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Multi-level atom

Consider an atom with: - F=1/2 in ground level.
- F'=3/2 in excited level.

Excited state: F =3/2

N | =
DO | =t
N fu

el [
DO | =t

me = ==
Ground state: F=1/2

[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]
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Multi-level atom

Consider an atom with: - F=1/2 in ground level.
- F'=3/2 in excited level.

Excited state: F =3/2

N | b
DO | =t
[Nl L

Proportional to p,,* or Q2

AC Stark shift (light shift):
h|Q|?  Intensity;gger
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mg = —

el [
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Ground state: F=1/2

[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]



AC Stark Shift in Polarization Gradient Lattice
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[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]



AC Stark Shift in Polarization Gradient Lattice
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[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]



Sisyphus Cooling

Excited state: =312
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[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)] P




Sisyphus Cooling

Excited state: F =312
Atoms that are excited at the top of a hill are =73 2 : :
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[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)] pOSItIOI’]




Sisyphus Cooling

Excited state: =312
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[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)] pOSItIOI’]



Cooling Force (Doppler + Sisyphus)

e = Doppler force 0.01¢
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[figure adapted from Laser Cooling and Trapping by H. Metcalf and P. van der Straten, Springer (1999)]



There are no 2-level atoms
and cesium isn’'t one of them !!!

Attributed to Bill Phillips
Nobel Prize in Physics (1997) for laser cooling



There are no 2-level atoms
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Take-Home Message

More levels = More complicated

= More ways to get colder



Resolved Sideband Cooling

(or how to use external energy levels to get colder)




Resolved Sideband Cooling

Generally used with ion traps

2\\ / - trapping frequency large (MHz)

/
1 - -
; Ai § § / | scattering rate small (kHz)

(i.e. long lifetime)

- l.e. o,>>y

8 WL = Wo — Wy

[This technigue can be implemented with
neutral atoms, but it is difficult: Raman
Sideband Cooling.]

Atoms accumulate in lowest trap vibrational state !!!

[figure adapted from Atomic Physics by C. Foot, Oxford U. Press (2006)]



Resolved Sideband Cooling (Proof)
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Resolved Sideband Cooling (Proof)

i before T [Figure adapted from:
D. Wineland, PRL 1989]
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[data: Shuangli Du, W&M, 2020] microwave frequency (MHz)



