3.24) for a vacuum state with
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2
n
() dr. (3.35)

3.2.3 Thermal states ' ‘

Most natural light is thermal radiation: sunlight, for example, or the
light of most lamps. Thermal radiation is a state of the electromagnetic
field in thermal equilibrium {or part of the field in thermal equilibrinm,
for example the part radiating out of a thermal source). Note that light
oH its own cannot reach an equilibrium state, because it is not interacting
with itself, but when light is brought into contact with material media
or generated by thermal sources it may thermalize, as we discuss in
Chapter 6 and in particular in Section 6.2.2. In interacting with a hot
material the electromagnetic field exchanges photons. So the energy and
the photon number of thermal light fluctuates.

Let us derive the quantum state of thermal light without assuming
that the reader is familiar with quantum statistical mechanics. In thermal
equilibriom light is in a stationary state that does not evolve in time. The
most general stationary state is a sfatistical mixture of the eigenstates of
the Hamiltonian £, a mixture of Fock states,

A= pnlniinl. (3.38)

In addition to being stationary, thermal light is in a state of maximal
disorder, maximal entropy § for a given energy E that is set by the
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ceaseless exchange of photons with the thermal environment, the hot

* material. Another natural constraint on p, is the conservation of the

total probability: the probabilities p,, must sum up to unity. It is mathe-
matically convenient to describe the maximization of the entropy in the
presence of constraints using Lagrange multipliers. We simply subtract
the constraints from the entropy (1.21} with variable prefactors,

S=-kp ) pulupn—a( P pn=1) =b(D onEn—E), 639

where E denotes the average energy of the mode. If we optimize the
entropy (3.39) for the parameters 4 and b we demand that the deriva-
tives of § with respect to @ and b vanish. In this case, both constraints
on the p, follow. On the other hand, when the constraints are satis-
fied the modified entropy (3.39) agrees with the original (1.21). So the
extremum of § with respect to all the p,, and the parameters ¢ and b, the *
Lagrange multipliers, solves the optimization problem with constraints.
‘We obtain by differentiation

88

0=-—=—kg(lnpn+1)—a—bE, (3.40)
9pp N
that has the solution
1 En
on = 7 exp( kBT) (3.41)

where T denotes 1/b and Z abbreviates exp(1 + a/kg). As we will see
in a moment, T is the femperature while Z is the partition function or
statistical sum, because

En
Z = Zexp (waT-) (3.42)

in order to satisfy the conservation of the total probability. When
thermal equilibriem is reached the entropy assumes the value

- E
S=-kgy pnlnp, =kglnZ+ T (343)
n

where FE denotes the averagé energy

E= Z onEn. (3.44)
no.

In thermodynamics, E is the internal energy. Suppose that T varies.
We obtain from the definition (3.42) of the stafistical sum that
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suppose that T° varies.
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3.2 Single-mode states

kyT?dZ = ZE dT. Hence we get for the derivative of the entropy (3.43)
the expression :

—_—— (3.45)

This formula is the definition of the thermodynamic temperature
(Landau and Lifshitz, Vol. V, 1996), which justifies our terminol-
ogy. We thus obtained Boltzmann’s formula (3.41) for the statistical
distribution of states with energies E, in thermal equilibrinm with
temperature 7.

So far our analysis has been rather general, we have not used
the specific physics of the electromagnetic oscillator, bat derived the
essentials of the quantum statistical mechanics of. & canonical Gibbs
ensemble. We can combine our results (3.38), {(3.41) and (3.42) in the
compact expressions

. 1 g : "

p_E cxp(mm), Z_trlexp(*fk;?)}, (3.46)
For the specific case of a single light mode we use the parameter
. ho

Ep—— 3.47
o (3.47)

B
Tn statistical physics, the inverse temperature i/(kpT} is typically
denoted by 8, but here we have included 4w in 8 for convenience. For
the electromagnetic oscitlator of the light mode, the statistical sum is
the geometric series

Z= i R S (3.48)
1—e 8

n=0
Therefore, the thermal state of light is described by the density matrix
00
b (1 - e"ﬂ) 367 | nl. (3.49)
n=0

For the average photon number, we get the Planck spectrum of the
harmonic cscillator in thermal equilibrium,

o1& —ng 182 1
- =t 3.50
R Z;)e n= s = F i (3.50)

When the entire electromagnetic field is in a thermal state, we obtain the
total energy density o(w) per volume and frequency by summing over
the individual energies %o 7 of all the modes with the same frequency w
and dividing by the total volame. In empty space, we arrive at Planck’s

radiation formula that, historically, opened one of the windows to the
quantum world (Jammer, 1989},

Bes? 1

e =\ 33 exp (o) (g 1)) — 1

(3.51)
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