10.2 Hyperfine structure of hydrogen

The most important interactions in an atom are the Coulomb interactions between the elec-
trons and the nuclear charge. [The latter charge is sometimes called the nuclear monopole (£0)
moment.] However, additional couplings exist between the electrons and higher ‘magnetic and
electric multipole moments of the nucleus. These couplings are responsible for hyperfine struc-
ture (hfs) observed in atomic spectra. If the mucleus has spin I > 1/2, it can possess a magnetic
dipole moment j,. Also, if J = 1/2, a nonzero magnetic field B, is generated at the nucleus from
electron-spin and orbital motion. The coupling of i, to B, causes magnetic dipole (M1) his,
which is the most significant contribution to hfs. If 7 >1, the nucleus can possess an electric
quadrupole (E2) moment, and if J 21, the electronic charge distributton generates a nonzero
electric field gradient at the nuclens. The coupling of the quadrupole moment and the elec-
tric field gradient produces an additional (£2) hfs energy shift. Smaller still but observable
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10.2 Hyperfine striecture of hydrogen

nonetheless in a few cases is magnetic octupole (M3) hfs, which requires I = 3/2, J 2 3/2. Note
that static moments E0, £2, E4, ... and M1, M3, ... are allowed, but static moments FI,
E3, ... and M2, M4, ... are forbidden by space-inversion and time-reversal symmetries, a point
to be discussed later.

In this section we confine ourselves to a discussion of A1 hfs in the hydrogen atom. Here the
perturbation Hamiltonian is

th.!’ = ——,U.p .Be (10.20)

where = g,y 1 is the proton spin magnetic moment operator, Let the position of the elec-
tron with respect to the nucleus be r,, and define r = —r,. Now

B, =VxA (10.21)

where in atomic units

A= B xv(3]

(10.22)
F .
In the analysis of hyperfine structure, there is a fundamental difference between s-states and
states with £ > 0. For s-states, the wave functions of which are spherically symmetric and non-
zero at the origin, calculation of B, requires special attention because A, is singularatr = 0. No
such difficulty occurs for states with £ > 0 because these wave functions vanish at the origin. In

“the latter case, we can assume that r # 0 when using (10.21) and (10.22) to find B,. We start our

analysis with the simpler case ¢ > (. The identity
Vx(axb)=a(V+b)—b(V-a)+(hV)a—(aV)b

and the fact that the electron spin magnetic moment p, is a fixed quantity independent of the
coordinates imply that the magnetic field B, generated by g, is

B, =VxA, = le-r[(uﬁ-v)v(;l’—] -1V GH

The second term on the right-hand side of (10.23) vanishes for r # 0, and the first term is

(10.23)

B9 (0)= (Mﬁ&) (10.24)

r5 Pl

In addition, there exists a contribution g,/r® to BS? arising from orbital motion of the elec-
tron, where g1, = —gL = —pt; (v, X p). Altogether for £> 0 we have

3(,ux-r)r _&+&

B¢ (0) T s R

(10.25)




Applications of Perturbation Theaty

states and make use of the following picture: let an imaginan

We now turn our attention o s-
radius R larger than the proton radius but much smalle

sphere be centered on the proton, with
than the Bobr radius gy. Because R < gy,

W (1) = Woe (0)

is an excellent approximation for the spatial wave function at all points inside the sphen
Outside the sphere, ¥, (7. ) does vary with #, when the latter becomes comparable with ag, by
1ly symmetric everywhere. Because the electron has a spin mag

in any event, ¥, () is spherica
netic moment, there exists a magnetic moment density or magnetization

M) = W (1)

Using subseripts { and o to denote the interior and exterior of the sphete, tespectively, we no
that inside the sphere of radius R, the magnetization is uniform with value

v (O)

Outside the sphere, M, 1s sphericaily symmetric everywhere, although it also varies with 7, wh
the latter becomes comparable with . Thus M, gives 110 contribution to B{0); however, frc

elementary magnetostatics, we have

Mi zy‘s

8m

8 .
B0 (0)= ?" M, =2\ o) (10.

Taking (10.25) and (10.26) into account, we write the hfs Hamiltonian (10.20) as

8 u 'nu'.r 3;”’ Fl ¥ !1' «
Hg, =[—-§—_up-ps§3(r)]l 0+[[ﬁ3—~———i;;r——}——f’;;— (10.
= £0

side of (10.27) is sometimes called the com
n of (10.27) is actually more transparent, as
E. Fermi in 1930 using the D.

The first bracketed term on the right-hand
interaction. In the Dirac theotry, the derivatio
will see in Chapter 21. Equation (10.27) was first derived by

theory.

We now calculate the first-order hyperfine energies of s-states in hydrogen. Noting that :

o

mg
”‘p =gp 2mp I= gp.u'B '?;1_!,-1
where act interaction term it (10.

we obtain

g, =558 and Iis the nuclear spin, and employing the cont

"y,

A (15)= S g,y (sl () 1-5)
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0.2 Hyperfine structure of hydrogen

In atomic units, (ns[é’i (r)| ns) =l mn® and py = /2. Thus (10.28) becomes

AES (ns)= a(I-S) {(10.29)
where
2 m,
azg;ggpgsaz ~ (10.30)

»?

The total atomic angular-momentum operator, including nuclear spin, is defined as F =
I+ J. Also, i =1/2 for the proton, and j = s = 1/2 for the s-states; thus f= 1 or 0. The f =1
multiplet contains three components: my = 1, 0, and -1, whereas the /= 0 state is a singlet
with m, = 0. In the absence of hfs interaction, all four components are degenerate, However,
because

(1-8) = FUFAD)-ii+D=s(s+l) _ f(f+]) 3

2 2 4
(10.29) yields
N (s, =1)= 2
4 Ny (1031
AEQ (5, f =0)=-22
for a hyperfine splitting between /= 1 and /=0 of
2 m,
5:a:§gpgsa2 - (10.32)

]

Note that even when H,, is included, the three mcomponents of /= 1 remain degenerate in the
absence of an external magnetic field. However, when such a field is imposed, the degeneracy is
lifted by the Zeeman effect, to be discussed in the next section.

The hyperfine transition between /= 1 and f'= 0 in the ground state of hydrogen is used in
high-precision atomic clocks and is also extremely important in radioastronomy, where it is
observed in absorption and emission. The quantity a = 1.4204 GHz (wavelength = 21 cm) has
actually been measured to a precision of more than 12 significant figures using hydrogen maser
techuiques and is one of the most accurately determined physical quantities. For a precise
comparison between theory and experiment, (10.32) with g, =2 is not accurate enough. The
most important correction to ¢ is the g-factor anomaly &, in g, = 2(1+4,) In addition, there are
small bui important effects resulting from finite proton mass, proton recoil, relativistic electron
motion, and so on. When all these corrections are included, theory and experiment agree, but
the theoretical uncertainty, about 1 part per million (I ppm), is much larger than the experi-
mental uncertainty.
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ed from the second bracketed term on

The hyperfine energies of states with £ >0 ate deriv
=1, it can be shown with the aid of the

the right-hand side of (10.27). Assuming that g, = 2,8,
Wigner-Eckart theorem (see Section 7.12) that

2

' #e+1 D+ D= (41
W (n,£>0,j,f)=a? :: G, )[f(fzj)(j:(zl;r) G+ )]<;13_>
_ e, U HD-H+D= A j+1)] (10.33)

m, 57 2m )i+ _

' 10.3 Zeeman effect

In the presence of an external magnetic field B = ByZ, the Hamiltonian for a hydrogenic

atom is

1 Pz
H:z—‘u—( +%AJ 47+Hﬁ+H,¥s+g$pBS-B—gpuNI-B (10.34)

where H ;, = Hpin + Hi * H,, and the external vector potential 4 can be chosen as

By, o &
A= é’—(xy—yx)

to give B =V x A. Ignoring the distinction between the reduced mass y and m,, We expand the

first term on the right-hand side of (10.34)

A2 (10.35)

1 e ¥ P e
— | pr=d| =7+ Aep+ pA)+
(p J 2m Zmec( ptped) 2m,c?

Because Ved =0, ped= Aep—iVed = Asp. Also,
Aep =By (xp, —yp,)[2= BoLc[2

where L = (rx p). Thus (10.34) becomes
(1036

2
H=Hy+ Hy+ Hy + gufts LB+ g4, 5B "gp#NI-B+%A2

e discuss L

—1is the orbital g-value. Later in this section w 0
trate o

For the present, we ignore it and concen

for the ground state of hydrogen, We arq_..C;_Q
SiX

Here H, = (p*/2m.}+V, and g,
final term on the right-hand side of (10.36).
the remaining perturbing terms. In particular,
cerned with the Zeeman effect of the hyperfine structure and thus with the third, fifth, aﬂ_d-

terms of (10.36). ere the pertusbing Hamiltonian is

H’ = aI°S+gstuBBOSz - gpy‘NB(}Iz
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Defining the positive constants k =g uz8, and k, = g iy By, where k; > k,, we write
{10.37) as

H = al-S+kS, —k,I,
10.38
- %[Lsﬁ + 1.8, )+al,8, + S, kI, (1038)

In the absence of H’, the ground-state components f =1 (mp =1,0,—1) and f= 0, my= G are
degenerate. Hence we may choose any convenient orthonormal linear combinations of these
components as a basis for the perturbation matrix of H’. We arbitrarily choose the four basis
states:

wle.a,, B.B,, o8, Bo,} (10.39)

where 1, is the spatial wave function, and as usual, a (B) signifies spin up (down). With rows
and columns in the same order as (10.39), the perturbation matrix is

a, -k 0 0
4 2
"y = 4
() a  k+k, a (1040)
0 0 —— -
4 2 2
0 0 a _a_ktk
2 4 2
The eigénva.lues
a k-k
A = — =2 10.41
= . «oan
and L
a k-k
A =t 2 1042
T (10.42)

correspond to the f = 1 states o, (mz=1) and §,8, (my=-1), respectively, and are linear in
B, with opposite slopes. To find the other two eigenvalues, we diagonalize the 2x 2 submatrix
in the lower right-hand corner of (10.40}. Its secular determinant is

_E_;_M_/’L E
4 2 2 0

i
2
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AEfa

B, gauss

7eeman effect of the hyperfine structure of the 135,,, state of hydrogen.

which yields

i .
(ME] =(k1_+k.z) L@ (10.43)
4 ) 2 .

e
i

We define x = (k; +k, )/a and find from (10.43) that the two eigenvalues are

R’i:_%i% T (10.44)

Because x is proportional to By, we have A (B, =0)=al4, A (B, = 0)=-3al4. Thus A (B =0
obviously correspond to the states f=1mp=0,and f=0,my =0, respectively. Wher
0<x <1, it+x? =1+x*/2; hence, for small x, A, vary quadratically with x. However, whet

x»1,J1+x2 = x and A, are linear in x with opposite slopes. Figure 10.2 shows the four eigen

values plotted as a function of By

It remains to find the eigenvectors corresponding to A,. These can be expressed as

v, = ay(x)a.B, + b(x)B.0, (104

(x) are found from the eigenvalue equation

The coefficients a, (x),b:
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and from the normalization condition a2 + 52 = 1. We obtain
1
a, = e (10.46a)
[l+(x$ 1+x2) ]
and
—(x Fl+x? )
b, = (10.46b)

[t+(eais) [

These coefficients are plotted versus B, in Figure 10.3.

Notethat whenx=0,a, =a_ =22 andb, =-b =22 but when x > I,a,—landa —0,
whereas b, — 0 and & > —1. These relations have a simple physical meaning. When B, is small
(x <1), the electron and proton spins are much more tightly coupled with one another by
the hyperfine interaction than they are with the weak external field. Thus neither m; Dot my,
is a good quantum number; only f and m; are well defined. For Jarge B, (x = 1), the reverse is
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true: electron and proton spins separately precess about the strong external field, so neither f
nor mpis a good quantum pumber, but m; and m, become well defined.

The Zeeman effect for other hyperfine levels in hydrogen or in a multielectron atom is cal-
culated according to similar principles. The main task is to diagonalize a perturbation matrix
such as (10.40). For I = 1/2 and any 7 or for J = Y and any [, the matrix can be reduced {0
block diagonal form, where the submatrices are 2 x 2; hence only quadratic equations appear,
In more complicated cases, the perturbation matrix is most easily diagonalized numetically by
computer.

The Zeeman effect of fine-structure Ievels is calculated by the same method. For example,
consider the n =2, £ = 1 states of “He™. Here the nuclear spin is zero, and there is no hyperfine
structure. From (10.36), the relevant portion of the perturbing Hamiltonian is

H'=Hy+giftgdeB+ g, pS*B (10.47

and apart from an additive constant, H,, =(a?/3}L-§ in atomic units. The 6 %6 perturbation
matrix B for £=1,5=1/21s easily diagonatized. )
Finally, we consider the last term on the right-hand side of (10.36); that s,

aZ a?.BZ - .
Hy= 7A2 =g O (x2+ ) (10.48)
This term is responsible for the quadratic Zeeman effect. It does not depend on 8, L, J, or/
and therefore does not cause any splittings between different magnetic sublevels of a zero-order
eigenstate with given values of n and £. Because (x* +y*) =2 {r?}/3 for s-states, the first-order

energy shift in atomic units is

202
ABD = L2012y (10.49)
12
Employing the formula
z
()= 2”22 [5m2 +1-3¢(2+1)] (10.50)

we see that afthough AEY is very small for ordinary magnetic fields and low principal quan-
tum mumbers, it grows roughly in proportion to #* and thus becomes significant for n > 1. This
is important in the case of a Rydberg atom, which is an atom (from almost anywhere in the -
periodic table) in which a valence electron is excited to a very high-lying state. The pucleus and
remaining electrons form a compact core with effective charge Z = 1, and the wave functio!
of the valence electron is essentially hydrogenic with r:3 1.

The positive-energy-shift quadratic in By implies negative magnetic susceptibility;
directly related to diamagnetism. As is well known, this phenomenon arises from Lenz’s 1aw:
we apply an external magnpetic ficld to an atom or a group of atoms by increasing the field fro
zero, the electron(s) gxperience a changing magnetic flux while the field is increasing. ThUS
Faraday’s law, an electromagnetic force (emf) is generated that causes the electronic orbital ¢!
rents to change, These incremental orbital currents generate an incremental magnetic ﬁ_‘?_.d ths
is always opposite in direction to the applied field and generally much smaller in mag!

thus Hyl
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10.3 Zeeman effect

For illustration, we calculate the diamagnetic correction to the applied magnetic field at the
origin of a hydrogen atom in its ground state. Such corrections are significant in high-precision
nuclear magnetic resonance experiments and not merely for atomic hydrogen.

To start, we recall from equation (4.76) that in the presence of a vector potential A, the prob-’
ability current density jn atomic units for an electron is

o1
J= (W VY= Wy odyty

The electromagnetic current density is

. .-l
Jans 2—£J=_;(W*VW—WW*)—“AW*W (10.51)

In (10.51), only the second term on the right-hand side is important for diamagnetism; thus,
in what follows, we ignore the first term. The electromagnetic current density generates a new
vector potential according to the well-known formula

()= 2l gy -aZJ—MmA("’)p ) (10.52)

c? Jr—r'| |r—#]
where p = y*y. The magnetic field generated by this vector potential is

r—r'

B'(r)=Vxd(r)=c?| - x A(r)p(r) d*r
Hence, at the origin,
B'(0)= —azjf—,i—i(t’lp(r') & (10.53)
Because A(r') = (B, /2)(x' D~ '),
r'xA(r)= %[—(x*z');%m (y2") g+ (x7+ )2 ] (10.54)

Only the third term on the right-hand side of (10.54) makes a nonzero contribution to the
integral in (10.53). For the 1s state of hydrogen, it yields

> 2x n oo 1
B (0)=-2 B2 [ d¢[sin’a d6|s (J exp(-2r') dr’
Z % AN (10.55)
sz

=——B{0

= 5(0)
As anticipated, thé diamagnetic correction to the applied magnetic field B is proportional
to B but in the opposite direction, and because a*/3 =1.78x107, it is much smaller than B
itself.



