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Abstract

We demonstrate a new method for measuring magnetic gradients in the presence of

large constant magnetic fields using electromagnetically induced transparency in ru-

bidium vapor. As the Earth provides a near-constant magnetic field of 25-50 µT, most

measurements of small magnetic fields involve subtracting or shielding the Earth’s

field. Our method can measure small gradients in the presence of large magnetic

fields using Electromagnetically Induced Transparency in 87Rb. By comparing the

resonances of two laser beams in a dual-rail arrangement propagating through rubid-

ium vapor in a spatially changing magnetic field, we are able to measure a constant

gradient of ≥7 nT/cm and a time-varying gradient of ≥50 pT/cm, over a constant

magnetic field of 35µT.



Chapter 1

Introduction

Modern magnetometers can accurately measure small magnetic fields, for example

the commercial superconducting quantum interface device (SQUID) can measure the

magnitude of magnetic fields to 1 fT [1], while the spin exhange relaxation free mag-

netometer (SERF) has a sensitivity on the order of 1 attoTesla [2]. The challenge

remains, however, in measuring small changes to a large external magnetic field.

Furthermore, SQUID devices are expensive and require cryogenic temperatures. An

inexpensive magnetometer that can measure small magnetic fields without shielding

or cooling would have applications in geological and archaeological surveys, defense,

space science, and medicine. We are particularly interested in developing a magnetic

field gradiometer that can be used in magnetocardiology, a diagnostic procedure which

measures the magnetic fields produced by the electric currents in the human heart

[3]. These magnetocardiograms require a sensitivity of 10-50 pT [4]

Atomic magnetometers measure magnetic fields using the Zeeman effect, or the

splitting of an atom’s degenerate energy levels when exposed to an external magnetic

field. This splitting causes the atom’s absorption resonances to shift in frequency.

We can record that splitting using the Electromagnetically Induced Transparency

(EIT) transmission peak, and thus measure the magnitude of the external magnetic

field. EIT creates a narrow transparent "window" in an absorption line of atoms
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in a lambda configuration, as the atoms enter a superposition of ground states. As

the width of the transmission peak is narrow (< 1MHz) compared to the width of

the Doppler-broadened atomic absorption line (500 MHz), studying this peak allows

us to measure the degenerate level splitting, and thus the magnetic field, to a much

higher accuracy. To measure a magnetic gradient, we propagate two beams through

Rb vapor to which a magnetic gradient is applied. As each beam is propagating

through a region of slightly different magnetic field magnitude, comparing the EIT

resonance position for both beams allows us to measure the gradient of the field. To

do this, we use a balanced photodiode to subtract one EIT resonance from the other,

and analyze the resulting differential signal. Using the differential signal also removes

common noise.

We are interested in measuring both constant magnetic field gradients and mag-

netic field gradients that change periodically over time (referred to as AC gradients).

As measuring either type of gradient required different types of optimization and data

analysis, our work involving constant gradients and AC gradients is separated into

two chapters. We demonstrate a technique that can measure an alternating gradient

(generated by a 1 Hz sine wave) of 50 pT/cm and a constant gradient of 7nT/cm over

an earth-like magnetic field of 35 µT.

Some work on this project was completed in the summer of 2018 with the help

of a Dewilde Research Fellowship. The description of my summer work is found in

Appendix B. It details my exploration of Transit Ramsey EIT Resonances, a phe-

nomenon we encountered that must be accounted for in a dual-rail experiment using

EIT, as well as some initial calibration.
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Chapter 2

Theory

2.1 Electromagnetically Induced Transparency

EIT is a phenomenon that occurs when an atom is exposed to two electromagnetic

(EM) fields, forming a Λ configuration (Fig. 2.1). The EM fields can be tuned

such that the difference in frequencies between the two fields matches the frequency

difference between the ground levels of an atom, or

δ = (ω2 − ω1)− ωbc = 0 (2.1)

Where ω2 and ω1 are the oscillating frequencies of the EM fields, ωbc is the difference

between the ground levels of the atoms, and δ is the two-photon detuning. When δ is

0, the atom decays after excitation into either the dark state (Eq. 2.2) or the bright

state.

|D〉 =
1√

(Ω2
1 + Ω2

2)
(Ω1|b > −Ω2|c > eδixt) (2.2)

If the atom enters the dark sate |D〉, which is a superposition of the two ground

states, it will become trapped in |D〉 and will not be excited. If the atom enters the

bright state, which is orthogonal to the dark state, it will continue to be excited until

it decays into the dark state. This phenomenon is known as Coherent Population

Trapping (CPT), as the atom becomes "trapped" in a superposition of the ground

states [5].
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If a large number of identical Rb atoms are exposed the same two EM fields, they

will all enter identical dark states. Thus, if one of the fields’ frequency is swept while

the other’s frequency remains constant a "transparent" peak is created that is narrow

compared to the width of an absorption resonance (Fig 2.1 b). As the width of the

EIT resonance is inversely proportional to the lifetime of |D〉, the peak width can be

further improved by preventing atoms from decohering (such as when they hit the

walls of a vapor cell).

Figure 2.1: (a) Example of a three-level Λ configuration. (b) An EIT resonance.
Modified from Ref [5]

2.2 Atomic Energy Levels and the Zeeman Effect

When atoms are exposed to an external magnetic field, they will experience a splitting

of their degenerate energy levels. This is phenomenon called the Zeeman Effect. The

separation between these energy sub-levels is directly proportional with the strength

of the applied magnetic field.

∆E = mgµBB (2.3)
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Figure 2.2: (a) Level diagram for D1 line of Rb showing the Zeeman sublevels. (b)
Coherent population trapping resonance at zero magnetic field and for B = 16µT,
B=35µT. Modified from Ref [5]

Where ∆E is the splitting of resonances, g is the gyromagnetic ratio, (g=2.0023193),

m is the spin, µB = 5.788 · 105eV/T is the Bohr Magnetron, and B is the magnetic

field[8]. Figure 2.2a shows the Zeeman sublevels of the D1 line of Rb, figure 2.2b

compares the EIT resonance of an Rb vapor that is exposed to a magnetic field of 0,

14, and 35 µT . The resonance shrinks and splits into three resonances (one central

magnetically-insensitive resonance and two side magnetically sensitive resonances). In

some cases we see multiple resonances on either side of the magnetically insensitive

resonance, denoted ±m, ±2m, etc. The conversion factor for resonance separation to

magnetic field strength is 700KHz/Gauss for m=±1 for 87Rb [8].

2.3 Benefits of the dual-rail configuration

Our experiment uses two identical laser beams propagating through the Rb cell a set

distance apart, or a dual-rail configuration. After the cell, the beams are measured

by a balanced photodetecor (BPD) which can be operated in either single channel or

differential mode. The BPD’s signal is then sent to a lock-in amplifier. We use the
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Figure 2.3: (a) Simulated single-channel signals with a slight offset, (b) resulting
differential signal

differential signal for gradient measurement, as it reduces common noise and increases

our sensitivity. Without a magnetic gradient, the frequency splitting of both beams

will be symmetric, and the differential signal will be a flat line. With just the slightest

gradient, however, the offset between the shifting creates a differential signal as shown

in the simulated data of Fig 2.3. Using a balanced photodiode rather than subtracting

Figure 2.4: (a)The channel 1, channel 2, and differential signals of the m=-2 reso-
nance. (b) Comparison of subtracting individual channels recorded separately vs the
differential signal

two separately acquired individual single channel signals also reduces common noise,

as demonstrated in Fig 2.4. Recording the height and frequency position of the
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differential signal will allow us to measuring the difference in magnetic field between

the two beams, and thus the value of the gradient.
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Chapter 3

Methods

3.1 Experimental Design

Figure 3.1 shows our experimental setup. A vertical cavity surface-emitting diode

laser (VSCEL) operating at the Rb D1 line with a wavelength of 794.68 nm creates

the two optical fields needed to achieve EIT. The VSCEL is current-modulated at

the frequency of the 87Rb ground state hyperfine splitting ∆HFS ≈ 6.834 GHz. The

dichroic atomic vapor laser lock (DAVLL) locks the laser to the correct frequency.

A detailed description of the VCSEL current modulation and DAVLL arrangements

can be found in Ref. [12]

After passing through the optical diode (OD), the VSCEL output was split into

two beams using a Wallaston prism before propagating through a cell of Rb vapor.

Each beam contains the two EM fields necessary to achieve EIT, and the beams are

separated by 0.4 cm in the cell. The cell is a Pyrex cylinder (length 10 mm, diameter

22 mm) of Rb (liquid and saturated vapor) and 5 Torr Ne, heated to 57 oC. The Ne

is a buffer gas which allows the atoms to propagate for longer times without colliding

with the cell walls and decohereing, resulting in narrower resonances. The cell is

surrounded by magnetic shielding, a solenoid, and gradient coils.
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Figure 3.1: Setup schematic for differential detection.PBS=polarizing beam split-
ter, HWP=half wave plate, QWP=quarter wave plate WP= Wollaston Prism,
PD=photodiode.

After the Rb cell two identical photodiodes (PD1 and PD2) detect the transmitter

light intensities of both beams. When a gradient is applied, the beams will be passing

through regions of slightly different magnetic field magnitude, thus the atoms they

excite will have slightly different splitting due to the Zeeman effect (Eq 2.3). The

photodiodes can be operated in either a single channel or differential mode. The

benefits of using the differential signal are discussed in section 2.3. The photodiode

signal is then sent to a lock-in amplifier. As the lock-in amplifier essentially takes the

derivative of the input signal, the amplifier output signal shown in Fig 3.2b is sharper

than the raw EIT transmission resonance in 3.2a.

3.2 Magnetic Field Generation

We can expose the 87Rb vapor to a constant longitudinal magnetic field using a

solenoid (Fig 3.3a), creating the necessary Earth-like magnetic field. The magnetic

9



Figure 3.2: (a) Raw EIT single-channel transmission peak (b) EIT single-channel
transmission peak after processing of the lock-in amplifier.

Figure 3.3: Methods for generating magnetic fields around the R87 cell (a) A constant
longitudinal magnetic field is created by a solenoid. (b) the single-wire gradient
configuration. (c) The two-wire gradient configuration.

field inside a solenoid is described by

B = µonI (3.1)

where B is magnetic field, µo is the vacuum permeability constant, n is the number

of loops of wire per unit length in the solenoid, and I is the current in the solenoid.

We have used two methods to generate the magnetic gradient. In the early stages
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Figure 3.4: (a) Differential signal for various gradient currents (b) Analyzing signal
size (depth) vs current.

of our experiment, we used two current-carrying straight wires running parallel to the

laser beams to create a magnetic gradient, in either the two-wire or single-wire con-

figuration. The single-wire configuration creates a magnetic field that is proportional

to current I and inversely proportional to distance from the wire (r):

B =
µ0I

2πr
(3.2)

Thus in the single wire configuration a magnetic gradient is achieved, as one beam

will propagate through a larger magnetic field than the other beam (Fig 3.3b). For

the two-wire configuration, each wire produces magnetic fields of the same magnitude,

but in opposite directions (Fig 3.3c). Thus, the magnetic fields at both beams are of

opposite signs but similar magnitudes.

While the straight-wire method creates a magnetic gradient that is useful for early

configurations of our setup, it also poses a problem: the splitting due to the combined

gradient and solenoid fields is quadratically dependent on current in the single wire

(Fig 3.4). This is because the solenoid produces a magnetic field in the z direction

(in the direction of beam propagation), while the gradient wire produces a magnetic

field in the y direction. Thus, the magnitude of the total magnetic field is described

as follows.

Btotal =
√
B2
gradient +B2

solenoid (3.3)
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Figure 3.5: Gradient coil. The cell of 87Rb vapor will be suspended inside the gradient
coil, which in turn is inside the solenoid.

As Bsolenoid is much greater than Bgradient, this can be approximated using a Taylor

expansion. Then from Eq. 3.2 we find that the total magnetic field is proportional

to I2 plus a constant solenoid field.

We are interested in measuring both constant gradients and gradients that change

periodically (referred to as AC gradients). For constant gradients, we supplied a

constant voltage to the coil and swept the two-photon detuning of the laser. By

recording the position and height of the differential lock-in output (Fig 3.4), we can

measure the magnitude of the constant gradient. For AC gradients, we kept the laser

at one frequency and alternated the gradient by applying a sine wave to the gradient

coil using a function generator. The amplitude of the sine wave was proportional

to the magnitude of the magnetic gradient. In the differential configuration we then

recorded the lock-in amplifier output over 200 seconds and mapped the data into

Fourier space (Fig 5.2). The amplitude of the peak at sine wave’s frequency is linearly

proportional to the amplitude of the gradient, thus it can be analyzed to measure the

gradient.
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3.3 Magnetic Field Calibration

We calibrated the solenoid and gradient coil by measuring the frequency shift of the

resonances versus current and using the conversion factor 1.4MHz/Tesla (the extra

factor of two comes from the fact that we are looking at the ∆m=2 resonance). Cal-

ibration of the two-wire gradient configuration can be found in Appendix A.

3.3.1 Solenoid Calibration

Figure 3.6: Calibrating the solenoid of the second cell. (a) Resonance width vs
solenoid current for ∆m=0,2 (b)Plotting single channel resonance position versus
current.

We calibrated the solenoid by measuring the frequency shift of the each single-

channel resonance versus current supplied to the solenoid. Figure 3.6 confirms the

linear dependence expected from Eq. 3.1. For this calibration, there are no applied

gradient fields. We took a linear fit of the EIT resonance shifting vs current (Fig 3.6)

and found the following equation.

∆f [MHz] = 0.03329 · I[mA] (3.4)

Where ∆f is the Zeeman splitting and I is applied current. Using the conversion

13



factor, we then found the magnetic field produced by the solenoid.

|B|[T ] = 2.377 · 10−5 · I[mA] (3.4)

Where B is magnetic field and I is current in mA.

3.3.2 Calibrating Single Wire Gradient

We calibrated the single-wire gradient using only the front wire (Fig 3.7) with a con-

stant magnetic field applied using the solenoid. As shown in Eq.3.3 and Eq.??, we

expect the splitting due to the combined gradient and solenoid fields to be quadrati-

cally dependent on the current in the single wire.

We measured the m=-2 single channel resonance position for various applied cur-

rents, then used a quadratic fit to find the following equations (Fig 3.7).

Channel 1: B = 0.0165[T ] · I2 + 0.351[A2]
Channel 2: B = 0.0116[T ] · I2 + 0.351[A2]
Gradient: ∆B

∆x
[ T
cm

] = 0.1225I2[A2]

Where B is the magnetic field magnetic field in Tesla and I is current in A. ∆B
∆X

is

in Tesla/cm and is calculated using the beam separation 0.4 cm. This process also

demonstrated that the depth of the differential signal is quadratically dependent on

the gradient.

Figure 3.7: Front wire gradient calibration. (a) Single-channel signal for various
currents. (b) Single-channel splitting vs current

14



3.3.3 Gradient Coil Calibration

We calibrated the gradient coil by supplying a constant voltage to the solenoid and

measuring the frequency shift of the each single-channel versus current. Using the

conversion factor of 1.4MHz/Tesla and dividing by the separation between the two

beams (0.4 cm), we then found the gradient produced by the coil based on the supplied

function generator offset (Fig 3.8).

∆B

∆X
= 3 · 10−7 · V (3.4)

Where ∆B
∆X

is the gradient in T/cm and V is the offset in volts.
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Figure 3.8: Linear gradient coil calibration. (a)Frequency separation vs voltage ap-
plied to gradient coil. (b) Magnetic field vs voltage applied to gradient coil.
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Chapter 4

Constant Gradients

For constant gradients, we applied a constant voltage to the coil and swept the two-

photon detuning of the laser. By recording the position and height of the differential

lock-in output (Fig 3.4), we can measure the magnitude of the constant gradient. We

took measurements using both the straight-wire gradient coil and the linear gradient

coil.

4.1 Straight-wire Gradient Measurement

With a constant magnetic field of 35 µT produced by the solenoid, we applied a gra-

dient field using the straight current-carrying wire and recorded the m=-2 resonance

differential signal. We plotted the size of the differential signal vs current (which

in turn gives us magnetic gradient), and found a quadratic dependence for currents

of 0.1 to 0.8 A (Fig. 3.4). This is expected, as discussed in chapter 3.2. We then

explored the sensitivity of using the differential resonance size to measure magnetic

gradients. Figure 4.1a shows the differential resonance with applied currents of 0 to

0.22 A. Surprisingly, the differential signal is non-zero when zero gradients are ap-

plied. This is due to the Transit-Ramsey EIT (TREIT) effect, which is discussed in

Appendix B. Visually analyzing Figure 4.1b, one can see that the the resonance depth

begins to plateau around 0.12 A, thus we concluded that our gradient sensitivity for

17



Figure 4.1: (a) Differential Signal for small currents (b) Analyzing signal height and
depth vs current.

straight-wire gradients is about 170 nT/cm.

4.2 Linear Gradient Coil Measurements

We repeated the steps in section 4.1 using the linear gradient coil. The negative

gradients in Fig 4.2 correspond to a negative voltage applied to the gradient coil.

By dividing the standard deviation of the signal height at zero gradients by the

slope of the linear fit, we estimate our sensitivity to be 7 nT/cm. As expected, the

linear gradient coil measurements produced a higher sensitivity than the straight wire

gradients.

We also attempted to increase our sensitivity by subtracting the zero-gradient

TREIT signal (Fig4.2b), however due to laser drift the position of the resonance

shifted slightly during measurement, which interfered with subtracting as the various

differential signals were no aligned perfectly. Plotting differential signal height versus

gradient for the zero-gradient subtracted signal and taking a linear fit gave a larger

error than the non-subtracted differential signal, however the subtraction technique

could be explored further.

18



Figure 4.2: (a)Differential signal of the ∆ m=-2 resonance with a 35µT Earth-like
magnetic field and 0, 9, and 30nT/cm gradients applied. (b) Subtracting the 0-
gradient signal from differential signal. (c) Differential signal height vs gradient.
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Chapter 5

AC Gradients

While the constant magnetic gradient measurements were made by sweeping the two-

photon detuning frequency and applying a constant current to the gradient coil, for

AC magnetic field measurements we fixed the laser modulation frequency at 6.834GHz

and used a function generator to apply a 1 Hz sine wave to the coil. As the size of the

differential signal grows proportionally with magnetic field magnitude, the amplitude

of the sine wave will be proportional to the lock-in amplifier output. We chose 1 Hz

as our frequency because it is approximately the frequency of a resting human heart

beat.

Looking at the lock-in amplifier output over many periods of the gradient sine

Figure 5.1: a) Lock-in amplifier output with a 1Hz sine wave with an amplitude of
40 mV applied to the linear gradient coil. b) Zoom in on 60-80 second range to see
short term oscillation.
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Figure 5.2: a) Fourier transform of lock-in amplifier output with 1Hz sine wave with
an amplitude of 0, 10, and 40 mV applied to the linear gradient coil. Note peak at
1 Hz and 60Hz. b) Zoom in on 1Hz peak, which shows dependence on sine wave
amplitude.

wave, a significant amount of noise and drifting is apparent (Fig 5.1). Therefore,

instead of using the raw lock-in output to measure gradients, we took a Fourier

transform of the data. Figure 5.2a displays the Fourier transform over a range of

about 1-10 Hz in which a few peaks are present, suggesting a number of periodic noise

sources. We are interested in analyzing the 1Hz peak, as its height is proportional

to the amplitude of the magnetic field gradients. Before making the AC gradient

measurements, however, we made sure to optimize the lock-in amplifier settings and

the laser power in order to maximize our sensitivity.

5.1 Lock-in Amplifier Optimization

Focusing on the AC gradient configuration, we optimized the time constant, modu-

lation frequency, modulation amplitude, and gain of our lock-in amplifier.

One way to understand the noise of a signal over many periods is by looking at

it’s Allan Variance. The Alan variance, or two-sample variance, is used to describe

frequency stability in atomic clocks. We used this method to explore the lock-in out-

put behavior over time, and specifically to optimize the time constant (τmod) of the
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lock-in amplifier. Figure 5.3 shows the Allan variance σy(τ) vs time for different time

constants. The lower the Allan variance, the more stable the frequency. Thus, 10 ms

is the optimal time constant.

Figure 5.3: Alan variance vs time for a variety of time constants (τmod). "Dark"
signifies that the laser beams were blocked while taking that data.

We optimized modulation frequency by recording 200 seconds of the lock-in ampli-

fier output for various modulation frequencies with and without magnetic gradients.

We took the Fourier transform of the gradient data (gradient frequency=1Hz) and

measured the height of the 1Hz peak (5.4a). We used the data without an applied

gradient to measure the noise level by taking the average around the 1Hz peak (5.4b).

Plotting the signal-to-noise ratio vs modulation frequency, we concluded that the op-

timal modulation frequency is around 17kHz. This frequency we used for all later

measurements.

The methods for optimizing modulation amplitude and gain were similar to op-
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Figure 5.4: Optimizing Modulation Frequency. a) Gradients on, 1 Hz peak for var-
ious applied modulation frequencies. b) Gradients off, noise near 1Hz for various
modulation frequencies. c) Signal-to-noise ratio vs modulation frequency. Optimal
modulation frequency: 17kHz

Figure 5.5: (a) Signal-to-noise ratio vs modulation amplitude. Optimal modulation
amplitude: 0.22V (b) Signal-to-noise ratio vs modulation gain. Optimal modulation
gain: 10mV

timizing the modulation frequency. Figures 5.5a and 5.5b show the Signal-to-noise

ratio versus modulation amplitude and gain, respectively. We concluded that the

optimal modulation amplitude is 0.22V, and the optimal gain is 10mV.

To summarize, Table 5.1 shows all lock-in amplifier settings that we optimized.
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Parameter Optimal Setting
Time constant 10ms

Modulation Frequency 17kHz
Modulation Amplitude 0.22V
Modulation Sensitivity 10mV

Table 5.1: Optimized lock-in settings

5.2 Power Optimization

Similarly to the lock-in amplifier optimization, we optimized the laser power by trying

to maximize the 1Hz peak and minimize noise of the Fourier transformed data. Laser

power we controlled using ND filters. Figure 5.6 shows the Signal-to-noise ratio versus

power. We concluded that the optimal laser power is around 35µW

Figure 5.6: Signal-to-noise ratio versus laser beam power

5.3 Measuring AC Gradients

With the optimized settings detailed above, we then moved on to measuring the

sensitivity of our gradiometer to AC gradients. To do this, we applied a voltage to the

gradient coil and measured the height of the 1Hz peak (Fig5.7a). Using the calibration

in Chapter 3 and taking a linear fit, we were then able to find the relationship of peak

height to magnetic gradient.
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While our function generator had a limit of .01 V (1 nT/cm), we could estimate our

sensitivity by taking the average of the lock-in output around 1 Hz with 0 gradients

(our "noise floor") and finding where our fit crosses that limit. Thus we can see from

figure 5.7 that our sensitivity for AC gradients is 50 pT/cm.

Figure 5.7: (a) Height of the lock-in amplifier’s Fourier-transform 1Hz peak vs gradi-
ent. Noise floor indicates minimum peak size that can be discerned above noise. (b)
Zooming in on crossing of noise floor gives the sensitivity, 50µT/cm
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Chapter 6

Conclusions and Future Work

Measuring small magnetic fields without using shielding or multiple magnetometers

has applications in geology, defence, medicine, and beyond. We have demonstrated a

technique that can measure a minimum DC gradient of 7 nT/cm and a minimum AC

magnetic field of 50 pT/cm in the presence of an Earth-like magnetic field. For our

AC gradient measurements, we have achieved the desired sensitivity for this technique

to be used in developing equipment for magnetocardiology.

Our method improves on other magnetometers in terms of need for magnetic

shielding and frequency of gradients. The optically-pumped magnetic gradiometer

described in Ref [9], for example, achieves a sensitivity 10 fT/Hz
1
2 at frequencies

above 20Hz, however our technique measures AC gradients produced using a 1Hz

sine wave, which is the frequency of a resting human heart beat and thus is more ap-

plicable in magnetocardiology [9]. SQUID magnetometers, one the most frequently

used devices in detecting biomagnetic signals, can detect magnetic fields three orders

of magnitude smaller than our technique, however this technique requires a cyrogenic

cooling and magnetic sheidling. These restrictions limit the use of SQUID magne-

tometers in medicine, as hospitals would require a dedicated magnetically-shielded

room for measuring magnetocardiograms. Furthermore, our method is compact as

its use of a dual-rail configuration only requires one Rb cell. For example the Grad-
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01-100L single access gradient sensor by Barington Instruments, which achieves a

sensitivity of 0.03nT/m, uses two magnetometers separated by a meter, however we

can reach a similar order of magnitude using only one magnetometer. [10].

Future work for this project will involve producing and measuring gradients that

more closely imitate the magnetic fields produced by a human heart. To be used in

creating a magneotocardiogram, the magnetometer will have to detect AC gradients

with frequency in the 1-100 Hz range and amplitude of 10-100 pT [3]
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Appendix A

6.1 Atomic Density Calibration

The density of Rb vapor is determined by the temperature of the cell, with a higher

temperature resulting in a greater atomic density. We wanted to record this de-

pendence and find an optimal cell temperature for data collection. To do this, we

recorded the Rb absorption spectrum for a range of temperatures and from the shape

of the spectrum calculated the atomic density using a fit function using the Atomic

Density Matrix Mathematica package from Rochester scientific (Fig 6.1) [11].

Cell Temperature oC Rb Density cm−3
43 6.610×10

50 9.0×1010

53 9.0×1010

55 9.0×1010

57 9.0×1010

Table 6.1: Cell temperature vs 87Rb density

Surprisingly, a cell temperature of 50oC to 57oC resulted in a constant Rb density.

Although the fitting results are consistent withing a percent it is clear that more

analysis of temperature dependence is needed. For simplicity we decided to use 57oC

with the knowledge that our Rb density is 9.0·1010 atoms/cm3, but this is likely an

area of future optimization.
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Figure 6.1: Example of 87Rb Absorption Spectrum at 57 C
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Appendix B

6.2 Transit Ramsey EIT resonances

This work used a cylindrical Pyrex cell (length 75mm, diameter 22mm) containing

isotopically enriched 87Rb vapor, heated to 44.5C. With our setup in configuration

A (Fig 6.2a), we began exploring the differential signal produced when the Rb atoms

are exposed to various applied magnetic fields with. It was during this exploration

stage that we noticed an unusual feature in the differential signal when no magnetic

fields were applied (Fig 6.2a). We expected the differential signal to be flat without

an external applied magnetic field, so this none-zero feature indicated that our beams

were somehow not identical. After attempting to reduce this feature by degaussing

the cell, changing the mirrors, optimizing the cell position, and studying the power

broadening of the two beams, we concluded that the imbalance was due to the path

Figure 6.2: Setup schematic for differential detection. For single channel measurement
one of the channels is blocked before the cell. (a) Beam is split using beam splitter
and mirror. (b) Setup with delay stage for TREIT work.
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Figure 6.3: (a) Non-zero differential signal with 0 applied magnetic fields (first ob-
servation of TREIT resonance)(b) The differential lock-in signals as a function of the
two-photon detuning for different relative prism position. Laser power in each chan-
nel is 50 µ W. (c) Theoretical simulations of the lock-in readout of the differential
TREIT. 6b and 6c modified from Ref [7]

difference between the two beams created when they are split before the cell (Fig

6.2a).

The path difference caused the two laser fields in each beam necessary to achieve

EIT to become out of phase with each other(Fig 6.4b). Atoms that interact with

both beams are excited twice, and therefore experience a phenomenon that replicates

the original Ramsey experiment [13]. To further study this phenomenon, we added

a delay line to our setup, which allowed us to control the path difference between

the two beams (Figure 6.2b). By changing the manipulating the path difference, we

expected to be able to change the shape of the TREIT resonance (Fig 6.2c).

By manipulating the path difference we were able to almost completely reduce

the TREIT resonance (Fig 6.2b). We also discovered some benefits to an amplified

TREIT resonance.The TREIT resonance is much narrower and has a higher signal-

to-noise ratio than the single-channel EIT resonance (Fig6.4a,c). A detailed report
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Figure 6.4: (a)Examples of the optical transmission for a single-channel EIT and for
the intensity difference between the two channels. (b) Simplified geometry of the
two-channel transient EIT setup. The arrows in the circles indicate the dark state
phases of two atoms traveling symmetrically between the beams. For this illustration
we set the phase between the two EIT optical fields to be zero in the first beam and
φ HF 6= 0 for the second beam. In case of the non-zero two-photon detuning δ, the
dark state phases of both atoms evolve by φδ = δ · τ after τ transit time between
the two beams, resulting in the difference in the optical response during the repeated
interrogation. (c) (i) Slope of the error lock-in signal for each optical channel and
for the differential signal at the corresponding zero-crossing detunings. (ii) lock-in
noise measured at zero-crossing two-photon position. Horizontal line shows the dark
electronic noise level. (iii) Signal-to-noise ratio (defined as slope of the error signal
divided by the measure noise). For the differential measurements the average power
between the two channel is used. Modified from Ref [7]
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of our findings can be found in Ref [7]
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