Homework \#11 (due Nov. 18)
Each problem is 10 points

## Textbook problems 12.1, 12.3, 12.12

Problem A1: a) Estimate your de Broglie wavelength when you are jogging at $5 \mathrm{~km} / \mathrm{hour}$.
b) How fast have you move to be able to experience a diffraction if you bounce off a crystal wall with average distance between atoms approximately 1 Angstrom $=10^{-10} \mathrm{~m}$.

Problem A2: Let's imagine you are playing quantum coin toss, where two eigenstates can be identified: $|t\rangle$ (tail) and $|h\rangle$ (head). Assuming that someone prepared the quantum coin in the state:

$$
|\psi\rangle=\frac{4}{5}|h\rangle+\frac{3}{5}|t\rangle,
$$

what are the probabilities to find the coin in each of two states?
How would you describe the state in which the two outcome are equally probable?

## Textbook problems 13.6 (modified)

An electron in a hydrogen atom drops from $n=3$ excited state to its ground state. What is the energy of the photon emitted? What is the momentum and the wavelength of this photon?

