN4r)*Dloss_p*Dloss_s;%checked

142 T11 = abs(A)^2*(np+1)*( N1isqr+N2rsqr)*Dloss_p ^2;%checked

143 T12 = -(conj(A)*C*(np+1))*( N3icN1i+N4rcN2r)*Dloss_p*Dloss_s;%checked
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144 T13 = -A*C*ap*ap*( N3icN1rc+N4rcN2ic)*Dloss_p*Dloss_s;%checked

145 T14 = -conj(A)*conj(C)*apc*apc*( N3rN1i+N4iN2r)*Dloss_p*Dloss_s;%checked

146 T15 = -(A*conj(C)*np+B*conj(D))*( N3rN1rc+N4iN2ic)*Dloss_p*Dloss_s;%checked

147 T16 = (abs(C)^2*np+abs(D)^2)*( N3rsqr+N4isqr)*Dloss_s ^2;%checked

148 T17 = (abs(A)^2*np+abs(B)^2)*( N1isqr+N2rsqr)*Dloss_p ^2;%checked

149 T18 = -(abs(A)^2*np+abs(B)^2)*( N3rsqr+N4isqr)*Dloss_p ^2;%checked

150 T19 = -abs(C)^2*(np+1)*( N1isqr+N2rsqr)*Dloss_s ^2;%checked

151 T20 = abs(C)^2*(np+1)*( N3rsqr+N4isqr)*Dloss_s ^2;%checked

152 %%

153 %4th order terms

154 F1 = (N1icN1rc*N1rN1i+N1icN1i*N1rN1rc)*Dloss_p ^2;%checked

155 F2 = (N2rcN2ic*N2iN2r+N2rcN2r*N2iN2ic)*Dloss_p ^2;%checked

156 F3 = N1icN1i*N2iN2ic*Dloss_p ^2;%checked

157 F4 = N2rcN2r*N1rN1rc*Dloss_p ^2;%checked

158 F5 = N1icN1rc*N2iN2r*Dloss_p ^2;%checked

159 F6 = N2rcN2ic*N1rN1i*Dloss_p ^2;%checked

160 F7 = N1icN1i*N2rcN2r*Dloss_p ^2;%checked

161 F8 = N2rcN2r*N1icN1i*Dloss_p ^2;%checked

162 F9 = (N3rN3i*N3icN3rc+N3rN3rc*N3icN3i)*Dloss_s ^2;%checked

163 F10 = (N4iN4r*N4rcN4ic+N4iN4ic*N4rcN4r)*Dloss_s ^2;%checked

164 F11 = N3rN3rc*N4rcN4r*Dloss_s ^2;%checked

165 F12 = N4iN4ic*N3icN3i*Dloss_s ^2;%checked

166 F13 = N3rN3i*N4rcN4ic*Dloss_s ^2;%checked

167 F14 = N4iN4r*N3icN3rc*Dloss_s ^2;%checked

168 F15 = N3rN3rc*N4iN4ic*Dloss_s ^2;%checked

169 F16 = N4iN4ic*N3rN3rc*Dloss_s ^2;%checked

170 F17 = (-N1icN3i*N1rN3rc -N1icN3rc*N1rN3i)*Dloss_p*Dloss_s;%checked

171 F18 = (-N2rcN4r*N2iN4ic -N2rcN4ic*N2iN4r)*Dloss_p*Dloss_s;%checked

172 F19 = -N1icN3rc*N2iN4r*Dloss_p*Dloss_s;%checked

173 F20 = -N2rcN4ic*N1rN3i*Dloss_p*Dloss_s;%checked

174 F21 = -N1icN3i*N2iN4ic*Dloss_p*Dloss_s;%checked

175 F22 = -N2rcN4r*N1rN3rc*Dloss_p*Dloss_s;%checked

176 F23 = -N1icN1i*N4iN4ic*Dloss_p*Dloss_s;%checked

177 F24 = -N2rcN2r*N3rN3rc*Dloss_p*Dloss_s;%checked
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178 F25 = (-N3rN1rc*N3icN1i -N3rN1i*N3icN1rc)*Dloss_p*Dloss_s;%checked

179 F26 = (-N4iN2ic*N4rcN2r -N4iN2r*N4rcN2ic)*Dloss_p*Dloss_s;%checked

180 F27 = -N3rN1i*N4rcN2ic*Dloss_p*Dloss_s;%checked

181 F28 = -N4iN2r*N3icN1rc*Dloss_p*Dloss_s;%checked

182 F29 = -N3rN1rc*N4rcN2r*Dloss_p*Dloss_s;%checked

183 F30 = -N4iN2ic*N3icN1i*Dloss_p*Dloss_s;%checked

184 F31 = -N3rN3rc*N2rcN2r*Dloss_p*Dloss_s;%checked

185 F32 = -N4iN4ic*N1icN1i*Dloss_p*Dloss_s;%checked

186 %%

187 %Summing over all the terms we have to the the expectation value

188 expNpNcsqr = S1 + ...

189 (T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16+T17+T18+T19+T20

)+...

190 (F1+F2+F3+F4+F5+F6+F7+F8+F9+F10+F11+F12+F13+F14+F15+F16+F17+F18+F19+F20

+F21+F22+F23+F24+F25+F26+F27+F28+F29+F30+F31+F32);%<(a_p^*a_p -a_c^*

a_c)^2> term

191 %%

192 %calculate the non -square terms

193 expNpNc = Dloss_p*abs(A)^2*np-Dloss_s*abs(C)^2*(np+1)+Dloss_p*abs(B)^2+

Dloss_p*N2rsqr+Dloss_p*N1isqr -Dloss_s*N3rsqr -Dloss_s*N4isqr;%<a_p^*a_p -

a_c^*a_c > term

194 %%

195 %The actual gain of the two field can be mapped as

196 G_p = (abs(A)^2*np+abs(B)^2+ N1isqr+N2rsqr)/np;%

197 G_c = (abs(C)^2*(np+1)+N3rsqr+N4isqr)/np;

198 %%

199 %The squeezing variance

200 %Beaware that the actual squeezing is calculated by using the

201 VarNpNc = expNpNcsqr -expNpNc ^2+ Dloss_p *(1- Dloss_p)*abs(A)^2*np+Dloss_s *(1-

Dloss_s)*abs(C)^2*np;%variance of squeezed lights efined using Eq.

(2.82) , this calculation has included the detector loss

202 SN2 = 2*G_cc*np*Dloss_s;%Shot Noise reference level using SNL = 2<n_c >.

Accurate approximation for large Gain. for small gain one should

account by properly using SNL = <n_p >+<n_c >
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203 Sqz = 10* log10(VarNpNc/SN2);%squeezing level

204 toc

205 end
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Appendix B

Double-Ladder Numerical Model

Python Script

We provide the full python script used in Ch.4. This code is based on Rydiqule [151] and

computes GP and GC . It accounts for all hyperfine levels of |5S⟩,|5P ⟩, and |6S⟩, thus

producing reasonably accurate predictions for both linear and nonlinear behavior such as

FWM and EIT. The code can be modified easily for the interest of future researchers. By

default, executing this code generates the simulated gain spectra illustrated in Fig.4.3.

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Wed Feb 14 13:29:53 2024

5

6 @author: Ziqi Niu

7 The purpose of this program is to build a model for diamond 4-level system ,

with all hyperfine levels included. All delta_k

8 is added to the stokes field by default. Running this program generates the

gain spectra with D1 probe field frequency varying.

9 User can easily adjust this program to model system of interest.

10 """

11 #%%

12 ’Importing the packages ’
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13 import numpy as np

14 import matplotlib.pyplot as plt

15 from scipy.spatial.transform import Rotation as R

16 import rydiqule as rq

17 from rydiqule.sensor_utils import get_rho_ij

18 from rydiqule.sensor_solution import Solution

19 import time

20 import scipy as sp

21 #from rydiqule.sensor_utils import get_transmission_coef

22 ’Define Running Range ’

23 size =83;#number of datapoints run

24 detunings = np.linspace (-1300 ,1300 , size)#plot range , in MHz

25 ’Define Doppler Terms ’

26 Probe_Input = 350;#default Probe input frequency

27 kp = 2*np.pi/795e-3*np.array ([1,0,0])

28 kd = 2*np.pi/780e-3*np.array ([1,0,0])

29 kc = 2*np.pi /1367e-3*np.array ([1,0,0])

30 ks = 2*np.pi /1324e-3*np.array ([1,0,0])#define the k vectors for all

involved optical fields , Mrad/m

31 #[1,0,0] is the dimension term , we in our case consider only 1-D doppler

broadening.

32 vP = np.sqrt (2*1.38e -23*(100.5+273.15) /1.44e-25) # thermal speed , m/s

33 "Define Constans"

34 hbar = 1.0546e-34;#hbar number

35 e0 = 8.8542e-12;#permeability;

36 c = 299792458;#speed of light;

37 w_D1 = 377106120801483.6875;#D1 Transition

38 w_5S6S = c/((1/20132.5158) *1e-2);#5S F=3 to 6S F=3, centeriud wavelength.

39 w_6S = w_5S6S -w_D1;#6S

40 Dmoment_D1 = 2.5377e-29;#D1 transition dipole moment , C.m

41 Dmoment_IR = 2.4694e-29;#IR dipole moment

42

43

44 d_PUMP = 280*1#D2 detuning , from F ’=4
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45 IR_Pump = 800*1#IR detuning , from F ’=3

46 IRPUMPON = 0.7*1#turning on/off/modify IR pump. By default this is 1 to

match experimental conditions

47 D2PUMPON = 1.0*1#turning on/off/modify D2 pump. By default this is 0.7 to

match experimental conditions

48 couple = {’states ’:(2 ,6), ’rabi_frequency ’:3200* np.sqrt (1/1)*IRPUMPON ,’kvec

’:vP*kc, ’detuning ’: (IR_Pump)*2*np.pi*1}

49 couple1 = {’states ’:(3 ,5), ’rabi_frequency ’:3200* np.sqrt (5/9)*IRPUMPON ,’

kvec’:vP*kc, ’detuning ’: (IR_Pump +717 -120) *2*np.pi*1}

50 couple2 = {’states ’:(4 ,5), ’rabi_frequency ’:3200* np.sqrt (2/9)*IRPUMPON ,’

kvec’:vP*kc, ’detuning ’: (IR_Pump +717 -180) *2*np.pi*1}

51 couple3 = {’states ’:(3 ,6), ’rabi_frequency ’:3200* np.sqrt (4/9)*IRPUMPON ,’

kvec’:vP*kc, ’detuning ’: (IR_Pump -120) *2*np.pi*1}

52 couple4 = {’states ’:(4 ,6), ’rabi_frequency ’:3200* np.sqrt (7/9)*IRPUMPON ,’

kvec’:vP*kc, ’detuning ’: (IR_Pump -180) *2*np.pi*1}#IR Pump coupling (5P3

/2->6S)

53 #

54 dress1 = {’states ’:(1,2), ’rabi_frequency ’:4800*1.0* np.sqrt (9/14)*D2PUMPON

, ’kvec’:vP*kd, ’detuning ’:-d_PUMP *2*np.pi*1}

55 dress2 = {’states ’:(1,3), ’rabi_frequency ’:4800*1.0* np.sqrt (5/18)*D2PUMPON

, ’kvec’:vP*kd, ’detuning ’:-(d_PUMP -120) *2*np.pi*1}

56 dress3 = {’states ’:(1,4), ’rabi_frequency ’:4800*1.0* np.sqrt (5/63)*D2PUMPON

, ’kvec’:vP*kd, ’detuning ’:-(d_PUMP -180) *2*np.pi*1}#D2 pump coupling (5S

->5P3/2)

57 ##

58 #ladder 3

59 probe1 = {’states ’:(1 ,7), ’rabi_frequency ’:Probe_Input*np.sqrt (5/9), ’kvec’

:vP*kp ,’detuning ’: 0,’phase’:0}#D1,F=3 ->F ’=2

60 probe2 = {’states ’:(1 ,8), ’rabi_frequency ’:Probe_Input*np.sqrt (4/9),’kvec’:

vP*kp, ’detuning ’: 0,’phase’:0}#D1 ,F=3 ->F ’=3

61 stokes1 = {’states ’:(7 ,5), ’rabi_frequency ’:1*2/9 ,’kvec’:vP*ks, ’detuning ’:

0,’phase’:0}

62 stokes2 = {’states ’:(8 ,5), ’rabi_frequency ’:1*5/9 ,’kvec’:vP*ks, ’detuning ’:

0,’phase’:0}
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63 stokes11 = {’states ’:(7,6), ’rabi_frequency ’:1*7/9 ,’kvec’:vP*ks , ’detuning ’

: 0,’phase ’:0}

64 stokes22 = {’states ’:(8,6), ’rabi_frequency ’:1*4/9 ,’kvec’:vP*ks , ’detuning ’

: 0,’phase ’:0}

65 #ground ladder

66 ground = {’states ’:(0 ,1), ’rabi_frequency ’:0,’kvec’:vP*kd, ’detuning ’: 0,’

phase’:0}#F=2 state ground state

67

68 #Define levels

69 n = 9

70 sensor = rq.Sensor(n)

71 #Define decoherence terms , assuming equal branching ratio

72 #Double -Ladder Origin

73 sensor.add_decoherence ((2 ,1), 2*np.pi *(6+1/2*0))

74 sensor.add_decoherence ((2 ,0), 2*np.pi *(0+1/2/ np.pi))

75 sensor.add_decoherence ((3 ,1), 2*np.pi *(6*1/2+1/2*0))

76 sensor.add_decoherence ((3 ,0), 2*np.pi *(6*1/2+1/2/ np.pi))

77 sensor.add_decoherence ((4 ,1), 2*np.pi *(6*1/2+1/2*0))

78 sensor.add_decoherence ((4 ,0), 2*np.pi *(6*1/2+1/2/ np.pi))

79 ##hyperfine D1

80 sensor.add_decoherence ((7 ,1), 2*np.pi *(5.75*1/2+1/2*0))

81 sensor.add_decoherence ((7 ,0), 2*np.pi *(5.75*1/2+1/2/ np.pi))

82 sensor.add_decoherence ((8 ,1), 2*np.pi *(5.75*1/2+1/2*0))

83 sensor.add_decoherence ((8 ,0), 2*np.pi *(5.75*1/2+1/2/ np.pi))

84 ##ground population state exchange

85 sensor.add_decoherence ((0 ,1), 2*np.pi *0.56)

86 sensor.add_decoherence ((1 ,0), 2*np.pi*0)

87 ##6s decay down

88 sensor.add_decoherence ((5 ,3), 2*np.pi *3.5/4)

89 sensor.add_decoherence ((5 ,4), 2*np.pi *3.5/4)

90 sensor.add_decoherence ((5 ,7), 2*np.pi *3.5/4)

91 sensor.add_decoherence ((5 ,8), 2*np.pi *3.5/4)

92

93 sensor.add_decoherence ((6 ,2), 2*np.pi *3.5/5*1)
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94 sensor.add_decoherence ((6 ,3), 2*np.pi *3.5/5*1)

95 sensor.add_decoherence ((6 ,4), 2*np.pi *3.5/5*1)

96 sensor.add_decoherence ((6 ,7), 2*np.pi *3.5/5*1)

97 sensor.add_decoherence ((6 ,8), 2*np.pi *3.5/5*1)

98 ##

99 sensor.add_decoherence ((5 ,0), 2*np.pi *(1/2)/np.pi)

100 sensor.add_decoherence ((5 ,1), 2*np.pi *1/2*0)

101 sensor.add_decoherence ((6 ,0), 2*np.pi *1/2/ np.pi)

102 sensor.add_decoherence ((6 ,1), 2*np.pi *1/2*0)#Here we have only decaying

rate due to atomic movement

103 #transit broadening

104 sensor.add_couplings(couple ,couple1 ,couple2 ,couple3 ,couple4 ,dress1 ,dress2 ,

dress3 ,probe1 ,probe2 ,ground ,stokes1 ,stokes2 ,stokes11 ,stokes22)

105 rq.draw_diagram(sensor)#create the sensor object and draw level diagram

106

107

108 #%%

109 N = 5e18 *1.0#atomic density , in m^-3

110

111 fc = rq.atom_utils.calc_kappa (2*np.pi*377e12 , 2.5377e-29/np.sqrt (3),N)#

input are transition frequency(Hz), Dipole Moment (C.m), Atomic density

(should be in m^-3)

112 fs = rq.atom_utils.calc_kappa (2*np.pi*226e12 , 2.4694e-29/np.sqrt (3),N);#

113 #%%

114 k1324 = 2*np.pi/1324e-9

115 k795 = 2*np.pi/795e-9

116 def PropagationEq_2(t,y,t_prev0 , nD1_prev0 ,nIR_prev0 ,t_prev =[None],nD1_prev

=[None],nIR_prev =[None]):

117 ’’’

118 This is the main propagation function. The calculation solves the

signal fields

119 In terms of Rabi frequency with delta_k explicitly removed.

120 ’’’

121 probe1[’rabi_frequency ’] = y[0]*np.sqrt (5/9);#17,F=3-->F=2
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122 probe2[’rabi_frequency ’] = y[0]*np.sqrt (4/9); #18,F=3-->F=3

123 stokes1[’rabi_frequency ’] = y[1]*np.sqrt (2/9)*np.exp(-1j*dk1*t);#57, F

=3-->F=2

124 stokes2[’rabi_frequency ’] = y[1]*np.sqrt (5/9)*np.exp(-1j*dk2*t);#58, F

=2-->F=2

125 stokes11[’rabi_frequency ’] = y[1]*np.sqrt (7/9)*np.exp(-1j*dk1*t)*1;#67,

F=3-->F=3

126 stokes22[’rabi_frequency ’] = y[1]*np.sqrt (4/9)*np.exp(-1j*dk2*t)*1;#68,

F=2-->F=3

127 sensor.add_couplings(probe1 ,probe2 ,stokes1 ,stokes2 ,stokes11 ,stokes22);

128 s1 = rq.solve_steady_state(sensor ,doppler=True)

129 rho17 = get_rho_ij(s1.rho ,1,7);

130 rho18 = get_rho_ij(s1.rho ,1,8);

131 rho57 = get_rho_ij(s1.rho ,5,7)*np.exp(1j*dk1*t);

132 rho58 = get_rho_ij(s1.rho ,5,8)*np.exp(1j*dk2*t);

133 rho67 = get_rho_ij(s1.rho ,6,7)*np.exp(1j*dk1*t);

134 rho68 = get_rho_ij(s1.rho ,6,8)*np.exp(1j*dk2*t);#adding the phase terms

, before add_coupling

135 rho_IR = (1*2/9* rho57 +1*5/9* rho58 +1*7/9* rho67 +1*4/9* rho68 *1);

136 rho_D1 = (1*5/9* rho17 +1*4/9* rho18);

137 if t==0.0183:

138 print(’population00 ’,get_rho_ij(s1.rho ,0,0))

139 return [-1j*1e-6*fc*rho_D1 , 1j*1e-6*fs*rho_IR]#joint propagation

equation

140 #%%

141 intial_Condition = [Probe_Input +0j,0+0j]#initial condition , we seed only

probe channel here.

142 #%%

143 ’’’

144 Numerical ODE solving. Here by default we used z0= 0.0183

145 ’’’

146 ct = 1#set initial counter

147 z0 = 0.0183#effective cell length/propagation length , in m

148 repetition = np.linspace(0,size -1,size)
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149 Ssolution = np.zeros([2,size])#create set for probe

150 for k in repetition:

151 time_start= time.time()

152 if detunings[int(k)]<400:

153 print(detunings[int(k)])

154 dk1 = 3000*1

155 dk2 = 30*1#far -detuned dk approximation

156 else:

157 dk1 = 40*1

158 dk2 = 30*1#near resonance dk approximation

159 probe1[’detuning ’] = detunings[int(k)]*2*np.pi +180.791*2* np.pi;#17,F

=3-->F=2

160 probe2[’detuning ’] = detunings[int(k)]*2*np.pi -180.791*2* np.pi;#18,F

=3-->F=3

161 sensor.add_couplings(probe1 ,probe2);

162 DiffSol = sp.integrate.solve_ivp(PropagationEq_2 ,[0,z0],

intial_Condition ,args = (int (0),int (0),int(0)),method = ’RK45’)

163 Ysol = DiffSol.y;#full solution during propgation length

164 zz = DiffSol.t;

165 Solution_current = abs(Ysol[:,-1]);#the final solution at distance z

166 Ssolution[:,int(k)]= Solution_current;

167 time_elapsed = (time.time() - time_start)

168 print(time_elapsed ,’s’,ct ,’round’)

169 ct+=1

170 #%%

171 ’’’’Calculate the coversion ratio ’’’

172 def omega_to_n(omega ,dipole_moment ,Trans_freq ,V=1):

173 ’Using Scully Quantum Optics book definition ’

174 E_amp = omega*hbar/dipole_moment

175 n = e0*E_amp **2*V/2/ hbar/Trans_freq

176 return n

177 n_in = omega_to_n(abs(intial_Condition [0]),Dmoment_D1 ,w_D1)

178 n_out_probe = omega_to_n(abs(Ssolution [0 ,:]),Dmoment_D1 ,w_D1)

179 n_out_stokes = omega_to_n(abs(Ssolution [1 ,:]),Dmoment_IR ,w_6S)
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180 G_probe = n_out_probe/n_in

181 G_stokes =n_out_stokes/n_in#the nonlinear gain in terms of G_P/C

182 #%%

183 ’’’

184 Plot the gain spectra

185 ’’’

186 loss_ratio= 0.85#correction for the detector quantum efficiency/loss rate

on opics

187

188 fig , ax = plt.subplots(figsize =(8 ,6))

189 ax.plot(detunings , G_probe , label="G_P")

190 ax.set_xlim ([ -1250 ,1250])

191 ax.plot(detunings , G_stokes*loss_ratio , label="G_C")

192 ax.set_xlabel("Coupling Laser Detuning (MHz)")

193 ax.set_ylabel("G_{P/C}")

194 ax.legend ()

157



Appendix C

Circular binning variance Calculation

C.1 Calculation of Normalized Variance

In Eq. (5.1), order of intra-mode and intermode interferences can be exchanged (i.e.

Û2Û1B̂12 = B̂12Û2Û1). Using this, along with cyclic property of trace, Eq. (1) can be

written as:

V (x⃗) =Tr

[
B̂†

12

(
N̂1(x⃗)− N̂2(x⃗)

)2
B̂12Û2(x⃗)

ˆ̃U1(x⃗)

D̂2(α) |0⟩⟨0| ρ̂1D̂†
2(α)

ˆ̃U †
1(x⃗)Û

†
2(x⃗)

]
(C.1)

where ˆ̃U1(x⃗) = Û1(x⃗) · T̂1(x⃗). For any unitary operators P̂ and Q̂,

P̂ †Q̂P̂ → P−1Q̂

P̂ †Q̂†P̂ → (P−1)∗Q̂†, (C.2)

with P−1 being the inverse of the matrix representation of P̂ . This leads to,

B̂†
12

(
N̂1(x⃗)− N̂2(x⃗)

)2
B̂12 = â†1â1 + â†2â2 + 2â†1â1â

†
2â2 − â21â

†2
2 − â22â

†2
1 (C.3)
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And Eq. (C.1) yields:

V (x⃗) = |U2(x⃗)|2 |α|2 + ⟨n̂th⟩
∣∣∣Ũ1(x⃗)

∣∣∣2+ (C.4)

+ 2 ⟨n̂th⟩ |α|2 |U2(x⃗)|2
∣∣∣Ũ1(x⃗)

∣∣∣2 . (C.5)

Using intensity of the local oscillator for normalization and by neglecting O
(
|α|−2

)
terms,

normalized variance is:

V (x⃗) = 1 + 2 ⟨n̂th⟩
∣∣∣Ũ1(x⃗)

∣∣∣2 . (C.6)

C.2 Cirucular Binning

In a CCD camera, each pixel acts as an independent detector, collecting only the light

falling on its surface. Since the mode size of thermal field is much larger than the pixel size

(13 µm×13µm), the average number of photons per pixel ⟨n⟩pxl is proportionally small, and

the variance value is close to one, making it hard to distinguish from the coherent vacuum.

To improve the sensitivity of our measurements, we group pixels together to effectively

increase their cumulative detection area. In our binning protocol, individual photon count

of each pixel at x⃗ is replaced by the sum of photon counts of all the neighbouring pixels

within a binning radius, R. Binning improves the SNR but at the cost of reduced spatial

resolution.

VR(x⃗) =Tr

[
ˆ̃U †
1(x⃗)D̂

†
2(α)Û

†
2(x⃗)B̂

†
12

∑
x⃗′

(
N̂1(x⃗

′
)− N̂2(x⃗

′
)
)2

(C.7)

B̂12Û2(x⃗
′
)D̂2(α)

ˆ̃U1(x⃗
′
)|0⟩⟨0|ρ̂1

]
.
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Central sum of the previous equation can be written as a product of two terms,

〈∑
x⃗′

N̂1(x⃗
′
)− N̂2(x⃗

′
)

2〉
=
∑
x⃗′

〈(
N̂1(x⃗

′
)− N̂2(x⃗

′
)
)2〉

(C.8)

+
∑
x⃗′

∑
x⃗′′ ̸=x⃗′

〈(
N̂1(x⃗

′
)− N̂2(x⃗

′
)
)(

N̂2(x⃗
′′
)− N̂2(x⃗

′′
)
)〉

,

in which the first term is already evaluated in Eq. (C.5) and the second term can be

evaluated using Eq. (C.2), to get the binned variance:

VR(x⃗) = |α|2
∑
x⃗
′

∣∣∣U2(x⃗
′
)
∣∣∣2(1 + 2 ⟨n̂th⟩

∣∣∣Ũ1(x⃗
′
)
∣∣∣2) (C.9)

+ 2 ⟨n̂th⟩ |α|2
∣∣∣∣∣∣
∑
x⃗′

U∗
2 (x⃗

′
)Ũ1(x⃗

′
)

∣∣∣∣∣∣
2

−
∑
x⃗′

∣∣∣U∗
2 (x⃗

′
)Ũ1(x⃗

′
)
∣∣∣2
 .

T1 matrix is written as a diagonal matrix with entries being 0’s (1’s) representing the

presence (absence) of the opaque part of the object. Mode matching between probe and

LO allows us to write Ũ1(x⃗) = T1(x⃗) · U2(x⃗). With this, expression for binned normalized

variance simplifies to

VR(x⃗) = 1 + 2 ⟨n̂th⟩

(∑
x⃗′ T1(x⃗

′
)
∣∣∣U2(x⃗

′
)
∣∣∣2)2

∑
x⃗′ |U2(x⃗

′)|2
. (C.10)
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