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Abstract

Magnetometers with high precision and accuracy have wide applications across

various areas. We are developing an atomic magnetometer based on nonlinear magneto-

optical rotation (NMOR). The magnetometer measures the polarization rotation of a

light field, which is proportional to the magnetic field strength. However, such a mag-

netometer usually has a limited operation range and stops working for fields stronger

than the Earth’s magnetic field. To overcome this shortage, we implement frequency

and amplitude modulation that induces side frequencies in the Fourier space which

allows us to measure strong magnetic fields, up to 200 mG. We have achieved 60 pT

sensitivity for the zero resonance using a quarter-waveplate and compensation coils.

We further optimize the sensitivity of the side resonance to the nT level by separating

the probe and pump beam. We finally generate a squeezed pump beam using polar-

ization self-rotation and observe a noise reduction below the shot-noise-limit, which

leads to a factor of two improvement on the SNR.



Chapter 1

Introduction

As any charged or magnetic object is affected by a magnetic field, magnetome-

ters have wide applications across many areas. In geophysics, they are commonly used

to map a large range of geologic maps by detecting the differences in the earth’s mag-

netic field caused by the differing nature of rocks. Alternatively, in medical treatment,

magnetometers offer attractive non-invasive diagnostics to ECG or electroencephalo-

graphs. They can also be used to detect submarines or unexploded landmines for

military purposes. Most importantly, high precision magnetometer could be used in

metrology to test scientific theories.

There are two types of magnetometers: vector magnetometers that measure the

vector components of a magnetic field and scalar magnetometers that measure only

the magnitude of the magnetic field. Each type can be further divided into subcate-

gories, and the optical Faraday rotation magnetometer, in which the strength of the

magnetic field results in the rotation of the light polarization, is one of the scalar

magnetometers. It can have sensitivity as high as femto Tesla (10−15T) level while

typical magnetometers of other types have sensitivity ranges from sub-fT to pT. One

unique advantage of the Faraday rotation magnetometer is that we are able to image

a spatially-inhomogeneous magnetic field by recording the spatial change of the po-

larization. This is particularly useful in the quantum tracker project where we want
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to trace the trajectories of electrons or other charged particles after they scatter.

An optical Faraday rotation magnetometer has already been built with great pre-

cision at 10 fT sensitivity level [1]. However, such a magnetometer has a poor range of

operation in that it only measures extremely small magnetic fields about nT around

zero. For many practical usages of the magnetometer such as the particle detector, we

will need a larger operation range, up to the 10 µT level, while still keeping sufficiently

high sensitivity.

Previously, we developed an atomic magnetometer based on nonlinear magneto-

optical rotation (NMOR) in my junior research. We used an amplitude modulated

laser interacting with a 87Rb vapor inside a glass cell at room temperature that induces

side resonances at strong magnetic fields [2]. We achieved an operation range at the

10µT level with 0.5nT sensitivity.

We divide our experiments into two parts. In the first part, we further improve

the performance of the magnetometer until it is limited by the shot-noise. We use a

frequency-modulated laser since our detection system is very sensitive to amplitude

change. We also separate the probe and pump beam to eliminate the residual signal

caused by the spurious amplitude modulation. We confirm that our signal is indeed

shot-noise-limited (SNL) by analyzing the noise composition. In the second part, we

implement a squeezed state of light to the probe beam which allows us to surpass the

noise level below the shot noise.

This paper is structured as follows. We discuss the theoretical background for

the Faraday rotation, the core physics phenomenon we used to measure the magnetic

field, in section II. In sections III and IV, we present the setup and results using a

frequency-modulated laser and two beams respectively. We confirm that our signal is

optimized to the SNL regime by these classical techniques. In section V, we introduce

the quantum electrodynamics (QED) and particularly the squeezed state of light. In
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section VI, we implement a squeezed probe beam and show the noise reduction below

the shot noise. Finally, in section VII, we conclude the experiment and discuss future

work that could be done in this direction.
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Chapter 2

Faraday Rotation

Figure 2.1: The incident light is linearly
polarized. Its polarization is rotated by an-
gle β after passing through a Rb vapor cell.
d is the length of the medium and ν is the
Verdant constant of the medium.

Faraday rotation is a physical phe-

nomenon in which a linearly polarized

light is sent through a medium and con-

sequently the polarization of the light

rotates at an angle that is proportional

to the magnetic field strength applied

to that medium. Hence, by measuring

the rotation angle, we could calculate the

magnetic field (Fig 2.1).

In this section, we will give a full de-

scription of the Zeeman effect, electro-

magnetically induced transparency, and

eventually the Faraday effect.

2.1 Zeeman Effect

The Zeeman effect is the effect of splitting degenerate energy levels of atoms in

the presence of a magnetic field. The Hamiltonian H of atoms in the presence of an
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external magnetic field Bext is

Ĥ = Ĥ0 + Ĥz (2.1)

where Ĥ0 is the unperturbed atomic Hamiltonian and

Ĥz = −µ⃗ · B⃗ext. (2.2)

µ⃗ is the magnetic moment of the atom, which can be obtained by

µ⃗ = −µB(glL⃗+ gsS⃗)

h̄
(2.3)

with µB being the Bohr magneton. L⃗ and S⃗ are the orbital and spin angular momen-

tum with gl, gs their respectively gyromagnetic ratios.

If we have a relatively weak external magnetic field Bext and the spin-orbit interac-

tion dominates over the effect of Bext, we could treat Hz as a perturbing Hamiltonian.

Using perturbation theory, one may find that the Zeeman correction to the energy

Ez is

Ez = ⟨nljmj|Hz|nljmj⟩ = µBgjBextmj (2.4)

where gj is the Landé g-factor and n, l, j,mj label quantum numbers for energy level,

angular momentum, total angular momentum, and projection of total angular mo-

mentum [3]. Hence, we can see that the degenerate energy levels of different mj split

by an amount proportional to the external magnetic field Bext.

2.2 Light Polarization

For now, we use a classical plane wave to approximate our laser. Suppose the

wave traverses in the ẑ direction, then planar traveling wave solutions of the Maxwell’s

equations are given by

E⃗(z, t) = Exe
ikz−iwtx̂+ Eye

ikz−iwtŷ (2.5)
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where Ex, Ey are complex scalars that specify components of the electric field E⃗ in

x̂, ŷ directions.

The polarization indicates the direction of the oscillation of E⃗(z, t). A linear

polarization means that the E⃗(z, t) only oscillates in one direction, that is, either

Ex or Ey is zero. Meanwhile, a circular polarization means that the electric field is

continuously changing between x̂ and ŷ (Fig 2.2). For any linearly polarized light, we

can decompose it into one clockwise and one counter-clockwise circular component.

Now, there are two requirements for light to excite an electron from one state to

another. First, the frequency of the light must match or be close to the energy differ-

ence between these two states, known as the Rabi frequency Ω. We use detuning ∆

to represent the frequency difference between the light and Ω. Second, the transition

dipole moment of these two states determines the required polarization of the light.

Usually, the transitions from mj = ±1 ground state to the excited state need circu-

larly polarized light. If these two circular components σ± match the energy difference

between the excited state and two ground states, that is, the detuning ∆ = 0, we can

represent this using a simplified three-level system (Fig 2.3).

Figure 2.2: A counterclockwise circu-
larly polarized light is viewed from the
receiver.

Figure 2.3: Solid lines represent the
degenerate energy level without mag-
netic field and dashed states means
split energy level caused by Zeeman ef-
fect. σ± corresponds to left and right
circularly polarized light components.
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Polarization Detection

Since a change of polarization does not affect the intensity of the light, we cannot

simply use a photodiode to detect the polarization of light. A common approach to

polarization detection requires a polarizing beam splitter (PBS) which separates the

light into vertical and horizontal polarized components. Measuring the intensity of

individual components and the difference between them gives us the polarization

rotation angle.

2.3 Electromagnetically Induced Transparency

We combine our laser and atoms in this subsection. We consider the same

three-level system as an approximation of our atoms. We send a linearly polarized

light through the atomic vapor and its two circular components are resonant with

two atomic absorptions. Naively, one may think that majority of the light would be

absorbed as both of them are close to the energy difference. However, with this specific

three-level ladder configuration, there is a solution named a ”dark state” where an

atom cannot absorb or emit photons, so this atomic vapor becomes transparent to

the laser; this is known as electromagnetically induced transparency (EIT).

While the EIT changes atomic absorption corresponding to the imaginary part of

the electric susceptibility χ, we are more interested in the change of the refractive

index, the real part of χ. We now use a density matrix to find out the change in the

susceptibility χ. Label mj = ±1 states as states 1,2, σ∓ as electric field 1,2 and the

excited state as state 3. The density matrix of a three level system is given by

ρ =

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 . (2.6)

Using the slow rotation wave approximation, the Hamiltonian of the three-level sys-
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tem can be written as

HRWA =

−h̄∆1 0 −h̄Ω∗
1

0 −h̄∆2 −h̄Ω∗
2

−h̄Ω1 −h̄Ω2 0

 (2.7)

where ∆i represent the detuning between the electric field i and the state i, and Ωi

is the Rabi frequency for field i. In our specific scenario, two incident fields are two

circular components of a linearly polarized field, that is, |Ω1| = |Ω2| = |Ω|. If both

detuning ∆1 = ∆2 = 0, we have an eigenstate of the Hamiltonian, the dark state,

given by

|D⟩ = 1√
|Ω1|2 + |Ω2|2

(Ω2|1⟩ − Ω1|2⟩) (2.8)

and we know the probability density ρ11 = ρ22 =
1
2
in this case.

Notice that for our atomic magnetometer, we have a magnetic field B that evenly

splits mj = ±1 degenerate states, then we get ∆1,2 = ±µgjB and δ = ∆1 − ∆2 =

2µgjB (Sec. 2.1). Since we are only interested in the linear susceptibility χ of two

incident fields, which is related to ρ31, ρ32, we may assume that ρ11 = ρ22 =
1
2
in the

steady state solution for simplification. Applying the Maxwell-Bloch equations

ih̄
∂ρ

∂t
= [H, ρ] +

1

2
{Γ, ρ} (2.9)

where ρ is the density matrix and we artificially add terms related to decoherence Γ

instead of commuting the anti-commutator. In the steady state solution, we find ρ31

and ρ32 as

ρ31 =
iΩ1

γ

[
1

2
− |Ω|2

γ(γ′ − iδ) + 2|Ω|2

]
, (2.10)

ρ32 =
iΩ2

γ

[
1

2
− |Ω|2

γ(γ′ + iδ) + 2|Ω|2

]
. (2.11)

where γ, γ′ are decay of the excited state and collisional decoherence between two

ground states respectively. This gives us the susceptibility

χ1 =
P 2
13

h̄ϵ0

ρ31
Ω1

and χ2 =
P 2
23

h̄ϵ0

ρ32
Ω2

(2.12)
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where Pab is the transition dipole moment and ϵ0 is the vacuum permittivity [4]. The

refractive indices are related by n = 1 +Re(χ)/2, so we find

n1 = 1 +
P 2
13

4ϵ0h̄γ

δ · 2|Ω|2/γ
(γ′ + 2|Ω|2/γ)2 + δ2

, (2.13)

n2 = 1− P 2
23

4ϵ0h̄γ

δ · 2|Ω|2/γ
(γ′ + 2|Ω|2/γ)2 + δ2

. (2.14)

Hence, we see that the two fields have the opposite change in the refractive indices

(Fig. 2.4).

Figure 2.4: The x-axis is the detuning δ and the y-axis is the refractive indexes n.

Since two circular components of the laser traverse the atomic vapor with different

velocities, when we combine them at the exit into a linearly polarized laser, the

polarization rotates at an angle β that is given by

β = π(n1 − n2)
d

λ
(2.15)

where λ is the wavelength of the light. This is exactly the Faraday rotation and by

measuring the rotation angle β, we are able to measure the magnetic field strength.

However, if the Zeeman splitting becomes too large in a very strong magnetic field,

the laser frequencies are no longer in a two-photon resonance with the corresponding

atomic levels, and the approximations we made in the calculations are no longer valid.

The refractive indices would not be magnetic-field dependent for a strong magnetic

field, which limits our range of operation.

9



2.4 Amplitude Modulation and Frequency Modu-

lation

In order to increase the narrow operation range, we use amplitude modulation

(AM) which induces frequency sidebands and side resonances. AM continuously

changes the amplitude of our signal with modulation frequency fm (Fig. 2.5). Suppose

the original signal, the carrier c(t) = Ac sin (2πfct), is a sine wave and the modulation

signal, the messenger m(t) = Am cos (2πfmt+ ϕ), is a cosine wave, the modulated

signal y(t) is given by

y(t) =

[
1 +

m(t)

Ac

]
c(t). (2.16)

Using trigonometry identities, one may simplify Eq. 2.16 to a sum of three sine waves

as

y(t) = c(t) +
1

2
Am{sin [2π(fc + fm) + ϕ] + sin [2π(fc − fm)− ϕ]} (2.17)

where the latter two terms are sidebands of the modulated signal (Fig. 2.6). Hence,

for an amplitude modulated laser, we get an AM signal with side-bands fm away from

its original frequency ω0.

Figure 2.5: The red signal is a sine
carrier signal with frequency fc and
amplitude Ac while the blue signal is
the modulated signal with original fre-
quency fm.

Figure 2.6: Two side frequencies of
fc − fm and fc + fm emerge as the re-
sult of the amplitude modulation.

Another modulation technique we used is the frequency modulation (FM) which
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induces frequency sidebands and side resonances similar to AM. For a sinusoidal mod-

ulating signal fm(t) = Am cos (wmt) with amplitude Am and modulation frequency

wm, the phase angle θ of the FM signal is given by

θ = ω0t+ h sin (ωmt) (2.18)

where ω0 is the original frequency and h is the modulation index. We can expand the

FM signal y(t) into its Fourier series, that is,

y(t) = Re(Aeiω0teih sinωmt) (2.19)

= Re(Aeiω0t

∞∑
n=−∞

Jn(h)e
inωmt) (2.20)

= A
∞∑

n=−∞

Jn(h) cos (ω0 + nωm)t (2.21)

for some amplitude A while Jn(h) is the Bessel function of the first kind of order n.

We can see that the FM signal has side-bands nωm away from its original frequency

ω0. We will only consider the n = 1 side-bands here, as side-bands with higher n

have much smaller amplitude.

Consider the simplified three-level system in the previous subsection with a mod-

ulated signal. While we have the Zeeman shift caused by an external magnetic field,

we also have side-bands induced by the AM or FM (Fig. 2.7). If these side-bands of

our laser come near to shifted energy levels, we have the exact condition for EIT as

discussed above. Again, we have the Faraday rotation which is proportional to the

external magnetic field since the detuning of the incident field is small in this case.

Therefore, by measuring the modulation frequency for which side resonances occur,

we could calculate the unknown magnetic field much larger than zero.

Although AM and FM seem to both yield side resonances that allow us to mea-

sure strong magnetic fields, they have subtle differences when implemented in our

11



Figure 2.7: The original frequency of the light is shown in solid lines and sidebands
are shown with dashed lines. These side-bands, generated by the AM or FM, prompt
Faraday rotation as well, resulting in side peaks in the signal.

experiments [2]. Since we rely on the intensity measurement of the vertical and hor-

izontal polarized component of light to find its polarization rotation angle, we are

extremely susceptible to the intensity fluctuation and the constant intensity change

brought by AM. On the other hand, an internally frequency-modulated light has a

spurious amplitude modulation because the laser cavity has different gains for dif-

ferent frequencies. Hence, each modulation technique has its limitation, and we will

discuss how to overcome these problems in later sections.
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Chapter 3

Single Coherent Beam

Figure 3.1: The laser is internally frequency modulated in this one beam setup.

The first experiment we conduct only uses one coherent laser beam. A schematic

of the apparatus is presented below in Fig. 3.1. We use a frequency-modulated diode

laser as our light source. We first pass it through a Faraday isolator that prevents

any reflected light. The laser beam is then split into two parts and a half-waveplate

is used to control the splitting ratio.

The first part of the laser beam is sent into a spectroscope and an interferometer

to monitor the status of our laser. The saturated spectroscopy precisely marks the
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absorption frequency of 87Rb atoms, the medium of the diode laser. It is especially

helpful if we need to lock the frequency of the laser to transition frequencies or near

them while it could also indicate whether we have a mode jump in the medium of the

laser. Next, we use a Fabry–Pérot interferometer to determine the mode of the laser.

Ideally, we want the laser to have only one mode corresponding to the evenly spaced

sharp signal of the interferometer. After we implement the FM, they become evenly

spaced wiggling signals and we maximize the height to optimize the performance of

the laser. A graph of signals of the saturated spectroscopy and the Fabry–Pérot

interferometer is shown in Fig. 3.2.

Figure 3.2: Typical signals of the saturated spectroscopy (yellow line) and the
Fabry–Pérot interferometer (blue line). The right three yellow peaks represent
F = 2 → F ′ = 2, cross-over, and F = 2 → F ′ = 1 transitions of 87Rb. Blue
peaks are evenly spaced as references.

We pass the second part of the laser through a single-mode optical fiber that puts

constraints on the spatial mode of the laser. Then we control the power using a

have-waveplate and a linear polarizer. We use a beam expander that increases the

size of the laser to maximize interaction between the laser and vapor atoms and the

14



rotation angle response. After adjusting the power and beam size, the laser passes

through a 87Rb vapor cell with magnetic shielding. We investigate both F = 2 to

F ′ = 1, F ′ = 2 transitions of 87Rb. We find that the 2 → 1 transition has a stronger

response and better sensitivity than the 2 → 2 transitions. Inside the shielding, we

use a Helmholtz coil to simulate a uniform parallel magnetic field and a heater to

increase the vapor density. Furthermore, there are two sets of compensation coils to

reduce the small inhomogeneous part of the magnetic field.

For the laser light emerging from the cell, we use a quarter-waveplate to balance

the offset in our signal caused by the spurious AM. This offset might also come

from the residual circular component of the polarization caused by polarization self

rotation. We rotate the linear polarization using a half-waveplate to calibrate the zero

of the magnetometer so that there is no polarization rotation for a zero magnetic field.

Finally, we use a beam splitter whose splitting ratio depends on the polarization, and

measure the signal difference between the two channels of the beam splitter. The

difference signal is proportional to the polarization rotation angle and therefore to

the magnetic field strength.

Since we modulated the laser, we use both a lock-in amplifier and a spectrum

analyzer to analyze the strength of the response and the sensitivity. Using a lock-in

amplifier, we are able to observe side resonance peaks that allow us to measure the

magnetic field away from zero (Fig. 3.3) which agrees with our theory in the previous

section. Since the position of the side resonance is proportional to the modulation

frequency, we can shift this peak to an arbitrary position and use it to get highly

sensitive magnetic field measurements.

Next, we present the problem with this setup and the corresponding improvement

we made to solve it.
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Figure 3.3: We sweep the parallel B field for different modulation frequencies in a
shielded environment. The out-of-phase component of the signal is presented. The
positions of the side peaks are proportional to the modulation frequencies.

3.1 Compensation Coils

To measure a strong magnetic field away from zero, the side resonances are

essential and determine the sensitivity of our measurements. However, we find that

the side resonances have significantly worse sensitivity than the zero resonance, which

is not predicted by our model. This low performance of side resonances partly results

from the inhomogeneity of the magnetic field. While the Helmholtz coil only produces

a highly homogeneous magnetic field near its center, the vapor cell has a certain length

so its tail experiences a magnetic field gradient that detriments our sensitivity. For

a weak magnetic field that induces the zero resonance, the gradient is small and we

don’t observe this effect. However, as side resonances require a strong magnetic field,

we suffer from this magnetic field gradient.

We use two compensation coils on both sides of our vapor cell to reduce this

effect. To achieve the best compensation, we use a voltage divider to keep a constant

ratio between the current of the main coils and side coils (Fig. 3.4). The optimal

ration is determined based on the strength of side resonances. We see a significant

improvement in side resonances after we implement compensation coils.
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Figure 3.4: The schematics for the voltage divider. We use Rc to control the splitting
ratio. Rm is the main coil and Rs1, Rs2 are side coils. Resistances values are approx-
imated and not exact.

3.2 Calibration

We use both a lock-in amplifier and a spectrum analyzer to process our data.

When we sweep the external magnetic field, only the lock-in amplifier recovers the

modulated signal. On the other hand, we use the spectrum analyzer to calculate the

sensitivity for a DC magnetic field as it yields more precise measurements.

Since we control the Helmholtz coil using a function generator, we have to first

calibrate the scale between the voltage of the function generator and the magnetic

field strength. We use the lock-in amplifier to find the peak position for a sweeping

magnetic field. From the Zeeman effect, we calculated that 0.7 mG of the magnetic

field corresponds to 1 kHz of the modulation frequency. We can also find the particular

voltage associated with each peak using the recorded time. Eventually, we use linear

regression to find the conversion between magnetic field B(mG) and voltage V (V ),

and it is given by

B = 280.7V − 21.4 (3.1)

with the fitting score R2 of 0.99999. We see a strong linear relationship between B

and V as we use the Helmholtz coil to generate the magnetic field. Notice there is a

small negative intercept indicating that we may need a threshold voltage to generate
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side peaks. Hence, for a small magnetic field near the zero resonance, we should

ignore the intercept and only use the slope to calculate the magnetic field.

3.3 Sensitivity

We estimate the sensitivity using a spectrum analyzer with a DC magnetic

field as it yields the best precision. We fine-tune the quarter-waveplate and the half-

waveplate such that we have a minimal high-frequency response when there is no

magnetic field. Then we calculate the signal to noise ratio (SNR) as

SNR =
(ψs − ψ0)

2

ψ2
n

RBW (3.2)

where RBW is the resolution bandwidth of the spectrum analyzer and ψs, ψ0, ψn are

responses for the signal, offset, and noise respective [5]. The sensitivity is given by

S =
δB

SNR
(3.3)

where δB is the magnetic field producing the signal.

For the zero resonance, we get ψs = −74 dBm, ψ0 = −98 dBm, and ψn = −108

dBm for a small magnetic field δB = 0.2807 mG and the power of the laser is 3

mW. The corresponding sensitivity is S = 59.78 pT. Therefore, using only quarter-

waveplate and compensation coils, we have already significantly improved the sensi-

tivity from previous sub-nT level for a laser with 0.2 mW power to now the pT level

for a laser with 3 mW power.

Our next step is to investigate the sensitivity of side resonances, which are ex-

pected to have a similar order of magnitude as the zero resonance. Furthermore, the

use of a quarter-waveplate to balance the offset in our signal is only a contemporary

solution that does not fix the source of this offset directly and the modulated beam

still cannot be balanced perfectly. We now aim to develop a two-beam configuration

to sidestep this problem before the implementation of a squeezed state of lights.
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Chapter 4

Two Coherent Beam

Figure 4.1: The laser is not internally frequency modulated. A dashed line represents
an amplitude modulated laser while a solid line means unmodulated light.

In this improved experiment, we split the laser into two beams and send them

both through the Rb cell (Fig. 4.1). Our laser, in this case, is not internally fre-

quency modulated and is still a coherent light source. We keep all laser monitor
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components, i.e. saturated spectroscopy and Fabry-Perot interferometer, the same as

in the previous experiment.

The first change, compared to the single coherent configuration, is the PBS after

the optical fiber. One of the split beams, called the probe beam, is not modulated.

It passes through the Rb cell while its polarization rotates because of the Faraday

rotation. Then we measure the rotation angle using another PBS and two photodiodes

as discussed before. We use two additional lens to focus the probe beam such that

it is completely captured by the photodiodes. Finally, we can calculate the magnetic

field from the rotation angle. Notice that since the probe beam is not modulated, it

does not have any high frequency offset in the lock-in signal. Hence, we sidestep the

offset problem and use another split beam to induce side resonances.

The second beam, named the pump beam, is first focused after the PBS and

then amplitude modulated by an acousto-optic modulator (AOM). An oscillating

electric signal drives sound waves in the AOM, which are effectively periodic expansion

and compression planes which therefore changes the refractive index, so parts of the

incident light diffract with a modulated amplitude. The pump beam also passes

through the Rb cell but with an angle to the probe beam such that it is blocked by

an iris before the detection. While we do not directly observe the pump beam as it

will cause an offset in the lock-in signal, the pump beam prepares these Rb atoms

into the dark state. Since the pump beam is amplitude modulated, it could interact

with energy levels shifted by the Zeeman effect and changes the refractive indexes for

two circular components of the probe beam as well. As the result, although the probe

beam by itself cannot see Zeeman shifted energy levels, its polarization still rotates

when the induced frequencies of the pump beam coincide with transition energies of

shifted energy levels.

We take a few steps to check the alignment of two beams. When we block the

20



probe beam, we see no lock-in signal meaning that the pump beam is properly blocked

by the iris. If we block the pump beam, we get zero signal as expected since the probe

beam is not modulated. Lastly, we check that the signal is zero for a zero magnetic

field indicating that we have no offset.

The data processing is done similarly to the single beam configuration using a

lock-in amplifier and a spectrum analyzer.

4.1 Noise Composition Analysis

As we aim to implement squeezing to our probe beam that would increase our

sensitivity only if our signal is SNL, we conduct a noise composition analysis. The

noise N consists of two terms, the electronic noise and the shot noise, given by

N = A+B · P (4.1)

where B is a factor affected by lock-in amplifier gain, and P is the laser power, A is

the electronic noise or the dark noise, and B · P is the shot noise which scales with

the laser power.

Ideally, A is constant noise from photodiodes and the spectrum analyzer. However,

when we amplify the optical signal using the lock-in amplifier, we are also amplifying

its electronic noise while the lock-in amplifier may have different electronic noises for

different gains. Hence, we first characterize the electronic noise for all gains of the

lock-in amplifier. We block the laser and record the constant signal for each gain

using an oscilloscope to get its Fourier spectrum (Fig. 4.2). We find that the lock-in

amplifier has small electronic noise for V = 30 mV, and 1 mV as these noise levels

do not scale up with the gain. As V = 1 mV saturates the lock-in amplifier quickly

for a small laser signal, we further investigate the noise composition for V = 30 mV

and 10 mV gains.
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To determine whether the electronic noise or the shot noise dominates our signal,

we look at the SNR. If our signal is limited by constant electronic noise, we can always

amplify it to get a better SNR. Hence, we increase the gain and measure how the SNR

scales with it. If the SNR is unchanged while we increase the lock-in amplifier gain,

we may conclude it is in the SNL regime. Again, we Fourier transform our signals

while the laser is unblocked. We find that our signal is SNL with V = 30 mV and

10mV gains which also returns the best SNR (Fig. 4.3).

Figure 4.2: The gain of the lock-in ampli-
fier is reciprocal of the voltage.

Figure 4.3: Larger gains than V=10mV
necessarily saturate our signal so they are
not measured.

4.2 Laser Power Optimization

This two beam setup introduces a few more parameters such as the pump power

and the light intersection angle than the previous experiment to optimize, so we need

to optimize the SNR of our signal in hyper-dimensional parameter space. We first

focus on the powers of the probe and pump beams since these two parameters are

easier to change and have major effects on our signal.

We set the modulation frequency to 400 kHz, corresponding to a side resonance

around 500mG while locking the laser frequency at the 2 → 1 transition. The mag-

netic field sweeps around the side resonance and we conduct a grid search that varies
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powers for both beams from 0.5 mW to 6 mW. We extrapolate a smooth curve from

the noisy signal to estimate the response slope (Fig. 4.4). Since the total power of

two beams has an upper limit of about 7 mW, the range of the pump power is limited

by the probe power. Notice the actual pump power is double the measured value

since the pump is amplitude modulated. We find that 1 mW probe power gives us

the strongest response and the slope is positively related to the pump power.

Figure 4.4: The slope is normalized and
only used for comparison between different
powers.

Notice that we used a large step in

the grid search as we need to cover a large

parameter space, so we decided to inves-

tigate more closely around the optimal

powers in the grid search. Also, instead

of using the response slope as the metric,

we perform a complete SNR analysis for

this refined measurement since different

powers may have different noise levels.

In this case, we take two stationary mag-

netic fields on the side resonance whose

difference is the signal. We get the noise

using Fourier transformation again. We set the pump power to 1.6 mW and vary the

probe power from 1.5 mW to 3 mW (Fig. 4.5). Although different probe powers have

similar SNR, we find the best SNR occurs at 1.75 mW while we suspect the measure-

ment for 2.75 mW probe power is an outlier and do not take it into consideration.

We repeat the process for the pump beam whose power ranges from 1.4 mW to 3.4

mW with a constant 1.75 mW probe beam (Fig. 4.6). The SNR seems to increase

with the probe power until it is limited by the laser output and we do not find a local

extremum for the pump power, so higher pump power may give an even better SNR.
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Figure 4.5: The SNR spectrum for probe
power ranges from 1.5 mW to 3 mW in
steps of 0.25 mW where the y-axis is unit-
less.

Figure 4.6: The SNR spectrum for pump
power ranges from 1.4 mW to 3.4 mW
where the y-axis is unitless.

4.3 Beam Configuration

After obtaining the optimal lock-in amplifier gain and laser beam powers, we

investigate the effect of beam intersection angle on our signal. Although the obvious

answer is that a smaller angle leads to a larger cross-area and a better SNR, it

is still worth checking quantitatively the differences between our signals caused by

different intersection angles because a larger intersection angle gives us a better spatial

resolution on the magnetic field.

We use two mirrors after the optical fiber that reflects the pump beam to control

the intersection angle. We record the separation distance between the probe and

pump beam when they hit the iris before detection in order to measure the angle.

We keep the modulation to be 400 kHz, the detuning at 2 → 1 transition, and the

optimal powers found in the previous section. Since the laser power is held constant,

we assume the noise level does not change, so we use a sweeping magnetic field and

the signal response slope represents our sensitivity.

The probe beam size puts a minimal constraint on the size of the iris hole that it

must be large enough for the probe to fully pass. Meanwhile, the iris needs to block

24



the pump beam otherwise the pump beam would leak into photodiodes. Hence, the

lower limit of the distance between two beams at the iris is set by their sizes. On

the other hand, the upper boundary of the intersection angle is set by the size of

the holes of the Rb cell. We change the distance at the iris from 3 mm to 8 mm

and record corresponding signals (Fig.4.7). For 3 mm separation at the iris, parts

of the pump beam leak into photodiodes which detriment our sensitivity. While we

find that a 4mm distance is about the minimum at which two beams are separated,

the results confirm our hypothesis that a smaller separation distance yields better

sensitivity. Nonetheless, the sensitivity of the largest separation of 8 mm is only

about 10% worse than the optimal separation of 4.5 mm while the additional spatial

information provided by a large angle might be worth the trade-off.

We further check the parallel beam configuration where the pump beam affects

the probe beam only through the atom diffusion. Ideally, this should yield a better

sensitivity than the intersection configuration [6]. To observe the improvement, how-

ever, we need to use a weak probe beam with power around 200 µW-300 µW. We

keep all other parameters the same and measure the signal generated by a sweeping

magnetic field. The distance between two parallel beams is limited by the size of the

opening on the Rb cell as well as other physical constraints such as the size of the

PBS. As the result, we only have one possible parallel configuration with a separation

distance of 4 mm (Fig. 4.8). We find that although the parallel configuration loses

the spatial resolution, it almost doubles the sensitivity and gives us the estimated nT

level sensitivity at side resonances.
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Figure 4.7: There are two periods shown
in this graph.

Figure 4.8: 5 mm and 8 mm separations
represent intersected beams.
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Chapter 5

Squeezed states of light

So far, we haven’t considered the quantum nature of our laser yet. Using the

classical description of the laser, we could model everything we need to make mea-

surements. However, when we consider the sensitivity of our measurement, quantum

mechanics imposes a fundamental limit on the classical laser, the shot-noise limit

(SNL).

To describe SNL, we have to use quantum electrodynamics (QED) and quantize

our laser field to an operator. While the spatial dependence is fully determined by

boundary conditions, the temporal part of a plane electric field is given by

Ê(t) =

√
h̄ω

ϵ0V
(âe−iωt + â†eiωt) (5.1)

where V is the volume of the box, and â, â† represent annihilation and creation

operator of a photon respectively. We have the number operator n̂ = â†â which

satisfies n̂|n⟩ = n|n⟩. When we measure the electric field, we are measuring its power

which is proportional to the square of the photon number n, so the sensitivity of

our measurements is limited by the photon number statistical fluctuations ∆n =√
⟨n̂2⟩ − ⟨n̂⟩2.

The most classical state, the coherent state |α⟩, is an eigenstate of â such that

â|α⟩ = α|α⟩. (5.2)
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One may find the photon number fluctuation ∆n for the coherent state |α⟩ as

∆n = |α| =
√
⟨n̂⟩, (5.3)

known as the shot noise. The shot noise originates from the uncertainty principle for

two quadrature operators X̂1 =
1
2
(â+ â†), X̂2 =

1
2i
(â− â†) and

(∆X1)
2(∆X2)

2 ≥ 1

16
. (5.4)

This means that we cannot precisely measure both the amplitude and the phase

of an electric field simultaneously. For a coherent state, one could calculate that

∆X1 = ∆X2 = 1
2
. To surpass the SNL imposed by the uncertainty principle, we

sacrifice the precision of one quadrature to allow a more precise measurement of

another one.

We introduce the squeezing operator Ŝ(ξ) = exp[1
2
(ξâ2 − ξâ†2)] where ξ = reiθ is

the squeezing parameter. Using the Baker-Hausdorf lemma, we calculate the variance

of quadrature operator for the squeezed state and coherent state. We find that

(∆Xsqz)
2

(∆Xcoh)2
= e−2r. (5.5)

Notice that we do sacrifice the precision of the anti-squeezed quadrature to satisfy the

uncertainty principle; a visualization of a comparison between a squeezed state and a

coherent state is given in Fig. 5.1. Therefore, by measuring the squeezed quadrature,

we can get a sensitivity lower than the SNL.

5.1 Balanced Homodyne Detection

In this section, we discuss the method to measure a squeezed state of light. As

the squeezed state has less noise only in a particular quadrature, we cannot directly

measure it using a photodiode. Rather, we use a technique named balanced homodyne

detection that allows us to choose which quadrature to measure.
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Figure 5.1: The uncertainty ball represents the noise when different quadratures of
the signal are measured.

Shown in Fig. 5.2, we mix a strong coherent field in mode b̂, named the local

oscillator (LO), with the squeezed state of the light in mode â using a beam splitter

(BS). Since the BS evenly splits two inputs beam, its outputs ĉ and d̂ are given by

ĉ =
1√
2
(â+ ib̂), d̂ =

1√
2
(b̂+ iâ). (5.6)

Then we use two photodiodes to measure the intensity of each beam. As the intensity

is proportional to the number of photons, these measurements are simply Ic = ⟨ĉ†ĉ⟩

and Id = ⟨d̂†d̂⟩. Eventually, we subtract signals from two photodiodes to cancel the

coherent noise and the difference is given by

Ic − Id = n̂cd = i⟨â†b̂− âb̂†⟩. (5.7)

Assuming the mode b̂ is indeed in a coherent state |βe−iωt⟩ and the mode â has the

same frequency ω, we can rewrite Eq. 5.7 as

n̂cd = 2|β|⟨X̂(θ)⟩ (5.8)

where β = |β|e−ψ, θ = ψ + π/2, â = â0e
−iωt, and

X̂(θ) =
1

2
(â0e

−iθ + â0
†eiθ) (5.9)
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is the quadrature operator at angle θ [7]. Notice that we could measure an arbitrary

quadrature of the signal by changing the phase ψ of the LO. One may also check that

by choosing a squeezed quadrature where (∆X̂(θ))2 < 1
4
, we could have

(∆n̂cd)
2 < |β|2 (5.10)

which surpass the coherent noise |β|2.

Figure 5.2: The dashed line represents a beam splitter and two intensities Ic, Id
represent two photodiodes. The subtracter is shown as Id − Ic.

5.2 Polarization Self-Rotation

In practice, we use polarization self-rotation (PSR) to generate a squeezed state

of light. It is known when an elliptically polarized light passes through a PSR medium,

its polarization rotates at an angle ψ given by

ψ = gϵ(0)l (5.11)

where g is a constant determined by the intensity and frequency of the incident light,

ϵ(0) is the ellipticity, and l is the length of the medium. We use a strong linearly

polarized light in ŷ direction while it propagates along ẑ. Notice that we still have a

vacuum field along polarized in x̂ so we have a slightly elliptical polarized light with
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ϵ(0) << 1 and ψ << 1. For simplicity, we assume the ellipticity does not change

much, that is, ϵ(0) = ϵ(l) = ϵ. We further neglect the absorption of light by the

medium.

Starting with the classic electromagnetism, a monochromatic light propagates in

ẑ direction has two components in x̂, ŷ such that Ê(z, t) = Ex(z, t)x̂ + Ey(z, t)ŷ.

We may also decompose the electric field into its positive and negative frequency

components as Ê(z, t) = Ê+(z, t) + Ê−(z, t) where

Ê+(z, t) =
εx(z)

2
ei(kz−ωt+ϕ(z))x̂+

εy(z)

2
ei(kz−ωt)ŷ, (5.12)

Ê−(z, t) =
εx(z)

2
e−i(kz−ωt+ϕ(z))x̂+

εy(z)

2
e−i(kz−ωt)ŷ, (5.13)

εx, εy are real positive amplitudes of x, y polarized components, k = ω/c is the

vacuum wave number, and ϕ(z) is a phase. In case of εy(z) >> εx(z), the ellipicity

of the light ϵ is approximately ([8])

ϵ =
εx(z)

εy(z)
sin(ϕ(z)). (5.14)

We only consider the Êx field as Êy would not be squeezed. For purpose of simplicity,

we neglect the negative frequency component as well. After the medium, we have the

positive x̂ component as

E+
x (l) = εxe

i(kl−ωt) [eiϕ(0) + gl sin(ϕ(0))
]
. (5.15)

Now, we switch to the QED description. As the squeezing is dependent on the

phase χ, we write it as

Êx(χ, z) =
ε0
2

[
âx(z)e

iχ + â+x (z)e
−iχ] (5.16)

where we assumed the LO has the same frequency as the monochromatic light, χ is

the time-independent phase difference between them at the output, and ε0 is the char-

acteristic amplitude of unsqueezed vacuum fluctuation [9]. We define the ellpiticity
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operator

ϵ̂ = ε0
âx(z)− â†x(z)

2iεy(z)
(5.17)

such that ⟨ϵ̂⟩ = ϵ for the coherent state. Rewriting Eq. 5.15 into operators, one may

find the definition of the annihilation operator at the output as

âx(l) = âx(0) +
igl

2

[
â+x (0)− âx(0)

]
. (5.18)

Eventually, using Eq. 5.16, we have the x̂ polarized field after the PSR medium as

Êx(χ, l) =
ε0
2
âx(0)

(
eiχ − igl cosχ

)
+
ε0
2
â+x (0)

(
e−iχ + igl cosχ

)
(5.19)

with

(∆Êx(χ, l))
2 =

ε20
4

(
1− 2gl sinχ cosχ+ g2l2 cos2 χ

)
(5.20)

for an x̂ polarized vacuum state |0⟩ input [10]. Notice that the noise is phase de-

pendent and we could get a smaller fluctuation than the vacuum field with a proper

choice of χ.
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Chapter 6

Squeezed Probe Beam

Figure 6.1: Neither laser is internally modulated. A dashed line represents an ampli-
tude modulated laser while a solid line means unmodulated light.
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In the two-beam configuration, we did a grid search on the laser power and

optimized almost every parameter. Yet, we still cannot improve the sensitivity at

side resonances lower than the nT level. After deploying all techniques, we think

the sensitivity is now limited by the coherence time of the dark state, which is hard

to improve without an anti-relaxation coating which increase the coherence time by

reducing the collision between Rb atoms and the cell. However, the fabrication of the

anti-relaxation coating remains as a ”black magic” within each research group and

there is no consent on it. Hence, we shift our focus from the state-of-art sensitivity to

exploring the effect of a squeezed probe since this is still not a well-studied subject.

We use two individual laser sources for the probe and pump beam (Fig. 6.1). We

directly use the laser from the last setup as the pump beam while removing the PBS

before the AOM as the probe beam will come from another laser. Similar to the pump

laser, we monitor the probe laser using saturated spectroscopy as well. We generate

the squeezing in the probe beam using PSR discussed in the previous section. The

PSR medium is another Rb cell and we use a half-waveplate and a PBS to control the

probe power through the medium. The PBS also plays the role of a linear polarizer,

so we take out the unnecessary polarizer before the Rb cell that induces Faraday

rotation.

We only send one beam polarized in ŷ through the medium and the squeezed light

is generated from the vacuum field polarized in x̂. Hence, after the PSR medium,

the light consists of both a LO and the squeezed light which can be separated using

a PBS later. After the Rb cell, we use a quarter waveplate to change the relative

phase χ between the LO and the squeezed light. The beam is eventually evenly split

by a PBS whose splitting ratio is controlled by a half waveplate and we detect the

squeezing using balanced homodyne detection as discussed before.
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6.1 Squeezing Strength

The strength of squeezing is determined by three factors: probe power, probe

detuning, and PSR medium position, which can all be explained by Eq. 5.20. We find

the optimal probe power is around 7 mW before the PSR medium and the optimal

detuning is blue-detuned to the 2 → 2 transition. The medium position is adjusted

according to the squeezing signal and remains fixed after that.

When the squeezed state of light experiences a loss, it is equivalent to passing it

through a BS with another vacuum input and the output squeezing degrades because

it is now a mix of squeezed light and coherent light. Hence, the squeezed state

is extremely sensitive to lose which degrades significantly even with a small loss.

Meanwhile, any misalignment also destroys the squeezed state since it is a loss.

As part of the light would be absorbed by the Rb cell, we first take out the Rb cell

inducing Faraday rotation and check the squeezing. To measure the shot noise, we

use a linear polarizer after the Rb cell to restore the coherent state. Then we adjust

the quarter waveplate such that we have minimal noise for the squeezed light. The

best squeezing we could get is about 1 dB (Fig. 6.2). Previously, this setup could

generate squeezing up to 2 dB and we think our detection is still limited by alignment.

Next, we put back the Rb cell and start the pump beam. We set the pump beam to

intersect with the probe beam inside the Rb cell and the intersection angle is limited

by our configuration. The absorption of the probe beam is about 10%. Surprisingly,

we could observe a squeezing as large as 1.5 dB presumably because we accidentally

have a better alignment with the Rb cell (Fig. 6.3).

As the absorption does not affect the squeezing much, we check whether the

squeezing is strong enough to be observed using the lock-in amplifier. The lock-in

amplifier has a few advantages over the spectrum analyzer. It is much cheaper and
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Figure 6.2: The purple line is the shot
noise observed with a linear polarizer.
The yellow line is the squeezed noise when
the Rb cell is removed.

Figure 6.3: The purple line is the shot
noise. The yellow line is the squeezed
noise with a Faraday rotation signal in
400kHz.

Figure 6.4: Coherent noise represents that
we kill the squeezing before the Rb cell
and the shot noise means that we kill the
squeezing after the cell. Anti-squeezed
noise is the most noisy quadrature of our
signal.

it could measure a sweeping signal with

a trigger. While the power and detuning

of the probe beam are fixed to optimize

the squeezing, we set the modulation fre-

quency of the pump beam to 400 kHz.

The pump detuning is at 2 → 1 transi-

tion and we use a weak pump beam with

power around 150 µW to mitigate the ef-

fect of leakage of the pump beam into the

detection. Since we are only interested in

the noise level, we fix the magnetic field

at side resonances. To further compare

the effect of squeezing, we record the sig-

nal where we kill the squeezing before the Rb cell using a linear polarizer instead of

after it. We find that the squeezing is still observable using the lock-in amplifier (Fig.

6.4)
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6.2 Opposite Propagating Beams

In the current setup, when we block the probe beam, we can always observe a

significant leakage signal if the pump beam is strong enough. We tried to use a lens

to focus the pump beam. Yet, even the weakest Gaussian wing of the focus pump

beam which is as low as 10 µW can still be detected by the SA. To completely solve

this leakage problem, we redirect the pump beam so it propagates in the opposite

direction of the probe beam (Fig. 6.5). We further use two additional irises before

two lenses in front of the photodiodes to block large angle leakage that would be

refracted into the detection by these lenses.

Figure 6.5: The pump beam propagates in an opposite direction with the probe beam
and it blocked after the Rb cell.
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After finished the setup for a pump beam propagating in the opposite direction

with the probe beam. We confirmed that there is no leakage in the detection even

for the strongest 2.5 mW pump beam. The noise level is also unchanged with respect

to the change of the pump power indicating we only detect the probe beam. We

again check that we can still distinguish coherent noise from squeezed noise using the

lock-in amplifier (Fig. 6.6). Then we calculate the improvement of the SNR from the

coherent light to the squeezed light. We find squeezed light has about 10-20% stronger

response than coherent light (Fig. 6.7). Eventually, the SNR can be improved by a

factor of 2 using the squeezed probe (Fig. 6.8).

Figure 6.6: We can see a clear separation
between the squeezed noise and the coher-
ent noise.

Figure 6.7: There are two periods of signal
of the squeezed light and one period of the
signal of the coherent light shown in this
graph.
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Figure 6.8: The squeezed light has both better response rate and lower noise level
than the coherent light.
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Chapter 7

Conclusion

Summary

In the first part of the experiment, we replace the amplitude modulated laser

with a frequency-modulated laser to reduce amplitude fluctuation in our signals. How-

ever, because the cavity gain is dependent on the frequency, the FM also generates a

spurious AM which results in a residue offset in our signal. We use a quarter-waveplate

to balance the residual signal and a compensation coil to reduce the magnetic gradi-

ent. With this setup, we increase the sensitivity to 60 pT for the zero resonance.

Despite the sensitivity we achieved using a frequency-modulated laser, we separate

our laser into a probe and pump beam to eliminate the residual signal. While we

amplitude modulates the pump beam, we only detect the unmodulated probe beam,

so we sidestep the residual signal. As the pump beam prepares Rb atoms into the

dark state which interacts with the probe beam, we are still able to observe side

resonances for the unmodulated probe beam. We conduct a grid search on the probe

and pump power and optimize our signal according to the SNR. While we find the best

sensitivity of side resonance is about the nT level, we think the sensitivity is limited

by the coherence time of the dark state and is hard to improve without anti-relaxation

coating. Yet, the two-beam configuration gives the additional spatial resolution of

the magnetic field which cannot be achieved with a single beam.
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Eventually, we generate a squeezed probe beam using polarization self-rotation.

The setup could generate squeezing up to 2 dB. While about 10% of the probe beam

is absorbed by the Rb cell, we still observe a significant squeezing of about 1.5 dB

in our signal. We further compare the squeezed noise with the coherent noise and

confirm a factor of 2 improvements in the SNR using the lock-in amplifier.

Future Work

This work shows that a sensitive magnetometer could be built based on NMOR.

Without an anti-relaxation coating, its sensitivity could reach 60 pT at the zero

resonance and nT level at the side resonance. Meanwhile, the intersection between

the probe and pump beam allows us to measure a local magnetic field compared

to the whole Rb cell. Limited by our configuration, we couldn’t make a very large

intersection angle. Yet, the preliminary data suggests that the intersection angle has

minor effects on the sensitivity and a magnetometer focus on spatial mapping of the

magnetic field is possible. On the other hand, squeezing could be implemented to the

probe beam so we surpass the SNL. However, the method we generate the squeezing,

PSR, put constraints on the probe power as well as its detuning. Since probe power

certainly affects the sensitivity, one could separate the LO from the squeezed light and

use a filter to reduce the probe power. This may reduce the stability of our system as

re-mixing the LO and the squeezed state of light in the balanced homodyne detection

is not an easy task to do.
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