Transversity and Orbital Motion at CLAS

(Past, Present and Future)

Keith Griffioen
College of William & Mary
Jlab User’s Meeting
12 June 2006
The Players

- **Transversity:** $h_1(x)$, momentum distribution of transversely polarized quarks in a transversely polarized nucleon
- **Boer-Mulders Function:** $h_1^{\text{perp}}(x, \mathbf{k}_{\text{perp}})$, momentum distribution of transversely polarized quarks in an unpolarized nucleon
- **Sivers Function:** $f_{1T}^{\text{perp}}(x, \mathbf{k}_{\text{perp}})$, momentum distribution of unpolarized quarks in a transversely polarized proton.
Outline

• Past
 – No transversely polarized target at CLAS

• Present
 – No transversely polarized target at CLAS

• Future
 – No transversely polarized target planned for CLAS (yet, but it would be nice to get one)

• What then?
 – Use longitudinal or unpolarized targets.
Factorization Theorem

\[M = \sum_{ij} \int dz dx_i f_{i,T}^{T'}(x_i, x_i - x_B, t) H_{ij}(\frac{x_i}{x_B}, Q, z) \Phi_j^F(z) \]

\(G_{\text{P.D.}} \quad \text{pQCD} \quad \text{distribution amplitude for hadronic state } F \)

\(+ \mathcal{O}(1/Q) \) corrections

Factorization Theorem: Collins, Frankfurt, Strikman
PRD 54 (97) 2982.

No proven factorization thm for \(\gamma^* \) (transverse photons) but amplitudes are down by \(1/\xi \) w.r.t. \(\gamma^* \)
Higher Twist

• A problem (factorization is probably destroyed)
• An opportunity (not all interactions in nature occur at high momentum transfer)
• Necessary to fully understand the nucleon (learn to enjoy it)
• Remarkably hard to pin down experimentally (large Q^2 range necessary)
Polarized Semi-Inclusive DIS

Cross section a function of scale variables x, y, z

$$\nu = E - E'$$
$$y = \frac{\nu}{E}$$
$$x = \frac{Q^2}{2M\nu}$$
$$z = \frac{E_h}{\nu}$$

Hadron-Parton transition: by distribution function $f_{1u}(x)$:
probability to find a u-quark with
a momentum fraction x

Parton-Hadron transition: by
fragmentation function $D_{1u}^{\pi^+(\pi^-)}(z)$:
probability for a u-quark to produce a $\pi^+(\pi^-)$ with a
momentum fraction z
N(e,e’h)X Observables

- $A_{LL} \rightarrow g_1$
- $A_{LT} \rightarrow g_2$
- $A_{UL} \rightarrow$ tangled mess
- $A_{LU} \rightarrow$ ditto
- Asymmetries are functions of $x, y, z, Q^2, p_T, \phi, \phi_S, \theta,$ etc.
- These asymmetries are well-defined experimental quantities for all Q^2; however, they have their simplest interpretation at high Q^2
Polarized SIDIS and TMD PDFs

\[\sigma_{UU} \propto (1 - y + y^2/2) \sum_{a,\bar{a}} e_a^2 x f_1^a(x) D_1^a(z) \]

\[\sigma_{UU}^{\cos 2\phi} \propto (1 - y) \cos 2\phi \sum_{a,\bar{a}} e_a^2 x h_1^{L(1)}(x) H_1^{L(1)}(z) \]

\[\sigma_{LL} \propto \lambda_e S_L y (2 - y) \sum_{a,\bar{a}} e_a^2 x g_1^a(x) D_1^a(z) \]

\[\sigma_{UL}^{\sin 2\phi} \propto S_L (1 - y) \sin 2\phi \sum_{a,\bar{a}} e_a^2 x h_1^{L(1)}(x) H_1^{L(1)}(z) \]

\[\sigma_{UT}^{\sin \phi} \propto S_T (1 - y + y^2/2) \sin(\phi - \phi_S) \sum_{a,\bar{a}} e_a^2 x f_1^T(x) D_1^a \]

\[\sigma_{LU}^{\sin \phi} \propto \lambda_e y \sqrt{1 - y} \frac{M}{Q} \sin \phi \sum_{a,\bar{a}} e_a^2 x^2 e^a(x) H_1^{L(1)}(z) \]

Gauge invariant definition of TMDs discussed by Collins and Belitsky, Ji & Yuan Nucl. Phys. B656 165, 2003

Two fundamental QCD mechanisms (Collins and Sivers) identified, to generate SSA:
The **CLAS** Detector

- High luminosity, polarized CW beam
- Wide physics acceptance, including exclusive, semi-inclusive processes, current and target fragmentation
- Wide geometric acceptance, allowing detection of multi-particle final states

- **CEBAF**
 - Large
 - Acceptance
 - Spectrometer

- **Forward CALO**

\[Q^2 \]

\[x \]

\[t \]
SIDIS kinematic plane and coverage at 6 GeV

\[
\nu = E - E'
\]

\[
Q^2 = 4EE' \sin(\theta / 2)
\]

\[
x = \frac{Q^2}{2M\nu}
\]

\[
y = \frac{\nu}{E}
\]

\[
z = \frac{E_h}{\nu}
\]
SSA measurements at CLAS (eg1)

\[A_{UL}(\phi) = \frac{1}{P_T} \frac{N^+ - N^-}{N^+ + N^-} \]

- Significant SSA measured for pions with longitudinally polarized target
- Complete azimuthal coverage crucial for separation of \(\sin \phi \), \(\sin 2\phi \) moments

\[W^2 > 4 \text{ GeV}^2 \]
\[Q^2 > 1.1 \text{ GeV}^2 \]
\[y < 0.85 \]

\[0.4 < z < 0.7 \]
\[M_X > 1.4 \text{ GeV} \]

\[P_T < 1 \text{ GeV} \]
\[0.12 < x < 0.48 \]
Factorization studies in CFR at CLAS

In terms of Collins fragmentation

\[A_{LU}^{\sin \varphi} \propto \lambda \frac{e(x) H_1^{\perp}(z)}{f(x) D(z)} \]

No significant variation observed in z dependence of \(A_{LU} \) for different x ranges
Collinear Fragmentation

The only fragmentation function at leading twist for pions in $eN_e \pi X$ is $D_1(z)$

$$e p \rightarrow e' \pi^+ X$$

$E_e = 5.7$ GeV

No significant variation observed in z distributions of π^+ for different x ranges ($0.4 < z < 0.7$, $M_X > 1.5$) and for $A1p$ as a function of P_T
• Indicate a negative $\sin^2 \phi$ moment measured for π^+.
• Some indication of negative π^- SSA (more data required for π^- and π^0).
• More data required to correct for exclusive 2π contribution.
SSA: P_T-dependence of $\sin\phi$ moment

$$\sigma_{\sin\phi}^{LU(UL)} \sim F_{LU(UL)} \sim 1/Q \text{ (Twist-3)}$$

A_{UL} (CLAS @5.7 GeV) A_{LU} CLAS @4.3 GeV A_{UT} HERMES @27.5 GeV

Beam and target SSA for π^+ are consistent with increase with P_T.
In the perturbative limit is expected to behave as $1/P_T$.
SIDIS with neutral pions (E05-115)

\[A_{UL} (\pi^+) \sim H_1^{\text{favored}} \]
\[A_{UL} (\pi^0) \sim H_1^{\text{favored}} + H_1^{\text{unfavored}} \]

\(\pi^0\) SSA sensitive to the ratio of unfavored to favored polarized fragmentation functions

1) SIDIS \(\pi^0\) production is not contaminated by diffractive \(\rho\)
2) HT effects and exclusive \(\pi^0\) suppressed
3) Simple PID by \(\pi^0\)-mass (no kaon contamination)
4) Provides information complementary to \(\pi^+/\) information on PDFs

SIDIS \(\pi^0\): main focus of the experiment
Experimental Setup (CLAS EG1+IC)

- solid NH$_3$ polarized target
- proton polarization >75%
- high lumi $\sim 1.5\times10^{34}$ s$^{-1}$cm$^{-2}$

Inner Calorimeter (424 PbWO$_4$ crystals) for the detection of high energy photons at forward lab angles (e1-DVCS).
Reconstruction efficiency of high energy π^0 with IC increases ~ 3 times at large z due to small angle coverage (target in ~60cm from IC)
Factorization studies with π^0

$$A_1 = \frac{\sum_q g_1^q(x) D_1^q(z)}{\sum_q f_1^q(x) D_1^q(z)}$$

- Double spin asymmetries consistent with simple partonic picture
- $A_{1p}^{\pi^0}$ inclusive and π^0 can serve as an important check of HT effects and applicability of the simple partonic description.
Longitudinally polarized target SSA using CLAS+IC

\[\sigma_{UL}^{KM} \approx (1-y)h_{UL}^\perp H_1 \]

- Provide measurement of SSA for all 3 pions, extract the Mulders TMD and study Collins fragmentation with longitudinally polarized target
- Allows also measurements of 2-pion asymmetries

60 days of CLAS+IC (L=1.5.10^{34} cm^{-2}s^{-1})

\[H_{unf} = -5 H_{fav} \]
\[H_{unf} = -1.2 H_{fav} \]
\[H_{unf} = 0 \]

Curves, \(\chi_{QSM} \) from Efremov et al.
The h_1 Structure Function

$f_1 = \bullet \quad g_1 = \bullet - \bullet \quad h_1 = \bullet - \bullet$

Characteristics of h_1:

- leading twist -> on equal footing with f_1 and g_1
- chiral-odd -> can NOT be probed in inclusive DIS

Solution: couple h_1 to chiral-odd fragmentation function

Two options: 1 or 2 particle semi-inclusive DIS
2-\pi Single Spin Asymmetry

\[A_{UL}(\phi_{R\perp}) = \frac{1}{|P_T|} \frac{N^\rightarrow(\phi_{R\perp})/L^\rightarrow - N^\leftarrow(\phi_{R\perp})/L^\leftarrow}{N^\rightarrow(\phi_{R\perp})/L^\rightarrow + N^\leftarrow(\phi_{R\perp})/L^\leftarrow} \]

longitudinally polarized deuterium target

\[\vec{P}_h \equiv \vec{P}_1 + \vec{P}_2 \]
Theoretical Asymmetries

A. Bacchetta, M Radici, PRD 69 (2004) 074026

\[A'_{UT} \sim B(y) \sin(\phi_{R\perp} + \phi_S) h_1 H_1^q + V(y) \sin(\phi_S) \frac{M}{Q} (\ldots) \]

\[A'_{UL} \sim V(y) \sin(\phi_{R\perp}) \frac{M}{Q} (h_L H_1^q + g_1 \tilde{G}^q) \]

\(T/L \rightarrow \) target spin defined w.r.t. virtual photon
Experimental Asymmetries

\[A_{UL} \approx A'_{UL} - \sin \Theta_\gamma A'_{UT} \]

- Target spin defined w.r.t. beam
- Target spin w.r.t. virtual photon

\[\langle \sin \Theta_\gamma \rangle = \langle \frac{2Mx}{Q} \sqrt{1-y} \rangle \approx 0.045 \]

If \(H_1^a \neq 0 \):

\[\implies \text{2 hadron fragmentation can probe transversity!} \]

\[A_{UL}(\phi) \sim \frac{N_{\rightarrow} - N_{\leftarrow}}{N_{\rightarrow} + N_{\leftarrow}} \]

Fit with:

\[f(\phi_{R \perp}) = a_0 + a_1 \sin \phi + b_1 \cos \phi + \ldots \]

\(A_{UL}^{\sin \phi} \)
Separations are possible from angular distribution. These require a large acceptance (e.g. CLAS)
Quark Angular Momentum Sum Rule

GPDs H^u, H^d, E^u, E^d provide access to total quark contribution to proton angular momentum.

\[
J^q = \frac{1}{2} - J^G = \frac{1}{2} \int_{-1}^{1} x dx \left[H^q(x, \xi, 0) + E^q(x, \xi, 0) \right]
\]

Large x contributions important.
Hard Exclusive Processes and GPDs

DVCS

- For different polarizations of beam and target provide access to different combinations of GPDs H, \tilde{H}, E

- Study the asymptotic regime and guide theory in describing HT.

DVMP

- For different mesons is sensitive to flavor contributions (ρ^0/ρ^+ select H, E, for u/d flavors, π, η, K select H, E)
Exclusive ρ meson production: \(ep \rightarrow ep \rho^0 \)

CLAS (4.2 GeV)

- Regge (JML)
- GPD (MG-MVdh)

CLAS (5.75 GeV)

GPD formalism (beyond leading order) describes approximately data for \(x_B < 0.4, Q^2 > 1.5 \text{ GeV}^2 \)

Analysis in progress

C. Hadjidakis et al., PLB 605

Two-pion invariant mass spectra

Decent description in pQCD framework already at moderate \(Q^2 \)
Upcoming 12 GeV CLAS Proposal

SIDIS ($\gamma^* p_\pi X$) : Unpolarized target

- Azimuthal moments in pion production in SIDIS
 - $\cos 2\phi$ (Boer-Mulders function h_{1T}) and relation with GPDs
 - $\cos \phi$, $\cos 2\phi$ moments to study Cahn effect and Berger HT
 - $\sin \phi$ (g_\perp) azimuthal moments of the x-section as a function of x,Q_2,P_T,z to study transition from non-perturbative to perturbative description at large P_T
- Target fragmentation (Lambda, azimuthal moments)

Main focus

Study the transverse polarization of quarks in the unpolarized nucleon.
• High luminosity polarized (~80%) CW beam
• Wide geometric acceptance
• Wide physics acceptance

Provides new insight into
- quark orbital angular momentum contributions
- 3D structure of the nucleon’s interior and correlations
- quark flavor polarization
cos2φ: predictions

\[A_{uu} = \cos(2\phi) = \frac{[8(1-y)h_1^{l(t)} H_1^{l(t)}]}{[(1-(1-y)^2)] f_1 D} \]

- Significant Boer-Mulders asymmetry predicted for CLAS12
CLAS6 data

Significant $\cos 2\phi$ observed at large P_T

M. Osipenko
CLAS12: kinematic distributions

Large Q^2 accessible with CLAS12 are important for $\cos2\phi$ studies.
CLAS12: kinematic distributions

Kinematic distributions of π^+ (triangles up) π^- (triangles down) and π^0 for ~ 10 min of CLAS12 running with hydrogen at luminosity of $10^{35} \text{sec}^{-1}\text{cm}^{-2}$.

CLAS12 allow wide kinematical coverage of SIDIS
In the perturbative limit $1/P_T$ behavior expected

Asymmetries from k_T-odd (g_-, h_{1-}) and k_T-even (g_1) distribution functions are expected to have a very different behavior.
Measuring the Q^2 dependence of SSA

$\sigma_{\text{LU(UL)}}^{\sin \phi} \sim F_{\text{LU(UL)}} \sim 1/Q$ (Twist-3)

Wide kinematic coverage and higher statistics will allow to check the higher twist nature of beam and longitudinal target SSAs
Conclusions

- Transversity is more easily studied with a transversely polarized target, but until we get one, we can learn quite a bit with longitudinally polarized targets.
- The large acceptance of CLAS and CLAS++ allows a wide variety of single-spin asymmetry measurements that probe the spin and angular-momentum of the nucleon.