Exclusive $\pi^+\pi^-$ Electroproduction

HERMES Analysis Week

DESY, Hamburg

04 December 2003

Keith Griffioen

NIKHEF and College of William and Mary

December 12, 2003

Abstract

I have studied the effect of the HERMES acceptance on the determination of Legendre moments for exclusive $\pi^+\pi^-$ electroproduction.
Exclusive $\pi^+\pi^-$ production

Keith Griiffin NIKHEF

Figure 1. Leading twist diagrams for the hard exclusive reaction $e^+T \rightarrow e^+T' \pi^+\pi^-$. Gluon exchange (a) gives rise to pions in the isovector state only, while the quark exchange mechanism (b,c,d) gives rise to pions in both the isoscalar and the isovector state.

- Either 2 gluon or 2 quark exchange
- p-like or f-like quantum numbers
 - odd l
 - even l

- Amplitude $\propto \sum_{\ell} a_{\ell} P_{\ell}(\cos \Theta)$

$$\frac{d\sigma_{\pi^+\pi^-}}{d\cos \Theta} \propto \sum_{\ell \ell'} a_{\ell} a_{\ell'} P_{\ell}(\cos \Theta) P_{\ell'}(\cos \Theta)$$

- Look at interference terms $l = 0$, $l' = 1, 3$

$$\frac{d\sigma}{d\cos \Theta} \sim P_{l'}(\cos \Theta) \text{ since } P_0(\cos \Theta) = 1$$

- P_{ℓ}'s are orthogonal \implies

$$\langle P_n \rangle = \frac{\int d\sigma}{\int d\sigma} \int d\cos \Theta \frac{P_n(\cos \Theta) d\cos \Theta}{\int d\sigma}$$

projects out the interference term
\[\frac{d\sigma}{d\cos(\theta)} = \sum_{\ell \ell'} q_{\ell \ell'} P_{\ell}(\cos(\theta)) P_{\ell'}(\cos(\theta)) \]

\[P_0(x) = 1 \]
\[P_1(x) = x \]
\[P_2(x) = \frac{1}{2}(3x^2 - 1) \]
\[P_3(x) = \frac{1}{2}(5x^3 - 3x) \]
Figure 4. $m_{\pi\pi}$-dependence of the intensity densities ($P_1(\cos \theta)$), upper panels, and ($P_3(\cos \theta)$), bottom panels, for both hydrogen and deuterium, left and right panels respectively. In the upper panels, the region $0.8 < m_{\pi\pi} < 1.1$ GeV rebinmed in finer channels to better investigate possible contributions from the narrow $f_0(980)$ meson resonance. Also shown are leading twist predictions for the hydrogen target including the two-gluon exchange mechanism contribution, LPSG [4,5] (solid curve at $x = 0.16$). A calculation without the gluon exchange contribution is showed for limited $m_{\pi\pi}$ values, LPPSG [6] (open squares at $x = 0.1$, open triangles at $x = 0.2$). Fig. 1-a. In the above predictions, the contribution from f_0 meson decay was not considered. Instead, in the zoomed panel for the hydrogen target, the prediction from [18], which includes the f_0 meson contribution, is shown. All experimental data have $<x> = 0.16$ and $<Q^2> = 3$ GeV2. The systematic uncertainty is represented by error bar.

Figure 6. The x-dependence of the intensity densities ($P_1(\cos \theta)$) for both targets separately, in the regions $0.30 < m_{\pi\pi} < 0.60$ GeV (left panels) and $0.60 < m_{\pi\pi} < 0.95$ GeV (right panels). Theoretical predictions from LPPSG [6] (stars) for hydrogen are compared with the data. In these computations, the two-gluon exchange mechanism contribution to the process is neglected. The systematic uncertainty is given by the error band.
• Cross check of analysis done by Sasha Borissov

• Monte Carlo simulation showed with large statistical errors that acceptance corrections to $\langle P_1 \rangle$ and $\langle P_3 \rangle$ were probably not important.

$$\langle P_n \rangle = \frac{1}{N} \sum_{i=1}^{N} P_n(\cos \Theta_i)$$ measured values

\Rightarrow cannot make acceptance corrections to a spectrum and then fit

\Rightarrow How wrong might $\langle P_n \rangle$ be due to holes in 4π acceptance?

This is a general problem also applicable to SSA $\langle \sin \phi \rangle$ moments: $\frac{1}{N} \sum_{i} \sin \Theta_i$

• Create a toy Monte Carlo to study the effects of acceptance on moments $\langle P_n \rangle$
Toy M.C. \[\text{cp} \to \text{ep} (\pi^+ \pi^-) \]
\[\text{ed} \to \text{ed} (\pi^+ \pi^-) \]

Exclusive

Describe kinematics with 4 variables:
\[\{x, Q^2, m_{\pi^+ \pi^-}, P_L\} \]

For each quadruplet, we can ask what is the \(\pi^+ \pi^-\) detection efficiency and measured \(<p_1><p_3>\) moments.

Choose at random

- \(\phi \) azimuthal angle of \(\vec{q} \)
- \(\phi_L\) azimuthal angle of \(\vec{P_L}\) around \(\vec{q} \)
- \(\phi_{cm}\) azimuthal angle of \(\pi^+\) emission around direction of \(\pi^+ \pi^- \) momentum.

Choose \(\Theta_{cm}\) direction of \(\pi^+ \) in \(\pi^+ \pi^- \) CM frame with \(-\vec{z}\) the recoil direction of \(N \).

Distributions

- Flat: \(f(x) = \frac{1}{2} \) on \([-1, 1]\)
- Triangular: \(f(x) = \frac{1}{2}(x+1) \)
- Quadratic: \(f(x) = \frac{3}{2}x^2 \)
- Cubic: \(f(x) = \frac{1}{2}(1+x^3) = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_3 \)
Do isodipole CM distributions
generate non-zero $<p_t>$ and $<p_z>$
due to holes in acceptance?

$<p_t>$

NO!

$<p_z>$

Efficiency for e^+e^- detection in HERMES
Expected $<q_1>$ for thrown distribution.

OK down to about 50% efficiency.

Expected $<p_3>$.
6 bins in x for $0.3 < m_{\pi\pi} < 0.6$ GeV

6 bins in x for $0.6 < m_{\pi\pi} < 0.95$ GeV

11 bins in $m_{\pi\pi}$ for $x > 0.1$

INPUT $\langle x \rangle$, $\langle Q^2 \rangle$, $\langle m_{\pi\pi} \rangle$ for each bin $\langle p_T \rangle$

In general, extracted $\langle p_T \rangle$ is far from expected value

Full averages over a bin will likely come closer to ideal value... but not completely,
Efficiency at average kinematic variables:

$\langle x \rangle = 0.17$

$\langle Q^2 \rangle = 3.2 \text{ GeV}^2$

$\langle m_{\pi^+} \rangle = 0.52 \text{ GeV}$

P_T

P_T distribution for event sample (varies little over m_{TT})
Deuterium $0.6 < m_{\pi\pi} < 0.95$ GeV

$\Delta E = \frac{M_X^2 - M^2}{2M}$

Counts vs. delta E

Cos θ distribution

X: θ is z-axis
*
*: N recoil is $-z$ axis, our choice

Counts vs. cos θ
>50% acceptance for 2-pion events

\[z = 4.38x - 0.85 \]
\[Q^2 = 25.6x - 1.28 \]
\[x = 0.05 \]
\[Q^2 = 1 \]

\[\gamma = 0.21 \]

Population in bottom is the same for each point in the \(x-Q^2 \) plot

\[P_T = 5.26 m_{\pi\pi} - 2.26 \]

\[\uparrow 63 \]

\[\downarrow 0.37 \]
Green: with 250% efficiency cuts
Red: all data

$\angle p_{37}$

$\angle p_{17}$

deuteron

M_{WW}

proton

M_{TT}
Deuteron

$\Delta p, 7$

$\sqrt{s} = 0.5$

$\sqrt{s} = 0.8$

$\sqrt{s} = 1.11$

$x = \Delta x$
Conclusions

- Toy Monte Carlo is a nice way to get an understanding of $<p_n>$ within HERMES acceptance.

- Present estimations of errors in $<p_n>$ due to acceptance are small compared to the statistical error bars.

- Exclusive $\pi^+\pi^-$ analysis and paper are OK as they presently stand.

- Any future analysis with improved statistics will need to reckon with acceptance corrections to $<p_n>$.