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Why a hole is like a beam splitter: A general diffraction theory for multimode quantum
states of light
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Within the second-quantization framework, we develop a formalism for describing a spatially multimode optical
field diffracted through a spatial mask and show that this process can be described as an effective interaction
between various spatial modes. We demonstrate a method to calculate the quantum state in the diffracted optical
field for any given quantum state in the incident field. We also give several additional examples of how the theory
works, for various quantum input states, which may be easily tested in the laboratory, including two single-mode
squeezed vacuums, single- and two-photon inputs, where we show that the diffraction process produces a
two-mode squeezed vacuum, number-path entanglement, and a Hong-Ou-Mandel-like effect analogous to that
of a beam splitter.

DOI: 10.1103/PhysRevA.96.023829

I. INTRODUCTION

Gaussian spatial modes, in comparison with plane waves,
offer a more accurate description of optical beams [1].
Although plane waves are mathematically simpler, they are
less powerful in describing the diffraction and the spatial
structure of optical fields. Classical diffraction properties of
Gaussian beams are relatively well understood, and numerous
works have been carried out, both theoretical and experimental
[2–9]. The quantum properties of diffracted Gaussian beams,
or other paraxial beams, have received less attention, although
some previous works are reported in Refs. [10–26]. For
example, complementary work by Lupo et al. [27] shows
that diffraction through an iris can be described as a memory
channel, which has applications to quantum communication,
while our work focuses on classical and quantum behaviors
of very specific Gaussian beams, with multiple spatial modes,
for use in quantum imaging and related technologies. Though
many previous analyses do take multiple Gaussian modes
under consideration, a clear and systematic description of the
interaction among Gaussian modes is lacking. By Gaussian-
mode interaction we mean all physical processes in which
the output spatial mode decomposition is altered from its
input decomposition. The assumption, made in many cases,
that Gaussian modes interact in the same way as plane
waves, is generally not valid because it essentially ignores
the multimode structure of Gaussian modes. Gaussian modes
are a natural choice to describe the propagation of optical
beams with finite cross sections. Indeed, if the squeezed
states generated in different Gaussian modes have different
squeezing angles, then the interaction among the states in the
various modes can worsen rather than improving the overall
squeezing. Recent work further confirms the deficiency of
using plane waves to analyze quantum states of light and
motivates us to investigate the quantum behavior of Gaussian
beams [28–30].
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To understand the quantum behavior of Gaussian beams,
we must understand how quantum states in different Gaussian
modes interact with each other. Perhaps the simplest interac-
tion between Gaussian modes can be introduced by applying a
spatial mask to the beam axis and seeing how this changes the
quantum states. Through this relatively simple model, we can
establish a method to analyze more complicated problems.

In Sec. II, we use classical electrodynamics to analyze
the Gaussian beam and the interactions among different
orders of Gaussian modes. In Sec. III, we present a quantum
description of states in Gaussian beams and their interactions.
In Sec. IV, we consider three examples of applying our
formalism to describe the propagation of various quantum
input optical fields through an iris mask. The first one uses
two single-mode squeezed vacuums as input, which has been
tested experimentally [28], and our predictions agree well with
the experimental observations. The other examples study the
cases of single-photon and two-photon inputs, in which case
our calculations predict the generation of a photon-number
entanglement and a Hong-Ou-Mandel (HOM)–like effect,
implying that an opaque spatial mask displays characteristics
of a regular but lossy optical beam splitter.

II. CLASSICAL ELECTRODYNAMIC DESCRIPTION OF
GAUSSIAN-BEAM SPATIAL MODES

For an optical beam, the electromagnetic field satisfies
Maxwell’s equations in the so-called paraxial approximation.
Furthermore, it is known that the Hermite-Gaussian (HG) and
Laguerre-Gaussian (LG) modes are solutions of the free-space
wave equation in the paraxial approximation. In Cartesian
coordinates the solutions are the HG modes, whereas in
cylindrical coordinates the solutions are the LG modes. While
we focus on the LG modes in this paper, similar arguments
apply to the HG modes. The normalized field amplitude of LG
modes can be expressed as
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FIG. 1. Intensity profile of LG modes in any z = z0 plane.
Upper row (from left to right): l = 0, p = 0,1,2. Lower row: l = 1,
p = 0,1,2.
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is the Gouy phase. See Fig. 1 for the intensity profile of several
LG modes in any z = z0 plane. Along the beam axis the profile
becomes wider or narrower with changes in the beam waist,
while the shapes of the profiles remain similar.

In free space the LG modes propagate independently
without interacting with each other; they obey the following
orthonormality conditions:∫

z=z0

ul,pu∗
l′,p′rdrdφ = δll′δpp′ . (2)

Note: The orthogonality condition only holds if the integration
area on the left-hand side of Eq. (2) is the entire z=z0 plane.

FIG. 2. The iris, with a circular opening of radius a, is applied
along the beam axis. The red curve represents the Gaussian beam
width w(z) as a function of z. The iris is located on the plane z = z0.
The center of the iris is on the z axis. The amplitude will be truncated
to 0 at the rim of the iris, while in the opening of the iris the amplitude
will be unchanged. As a result the orthogonality between LG modes
will be broken, and the modes will interact in the iris plane.

Now, let us consider putting a spatial mask (such as a
circular iris) in the z = z0 plane, shown in Fig. 2. The iris
blocks or absorbs the field at the rim and allows the field
at the opening to pass through. For LG modes, the part of
them allowed to pass through the opening of the iris no longer
obeys orthogonality. Physically this means that different LG
modes will interact at the plane where the iris is placed. The
interaction of modes can be described by the expression∫

S

ul,pu∗
l′,p′rdrdφ = Bl,l′,p,p′ , (3)

where S is the surface through which the spatial mask permits
the light to pass. For a circular iris with radius a, centered
on the beam axis, and placed in the z = z0 plane, S =
{r < a; z = z0}.

Since in free space LG modes form an orthonormal basis,
both the input signal (at z = z0

−) and the output signal (at z =
z0

+) can be expressed as linear combinations of LG modes,
which both satisfy paraxial approximation. Further, in free
space on both sides of the iris [z ∈ (−∞,z0) ∪ (z0, + ∞)],
the orthogonality of LG modes holds, and the iris (z = z0) is
the only location where orthogonality is broken. Therefore the
coefficient of each LG mode will change only when the signal
goes through the iris. We express this interaction using the
following set of equations: the input beam takes the form

uinput(r,φ,z) =
∑
l,p

Al,p × ul,p(r,φ,z); (z < z0), (4)

where Al,p is the coefficient of each LG mode. At the iris the
beam is partially absorbed and thus we have

uiris(r,φ,z0) =
{∑

l,p Al,p × ul,p(r,φ,z0) (r < a,z = z0),

0 (r � a,z = z0),

(5)

satisfying the boundary condition at the iris, giving the output
signal,

uiris(r,φ,z0) = uoutput(r,φ,z0
+), (6)

which, finally, leads to

uoutput(r,φ,z) =
∑
l,p

Al,p

∑
l′,p′

Bl,l′,p,p′ul′,p′ (r,φ,z) (z > z0).

(7)

The quantity Bl,l′,p,p′ , first introduced in Eq. (3), is the
transformation coefficient between LG mode l,p and LG mode
l′,p′. Solving Eqs. (4)–(7), we get

Bl,l′,p,p′ = Cl,l′,p,p′ × exp[i(2p − 2p′ + |l| − |l′|)ζ (z0)]. (8)

Here we express the complex quantity Bl,l′,p,p′ in polar form,
as it more clearly shows the role of ζ (z0), which is the Gouy
phase at the iris position. The factor Cl,l′,p,p′ is real in the
circular iris situation, since the cylindrical symmetry prevents
interaction between azimuthal indexes:

Cl,l′,p,p′ = δll′ ×
∫ 2a2/w2(z0)

0
exp (−x)L|l|

p (x)L|l′|
p′ (x)dx. (9)

It is because of the limitation in the radial direction,
introduced by the iris, that different p modes will interact. But
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due to the cylindrical symmetry of the iris, different l modes
will remain orthogonal. Therefore, if, instead of a circular
iris, other types of spatial masks (that do not have cylindrical
symmetry) are used, orthogonality among l modes will be
broken, and different l modes will interact with each other. The
interactions, which are characterized by the transformation
coefficient, will be determined by the shape and position of
the spatial mask. For the remainder of this paper, we consider
only an iris spatial mask because of its simplicity. However,
our theory applies to all spatial masks, and the transformation
coefficients can be calculated in a similar manner. To calculate
transformation coefficients for an arbitrary spatial mask, we
can still make use of the more general Eq. (3) instead of Eqs. (8)
and (9), which are specifically suitable for a circular iris mask
centered on the beam axis.

III. QUANTIZATION OF GAUSSIAN MODES

In free space, due to orthogonality, each mode of the
Gaussian beam propagates without interacting with another
mode. Therefore, the quantum state of each mode will
evolve independently. A pure quantum state without mode
entanglement is a product state of every quantum state in every
Gaussian mode:

|ψ〉 =
l=+∞, p=+∞∏
l=−∞, p=0

|ψl,p〉 . (10)

The separable state forms a building block for more
complicated states. A general pure state, with or without mode
entanglement, can be expressed as a linear combination of
separable states in the form of Eq. (10). Further, a mixed state
can be expressed as a probabilistic sum of pure states.

When a spatial mask such as an iris is applied to a Gaussian
beam, the quantum states of different modes will interact.
The interaction can be described as the transformation of
annihilation or creation operators of input modes into operators
of output modes. This transformation should be unitary, which
preserves the commutation relations of the annihilation or
creation operators. However, one problem needs to be solved.
Generally, spatial masks (or other optical devices) are lossy.
For example, an iris will absorb part of the input signal at the
rim. A widely accepted procedure [31] to deal with loss in
quantum optics is to introduce “absorption modes,” which we
denote A1,A2, . . . . To be clear, we call the original Gaussian
modes “signal modes,” since they are the ones that may contain
information, such as squeezing levels and squeezing angles.
We denote the signal modes simply with l and p numbers.
Further, a prime symbol on the operators of output modes
differentiates them from the operators of the input modes. The
transformation, caused by the iris, from the operators of input
modes into those of output modes is illustrated in Fig. 3.

Before we continue, let us explain a bit more about the
absorption modes. They serve three purposes. The first purpose
is that they describe the absorption (loss) of the field. Since
the states in output-signal modes are described by tracing the
entire output density matrix over the absorption modes, the
total energy of the signal is generally decreased. The second
purpose is that they help to keep the transformation unitary by
expanding the dimension of the transformation matrix [32].

FIG. 3. The iris transforms the creation and annihilation operators
of the input modes into operators of the output modes. Since the rim
of the iris blocks off part of the beam, absorption modes (denoted
A1, A2, etc.), in addition to the original Gaussian beam modes (signal
modes), are needed. Input states in the absorption modes are vacuums.
To obtain the reduced density operator in the output-signal modes,
states in the output absorption modes need to be traced out.

The reader might remember that a similar principle applies
when modeling loss with a simple beam splitter; we must
consider a second input even if only the first input is used [31].
The third purpose of the absorption modes is that they naturally
introduce the vacuum fluctuations and accommodate the com-
mon observation that fluctuations usually occur with losses.

The model works in the following way. The quantum
states of the input-signal modes can be arbitrary, but quantum
states in the input-absorption modes are vacuum. A unitary
transformation transforms the operators of input-signal or
absorption modes into operators of output-signal or absorption
modes; this is illustrated in Fig. 3. Once we obtain output
operators in terms of input operators we can calculate the
quantum states in the output-signal or absorption modes. The
quantum state in all output modes then needs to be traced
over the output absorption modes, and finally, we obtain the
reduced density matrix that describes the quantum state in the
output-signal modes, which generally is a mixed state, even if
the input state is a pure state. Later we give a few examples of
a variety of input states.

Matrix description of Gaussian mode interactions

The interaction among the quantum states of all LG modes
can be described by a transformation from the operators of
input modes (signal and absorption) to the operators of output
modes. Such a transformation, as previously argued, is unitary
for spatial masks. There are infinitely many Gaussian modes
(and we need to introduce infinitely many absorption modes as
well). Therefore, in the most general case, quantum states or
operators in infinitely many input modes are transformed into
quantum states or operators in infinitely many output modes.

Although this might seem complicated, sometimes the
transformation can be greatly simplified when the spatial mask
has some kind of symmetry. For example, as we previously
pointed out, an iris has cylindrical symmetry and LG modes
with different l’s do not interact [due to the Kronecker delta
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in Eq. (9), which enforces angular momentum conservation].
Therefore, for a circular iris, we need only to examine the
transformation of LG modes with the same l but different p’s.
To that end, we introduce the column vector of annihilation
operators for input LG mode (l,p = 0), (l,p = 1), (l,p = 2),
etc., as well as operators for input-absorption modes A1, A2,
A3, etc.:

(âl) = (
âl,0 âl,1 . . . âA1 âA2 . . .

)T
. (11)

The creation operators are, similarly,

(âl
†) = (

â
†
l,0 â

†
l,1 . . . â

†
A1

â
†
A2

. . .
)T

, (12)

and the output modes follow, but they are labeled with a prime:

(â′
l) = (

â′
l,0 â′

l,1 . . . â′
A1 â′

A2 . . .
)T

, (13)

(â′
l

†
) = (

â′†
l,0 â′†

l,1 . . . â′†
A1

â′†
A2

. . .
)T

. (14)

We also define the unitary transformation matrix Jl , which
determines the interaction among LG modes with the same l

but different values of p:

Jl =

⎡
⎢⎢⎢⎢⎢⎣

Jl;0,0 Jl;0,1 . . . Jl;0,A1 Jl;0,A2 . . .

Jl;1,0 Jl;1,1 . . . Jl;1,A1 Jl;1,A2 . . .

. . . . . . . . . . . . . . . . . .

Jl;A1,0 Jl;A1,1 . . . Jl;A1,A1 Jl;A1,A2 . . .

Jl;A2,0 Jl;A2,1 . . . Jl;A2,A1 Jl;A2,A2 . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦.

(15)

The transformation of input and output operators can be
expressed in the following compact form:

(âl
′) = Jl(âl), (16)

(â′
l

†
) = J ∗

l (âl
†). (17)

J ∗
l stands for the conjugate (without transpose) of Jl . The

signal-signal elements (Jl;0,0, Jl;1,0, Jl;0,1, etc.) in matrix Jl

determine the transformation between input- and output-signal
modes. Here we make use of Bohr’s correspondence principle.
For high-amplitude coherent states in the input-signal modes,
the transformation between input- and output-signal modes
should agree with the classical result in Eq. (7), giving

Jl;p1,p2 = Bl,l,p1,p2 , (18)

which can be calculated using Eqs. (8) and (9). As for the other
(signal-absorption and absorption-absorption) elements in Jl ,
we can make use of Jl’s being unitary. This gives JlJ †

l =
I , which will give equations describing the relations among
the Jl elements. Of course, signal-absorption and absorption-
absorption elements might not be completely fixed, and there
might be a certain freedom of choice. In fact, they may not
need to be calculated at all. We find that, in the calculations we
have done so far, we can always eliminate signal-absorption
and absorption-absorption elements using the condition that
Jl is unitary.

Indeed, if one aims for completeness, one should consider
infinitely many LG modes. However, we do not usually have
that luxury, since the dimension of the transformation matrix
increases with the number of modes, and we are forced to

consider a limited number of modes. Intuitively, the more
modes we consider, the better. But the effect of higher-order
modes often diminishes at a very fast rate. As we show in the
next section, we are able to explain our experimental data, even
if we consider only two input-signal modes and two absorption
modes.

For a spatial mask of arbitrary shape, we cannot exploit the
cylindrical symmetry as we did with the iris. However, we can
still introduce a similar column vector of operators as before,
but we now need to include various l modes together instead
of considering only one l mode at a time. We can achieve this
by defining a concatenation of column vectors of operators,
such as (â) = [(âl=0)T (âl=1)T (âl=−1)T . . .]

T
, in which

every element is defined in Eq. (11). The transformation matrix
J from input to output modes needs to be expanded in a similar
fashion in order to accommodate different l modes; and the
integration area of Eq. (3) needs to be changed as well. Then we
can, finally, arrive at a relation similar to Eq. (16): (â′) = J (â).

Unlike the iris, a spatial mask without cylindrical symmetry
introduces interaction between orbital angular momentum
modes, which can be very useful. However, the purpose of this
work is not to explore novel designs of optical devices, but to
set up a general method for analyzing a range of problems. For
now, the simple iris is enough to serve such a purpose, but we
stress that our method can also accommodate optical devices
without cylindrical symmetry.

IV. ADDITIONAL EXAMPLES OF THE USE OF THE
THEORY

A. Example 1: Squeezed-vacuum input states and the Wigner
function description

Let us consider the following model. In the two signal
LG modes of (l = 0, p = 0) and (l = 0, p = 1), we input

FIG. 4. Model setup. The single-mode squeezed vacuum states
are in the (l = 0, p = 0) and (l = 0, p = 1) LG modes, while the
local oscillator is in the (l = 0, p = 0) LG mode. The squeezed
vacuum and the local oscillator copropagate but are in perpendicular
polarizations. The spatial mask consists of a one-to-one telescope and
an iris between the lenses. We move the iris along the beam axis and
find the minimum noise in each case.
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two squeezed-vacuum quantum states, which are defined as
Ŝ(ξ0) |0〉l=0, p=0 and Ŝ(ξ1) |0〉l=0, p=1, respectively, while in
every other LG mode we input vaccum states. The squeezing
operators are defined as Ŝ(ξp) = exp[ 1

2 (ξ ∗
pâ2

0,p − ξpâ
†2
0,p)],

with p = 0,1. The squeezing parameters are ξ0 = r0 exp(iθ0)
and ξ1 = r1 exp(iθ1).

Let us further consider a classical field with large amplitude,
in the (l = 0, p = 0) LG mode, acting as a local oscillator
for homodyne detection. The signal and local oscillator
copropagate with each other along the beam axis, but they
are in perpendicular polarizations.

Now we insert a circular iris in the neighborhood of the
beam focal point and centered on the beam axis, shown in
Fig. 4. According to our theory, both the signal and the local
oscillator are influenced by the iris in the way described
in previous sections. Introduced by the iris, the interaction
among LG modes mainly happens between the (l = 0, p = 0)
and the (l = 0, p = 1) modes. Therefore we can simplify the
calculation by considering only two input-signal (or output-
signal) modes and two absorption modes, instead of taking into
account infinitely many input (or output) modes. The diagram
of this model is shown in Fig. 5. We then move the iris along
the beam axis and numerically simulate the minimum noise
measured in the homodyne detection vs the iris position, shown
in Fig. 6. We can also use different-sized irises, which are
represented by different curves. The experimental counterpart
of this simulation is investigated in Ref. [28].

In order to gain a clearer and more intuitive view, we now
examine our model in the Wigner representation. It is essential
to understand how the iris transforms the input Wigner function
into the output Wigner function. We first use Eqs. (16) and (17)
to calculate the transformation between input and output mode
operators and obtain the transformation of quadratures,

⎡
⎢⎣

ql,0

ql,1

qA1

qA2

⎤
⎥⎦ = Re(Jl)

⎡
⎢⎢⎣

q ′
l,0

q ′
l,1

q ′
A1

q ′
A2

⎤
⎥⎥⎦ − Im(Jl)

⎡
⎢⎢⎣

p′
l,0

p′
l,1

p′
A1

p′
A2

⎤
⎥⎥⎦, (19)

⎡
⎢⎣

pl,0

pl,1

pA1

pA2

⎤
⎥⎦ = Re(Jl)

⎡
⎢⎢⎣

p′
l,0

p′
l,1

p′
A1

p′
A2

⎤
⎥⎥⎦ + Im(Jl)

⎡
⎢⎢⎣

q ′
l,0

q ′
l,1

q ′
A1

q ′
A2

⎤
⎥⎥⎦. (20)

FIG. 5. Instead of taking into account infinitely many input or
output modes, we consider only two input-signal (or output-signal)
modes and two absorption modes, because the input states in the
(l = 0, p = 0) and (l = 0, p = 1) LG modes are the only ones that are
nonvacuum, and the interaction between the two modes far exceeds
the interaction between other LG modes.

FIG. 6. Minimum noise in homodyne detection vs iris position.
Different-sized irises are represented by different curves, and they
are denoted by the percentage of peak transmission through the
iris relative to full-beam transmission, as well as the iris radius
(scaled by w0). We apply only one iris at a time. The input states
in the (l = 0, p = 0) and (l = 0, p = 1) LG modes are squeezed
states with different squeezing parameters: r0 = 0.3, θ0 = 0, r1 = 0.4,
θ1 = 0.325π .

Then we substitute the input quadratures with output quadra-
tures, thus completing the transformation of the input Wigner
function to the output Wigner function:

W (q0,0,p0,0,q0,1,p0,1,qA1,pA1,qA2,pA2)

Eq.(19)(20)−−−−−→ W (q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1,q

′
A1,p

′
A1,q

′
A2,p

′
A2). (21)

To make our example more general, we now replace
the squeezed vacuum with displaced squeezed states as
input states: D̂(α0)Ŝ(ξ0) |0〉l=0, p=0 and D̂(α1)Ŝ(ξ1) |0〉l=0, p=1
in the (l = 0, p = 0) and (l = 0, p = 1) LG modes. The
displacement operator for the l = 0, p = 1,2 mode is defined
as D̂(αp) = exp(αpâ

†
0,p − α∗

pâ0,p). The Wigner functions of
the quantum states in the two input-signal modes are

W (qm,pm) = 1

π
exp{−e−2rm [(pm − p̄m) cos (θm/2)

− (qm − q̄m) sin (θm/2)]2}
× exp{−e2rm [(qm − q̄m) cos (θm/2)

+ (pm − p̄m) sin (θm/2)]2}, (22)

where qm and pm are the quadratures of modes (l = 0, p = m)
and m = 0,1, and q̄m = 1√

2
(αm + α∗

m), p̄m = i√
2
(−αm + α∗

m),
ξm = rm exp(iθm). For absorption modes the input states are
vacuums, whose Wigner functions are

W (qn,pn) = 1

π
exp

( − q2
n − p2

n

)
, (23)

where n = A1,A2. Since the total input state is the product
state of states in each of the four input modes, the total input
Wigner function is

W (q0,0,p0,0,q0,1,p0,1,qA1,pA1,qA2,pA2)

= W (q0,0,p0,0)W (q0,1,p0,1)W (qA1,pA1)W (qA2,pA2).

(24)

We keep the input state fixed and change the position of the
iris along the beam axis. The change in iris position changes
the matrix elements ofJl=0 in Eqs. (19) and (20), which in turn
changes the output states in three ways: (a) the squeezing and
antisqueezing level changes, (b) the squeezing angle changes,
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FIG. 7. First column on the left: Input displaced-squeezed-state Wigner function. Top row: LG mode l = 0, p = 0. Bottom row: LG mode
l = 0, p = 1. The input states are displaced squeezed vacuums with displacement parameters α0 = 1.5 exp(πi) and α1 = 2 exp(1.5πi) and
squeezing parameters r0 = 0.5, θ0 = 0.25π , r1 = 0.8, θ1 = 0.75π . Second column from left: Output quantum state Wigner function when the
iris is located at z = −zR (one Rayleigh range before the focus). Third column: Output quantum state Wigner function when the iris is located
at z = 0. Fourth column: Output quantum state Wigner function when the iris is located at z = zR . The iris radius is w0. This provides evidence
that moving the iris rotates the squeezing angles via the Gouy phase. Note that the input-signal states shown here are pure states, while the
output-signal states in both LG modes are mixed states.

and (c) the state displacement (from vacuum) changes. The
Wigner functions of the input state (as well as the output
states) of different iris positions are plotted in Fig. 7. It is also
noteworthy that, despite the input-signal states in this example
being pure states (displaced squeezed-vacuum states in each
of the two LG modes), the output-signal states are generally
mixed states. This is mainly because we obtain the reduced
density operator for the signal modes by tracing the total
density operator over the absorption modes. As a result, the
output states are no longer pure minimum-uncertainty states.
To verify this we can simulate the squeezing and antisqueezing
noise in each output LG mode vs the iris position, shown
in Fig. 8. For a minimum-uncertainty squeezed state, the
squeezing and antisqueezing noise should add up to 0 dB,
which means the squeezing and antisqueezing noise curve for
the same mode should be symmetric about the horizontal axis
in Fig. 8. This is obviously not the case, which verifies that the
output-signal state is not a minimum-uncertainty state in either
LG mode. The noise measurement in Fig. 8 is achievable in
an experiment. For instance, we can make use of homodyne
detection and adjust the local oscillator to be in one particular
single-output LG mode with a spatial light modulator. Note
that the noise measurement described in Fig. 6 is different.
In that case, the local oscillator copropagates with the signal
and both of them are influenced by the iris; after the iris the
local oscillator consists of multiple LG modes instead of a
single mode. We would like to emphasize that every example
is applicable for any suitable detection scheme without being

limited to homodyne detection. For example, in Sec. IV C
below we predict a HOM-like effect for which coincident
detection is required, and not homodyne.

Now we show a rather surprising result, namely, that the
spatial mask behaves like a multiport beam splitter with loss.
To elaborate this point, let us consider the following situation.
In the case of the input states of a beam splitter being two

FIG. 8. Noise of squeezing and antisqueezing of the l = 0, p = 0
and l = 0, p = 1 LG modes vs iris position (in units of Rayleigh
range). The parameters of the input states and iris size are the same
as those for Fig. 7. Note that the squeezing and antisqueezing noise
curve for the same mode are not symmetrical about the horizontal axis
(0-dB noise -evel line) for displaced-squeezed input states. This is
because the quantum state in each LG mode is no longer a minimum-
uncertainty state.
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FIG. 9. Joint probability Pn0,0,n0,1 vs n0,0 vs n0,1 in (a) the input
LG (l = 0, p = 0) and (l = 0, p = 1) modes and (b) the same two
LG modes in the output. Squeezing parameters of squeezed-vacuum
states in the input modes are r0 = r1 = 1, θ0 = θ1 = 0. The iris is
placed at z = 0 and the radius of the iris is 0.8339w0. Note that the
nonzero probability for the one-one block provides evidence that the
iris has converted the two separable squeezed-vacuum inputs into an
entangled two-mode squeezed-vacuum output.

single-mode squeezed-vacuum states with identical squeezing
parameters, it is well known [31] that the output state will be
a two-mode squeezed state, if the beam splitter is perfectly
50:50. Now, let us use an iris instead of a beam splitter.
We put identical single-mode squeezed-vacuum states in both
input LG modes (l = 0, p = 0) and (l = 0, p = 1). After the
states go through the iris, we then calculate the probability
of detecting n0,0 and n0,1 photons in the output LG modes
(l = 0, p = 0) and (l = 0, p = 1), shown in Fig. 9. For
comparison, we show the probability in the input modes as
well in Fig. 9. We can see in the input modes that, since
the quantum state is a product state of two single-mode
squeezed-vacuum, the probability is nonzero only at even
n0,0 and n0,1. If the state in the output modes is indeed a
two-mode squeezed state, the probability is nonzero only at
n0,0 = n0,1, namely, n0,0 = n0,1 = 0, n0,0 = n0,1 = 1, n0,0 =
n0,1 = 2, etc. However, one important visible change from
the two single-mode squeezed-vacuum states to a two-mode
squeezed-vacuum state is that the two-mode joint probability
Pn0,0=1,n0,1=1 is 0 in the former and nonzero in the latter [32].
This is indeed the case, as we can see in Fig. 9, which verifies
our conjecture: a hole is like a beam splitter. We can also see
that Fig. 9 does not give an ideal two-mode squeezed state;
this is because the iris is unbalanced (the different modes have
different radial profiles) and lossy, as opposed to a perfect
50:50 beam splitter.

We can see how Pn0,0=1,n0,1=1 and Pn0,0=3,n0,1=3 would
change with the iris size in Figs. 10(a) and 10(b). Both of
them reduce to 0 when the iris is completely closed, where
the output state is reduced to a vacuum. Note that Pn0,0=1,n0,1=1

and Pn0,0=3,n0,1=3 also reduce to 0 in the case of large iris size,
where the output state is reduced to the same as the input state
(a product state of two single-mode squeezed-vacuum states).
The nonzero Pn0,0=1,n0,1=1 and Pn0,0=3,n0,1=3 are what give the
distinct feature of two-mode squeezing, which is most visible
when the iris is neither too large nor too small, which is where
the maximal interaction between LG mode (l = 0, p = 0) and
LG mode (l = 0, p = 1) takes place.

We can also investigate the covariance of the photon
numbers in the two input modes or the two output modes,
which is defined as [32]

Cov(n0,0,n0,1) = 〈n0,0n0,1〉 − 〈n0,0〉 〈n0,1〉 . (25)

FIG. 10. (a) Pn0,0=1, n0,1=1 and (b) Pn0,0=3, n0,1=3 vs iris size (scaled
by w0) for the output states. Squeezing parameters of squeezed-
vacuum states in the input modes are r0 = r1 = 1, θ0 = θ1 = 0. The
iris is placed at z = 0. If the outputs were two separable, squeezed
vacuums, then (a) the one-one probability and (b) the three-three
probability would be identically 0, regardless of the iris radius. The
fact that both these terms are nonzero supports the idea that the output
is an entangled two-mode squeezed vacuum. In our beam-splitter
analogy the effective beam splitter is closest to 50:50 when the iris
size is about the beam waist in radius.

For single-mode squeezed-vacuum states in the two input
modes, the covariance is obviously 0 since the state in each
mode is independent. However, in the output modes of the
iris, we should see generally nonzero covariance due to the
beam-splitter-like interaction introduced by the iris, if indeed
that interaction produces an entangled two-mode squeezed
vacuum. In this case, where we consider only the LG (l = 0,
p = 0) and (l = 0, p = 1) modes and two other absorption
modes, the output covariance is

Cov(n0,0,n0,1) = C2
0,0,0,0C

2
0,0,0,1 sinh2 r0 cosh2 r0

+C2
0,0,0,1C

2
0,0,1,1 sinh2 r1 cosh2 r1

+ 2C0,0,0,0C0,0,0,1C
2
0,0,0,1 sinh r0 sinh r1

× (sinh r0 sinh r1 + cosh r0 cosh r1

× cos[4ζ (z0) + θ0 − θ1]), (26)

where z0 is the iris position and the Cl,l′,p,p′ ’s can be calculated
using Eq. (9). We can see in Eq. (26) the joint effect on the
covariance of the Gouy phase ζ (z0) and the squeezing angles
θ0 and θ1 of the two input squeezed states. If θ0 and θ1 are
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FIG. 11. Covariance of output LG modes vs iris radius. The
squeezing parameters of the two separable, squeezed-vacuum states
in the input modes are r0 = r1 = 1, θ0 = θ1 = 0. The iris is placed at
z = 0. We can see that the covariance between the two output modes
peaks at an iris radius of 0.8339w0, which is the radius we use in
Fig. 9(b). Also, the reader might be interested to know that as long as
the squeezing parameters in the LG (l = 0, p = 0) and (l = 0, p = 1)
modes are the same, the covariance always peaks if the iris is placed
at z = 0 and has a radius of 0.8339w0. In our beam-splitter analogy,
if the outputs were again two separable, single-mode squeezed
vacuums, the covariance would be identically 0 for all iris radii,
which is clearly not the case. If the iris acted like a perfect 50:50 beam
splitter, the covariance would be 1

4 sinh2(2r) ≈ 3.29 [32]. However,
due to loss and mode mismatch it peaks here at 0.65. Again, it peaks
when the iris radius is about the beam waist, where the LG (l = 0,
p = 0) and (l = 0, p = 1) mode overlap is maximal.

different to begin with, we can counteract this difference by
altering the iris position z0 to change the Gouy phase. We can
see how the covariance would change with the iris radius in
Fig. 11.

To sum up, when applied to a Gaussian beam, the spatial
mask behaves very much like a multiport beam splitter with
loss. If the input quantum states are displaced squeezed states,
the spatial mask alters the displacement, which is a classical
phenomenon; the spatial mask also alters the squeezing levels
and angles, which is a nonclassical phenomenon. Note that
even though the input squeezed states are pure, minimum-
uncertainty states, the output states are generally mixed states
with Wigner functions similar to displaced squeezed thermal
states. The spatial mask also behaves similarly to a beam
splitter, transforming the product state of two single-mode
squeezed vacuums into, to an extent, an entangled two-mode
squeezed state. Although this transformation is not perfect,
since the spatial mask is lossy and unbalanced compared to a
50:50 beam splitter, there can be no doubt that even a device
as simple as an iris should be treated quantum mechanically
like a beam splitter.

B. Example 2: A single photon in one input state and the
generation of number-path entanglement

In this example we input a single-photon state in signal
mode (l = 0, p = 0) and a vacuum state in signal mode (l = 0,
p = 1) as well as absorption modes A1 and A2. (The input
states for absorption modes are always vacuum.) Therefore
the total input state in four modes is |1〉l=0, p=0 ⊗ |0〉l=0, p=1 ⊗

FIG. 12. As in the previous example, we consider two signal
modes: LG modes (l = 0, p = 0) and (l = 0, p = 1), along with
two absorption modes A1 and A2. The input state is a product state
of a single photon in the (l = 0, p = 0) mode and a vacuum in
other modes: |1〉l=0, p=0 ⊗ |0〉l=0, p = 1 ⊗ |0〉A1

⊗ |0〉A2
. After the

two output absorption modes are traced over, the reduced density
matrix of the two output-signal modes, ρl=0 and p = 0,1re, is given in
Eq. (36). We show in Fig. 13 that the output state shows number-path
entanglement, created by the iris.

|0〉A1
⊗ |0〉A2

, shown in Fig. 12. For the vacuum state, the
corresponding Wigner function is, again,

WN=0(q,p) = 1

π
exp[−(q2 + p2)], (27)

where N is the photon number. For the single-photon state, the
corresponding Wigner function is [31]

WN=1(q,p) = −1

π
exp[−(q2 + p2)]L1(2q2 + 2p2), (28)

where LN is the N th-order Laguerre polynomial. The overall
Wigner function [for LG signal modes (l = 0, p = 0) and
(l = 0, p = 1) and absorption modes A1 and A2] is, therefore,

W (q0,0,p0,0,q0,1,p0,1,qA1,pA1,qA2,pA2)

= WN=0(q0,0,p0,0)WN=1(q0,1,p0,1)

×WN=0(qA1,pA1)WN=0(qA2,pA2). (29)

Using the same method in the last example we calculate the
Wigner function of the output modes. We then can calculate
the Wigner function for either output mode, for example, the
LG mode (l = 0, p = 0), by tracing over the other modes:

Wl=0, p=0(q ′
0,0,p

′
0,0)

=
∫

W (q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1,q

′
A1,p

′
A1,q

′
A2,p

′
A2)

×dq ′
0,1dp

′
0,1dq ′

A1dp
′
A1dq ′

A2dp
′
A2

= (1 − |Jl=0;0,0|2)WN=0(q ′
0,0,p

′
0,0)

+|Jl=0;0,0|2WN=1(q ′
0,0,p

′
0,0). (30)

Therefore, in the output-signal LG mode (l = 0,p = 0), the
reduced density operator is

ρre
l=0, p=0 = (1 − |Jl=0;0,0|2) |0〉 〈0| + |Jl=0;0,0|2 |1〉 〈1| . (31)
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With a similar calculation, we find that, in the output-signal
LG mode (l = 0, p = 1), the reduced density operator is

ρre
l=0, p=1 = (1 − |Jl=0;0,1|2) |0〉 〈0| + |Jl=0;0,1|2 |1〉 〈1| . (32)

From Eqs. (31) and (32) we can immediately see that if we
fire a single photon in the (l = 0, p = 0) mode and a vacuum
in the (l = 0, p = 1) mode, the photon will have a |Jl=0;0,0|2
chance of staying in the (l = 0, p = 0) mode at the output
and a |Jl=0;0,1|2 chance of switching to the (l = 0, p = 1)
output mode. Similarly, it is not difficult to find that if we
fire a single photon in the (l = 0, p = 1) mode and vacuum
in the (l = 0, p = 0) mode, that photon will have a |Jl=0;1,1|2
chance of staying in the (l = 0, p = 1) mode at the output
and a |Jl=0;1,0|2| = Jl=0;0,1|2 chance of switching to the (l =
0, p = 0) output mode. We take another look at this result in
Example 3.

However, only looking at each output mode separately
does not give us the insight of correlation between modes.
To achieve this we need to consider the reduced density
operator for both the output-signal LG modes, (l = 0, p = 0)
and (l = 0, p = 1); this state is generally mixed and, perhaps
more interestingly, contains number-path entanglement, which
again is also created when a single photon strikes an ordinary
50:50 beam splitter. To see this, let us examine the Wigner
function in two output-signal modes:

Wl=0, p=0,1(q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1)

= 1

π2
exp

[ − (
q ′2

0,0 + q ′2
0,0 + q ′2

0,1 + q ′2
0,1

)]
×[(1 − |Jl=0;0,0|2 − |Jl=0;0,1|2)

+|Jl=0;0,0|2L1
(
2q ′2

0,0 + 2q ′2
0,0

)
+|Jl=0;0,1|2L1

(
2q ′2

0,1 + 2q ′2
0,1

)
+2Jl=0;0,0J

∗
l=0;0,1(p′

0,0 − iq ′
0,0)(p′

0,1 + ip′
0,1)

+2J ∗
l=0;0,0Jl=0;0,1(p′

0,0 + iq ′
0,0)(p′

0,1 − ip′
0,1)]. (33)

The quantum state corresponding to the Wigner function
given in Eq. (33) is a mixed state of (a) the vacuum state,

|φ1〉 = |0〉l=0, p=0 ⊗ |0〉l=0, p=1 , (34)

with a probability of 1 − |Jl=0;0,0|2 − |Jl=0;0,1|2, and (b) an
entangled state of the form

|φ2〉 = J ∗
l=0;0,1√

(|Jl=0;0,0|2 + |Jl=0;0,1|2)
|0〉l=0, p=0 ⊗ |1〉l=0, p=1

+ J ∗
l=0;0,0√

(|Jl=0;0,0|2 + |Jl=0;0,1|2)
|1〉l=0, p=0 ⊗ |0〉l=0, p=1 ,

(35)

with a probability of |Jl=0;0,0|2 + |Jl=0;0,1|2. Therefore the
reduced density matrix for the output-signal LG mode
(l = 0, p = 0) and (l = 0, p = 1) is

ρre
l=0, p=0,1 = (1 − |Jl=0;0,0|2 − |Jl=0;0,1|2) |φ1〉 〈φ1|

+ (|Jl=0;0,0|2 + |Jl=0;0,1|2) |φ2〉 〈φ2| . (36)

One can verify this result by calculating the Wigner
function of ρre

l=0, p=0,1 and comparing it with Eq. (33). Other

FIG. 13. Minimized Clauser-Horne (CH) combination vs iris
position for different-sized irises. The CH combination is minimized
in phase space. Note that the minimized CH combination is below
−1, proving that the Bell inequality is violated. The farther the CH
combination drops below −1, the more easily the violation can be
observed. In our beam-splitter analogy it is well known [32] that a
single photon incident on a 50:50 beam splitter produces the entangled
state, 1√

2
(|1〉 |0〉 + i |0〉 |1〉).

works have also been done to demonstrate the entanglement
generation using spatial masks [33–35]. One can examine the
violation of the Clauser-Horne (CH) Bell inequality [36,37]
of the entangled state |φ2〉. The farther the Clauser-Horne
combination drops below −1, the easier the violation can be
observed [38]. Therefore by plotting the minimized Clauser-
Horne combination vs the iris position, shown in Fig. 13, we
can quantitatively determine the extent of the entanglement,
which is generated by the iris, that can be observed.

C. Example 3: A single photon in each of two input states and
a Hong-Ou-Mandel-like effect

It is well known that when two identical photons are input
into two separate modes of a beam splitter, photon bunching
occurs. We show here that the iris produces a similar effect
on two LG modes. Now let us input a single-photon state
in mode (l = 0, p = 0) and another single-photon state in
mode (l = 0, p = 1). Photon detectors are used to detect the
photon numbers in the two output-signal LG (l = 0, p = 0)
and (l = 0, p = 1) modes, then the photon detector count
signals are fed into a correlator. The setup diagram is shown in
Fig. 14. We then repeat this experiment multiple times so that
we can measure the probability of detecting a single photon
in each of the output-signal modes, which is refereed to as
the coincidence probability. The goal is to produce a spatial
mask version of the Hong-Ou-Mandel effect [39]. Previous
works have already been done to demonstrate the HOM effect
in multiple-spatial-mode experiments [40–42].

Let us first examine the case where, apart from being
in different modes, the single-photon state in mode (l = 0,

p = 0) and the single-photon state in mode (l = 0, p = 1)
are completely distinguishable. This distinguishability can
be caused by many things, such as the two photons having
orthogonal polarizations or a large frequency difference or
large time delay when they are fired. In this case when
the two photons are completely distinguishable, they will
not interfere and the case can be viewed simply as two
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FIG. 14. Single-photon state in both of the two input-signal
modes: the LG mode (l = 0, p = 0) and (l = 0, p = 1) and the
vacuum state in the two input-absorption modes A1 and A2. Therefore
the total input state of the four modes is |1〉l=0, p = 0 ⊗ |1〉l=0, p =
1 ⊗ |0〉A1

⊗ |0〉A2
. The coincidence probability of the two output-

signal modes is given by the probability of the photon detectors
receiving one photon each.

independent experiments combined: (a) input one photon in
mode (l = 0, p = 0) and a vacuum in the other modes; (b)
input one photon in mode (l = 0, p = 1) and a vacuum in
the other modes. Therefore we can simply use the analysis in
Example 2, and the coincidence probability is the probability
that both photons will stay in the same modes at the output
plus the probability that both photons will switch to the
other modes, which is J 2

0;0,0 ∗ J 2
0;1,1 + |J0;1,0|2 ∗ |J0;0,1|2 =

J 2
0;0,0J

2
0;1,1 + |J0;1,0|4.

In the case where the two photons are completely indis-
tinguishable, the coincidence probability can be calculated by
the following procedure: (a) Similarly to Eq. (29), we find the
total input-state Wigner function,

W (q0,0,p0,0,q0,1,p0,1,qA1,pA1,qA2,pA2)

= WN=1(q0,0,p0,0)WN=1(q0,1,p0,1)

×WN=0(qA1,pA1)WN=0(qA2,pA2), (37)

(b) and we find the total output-state Wigner function
W (q ′

0,0,p
′
0,0,q

′
0,1,p

′
0,1,q

′
A1,p

′
A1,q

′
A2,p

′
A2) using the transforma-

tion described in Eqs. (19) and (20); (c) and we find the reduced
density matrix for the output-signal modes by tracing over the
absorption modes,

Wl=0, p=0; l=0, p=1(q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1)

=
∫

W (q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1,q

′
A1,p

′
A1,q

′
A2,p

′
A2)

×dq ′
A1dp

′
A1dq ′

A2dp
′
A2; (38)

(d) and we find the Wigner function for the state of a
single photon in each output-signal mode, which is the state
when coincidence is detected ρcoincidence = |1〉l=0,p=0 〈1| ⊗
|1〉l=0,p=1 〈1|,

Wcoincidence(q ′
0,0,p

′
0,0,q

′
0,1,p

′
0,1)

= WN=1(q ′
0,0,p

′
0,0) × WN=1(q ′

0,1,p
′
0,1); (39)

(e) and we find the coincidence probability by projecting the
output reduced density matrix onto the state ρcoincidence and

FIG. 15. Coincidence probability vs iris position. Lines of dif-
ferent colors represent different iris sizes, denoted by the percentage
transmitted beam intensity through the iris at the focal point (relative
to the full-beam intensity) as well as the iris radius (relative to
w0). Solid lines represent indistinguishable photons input in two
signal modes; dashed lines, distinguishable photons. We can see
that for irises of the same size and placed in the same position on
the beam axis, inputting indistinguishable photons always leads to a
higher coincidence probability than inputting distinguishable photons
does. We call this a Hong-Ou-Mandel bump, and it is a hallmark of
two-photon interference.

calculating the trace,

Pcoincidence

= tr
[
ρre

l=0, p=0,1 |1〉l=0, p=0 〈1| ⊗ |1〉l=0, p=1 〈1| ]
=

∫
Wl=0, p=0; l=0, p=1Wcoincidencedq ′

0,0dp
′
0,0dq ′

0,1dp
′
0,1

= J 2
0;0,0J

2
0;1,1 + |J0;1,0|4 + 2J0;0,0J0;1,1|J0;1,0|2. (40)

Therefore, the coincidence probability for indistinguishable
photons J 2

0;0,0J
2
0;1,1 + |J0;1,0|4 + 2J0;0,0J0;1,1|J0;1,0|2, is greater

than the coincidence probability for distinguishable photons
J 2

0;0,0J
2
0;1,1 + |J0;1,0|4, since J0;0,0,J0;1,1,|J0;1,0|2 � 0, as shown

in Fig. 15.
Therefore in the iris version of the HOM effect, when

photons in the two input-signal modes are made to be
indistinguishable, the coincidence probability rises. This is
in contrast with the beam-splitter version of the HOM effect,
in which the coincidence probability falls when photons in two
input ports are made to be indistinguishable. In short, the iris
produces a HOM “bump,” while the beam splitter produces a
HOM “dip.”

The physical interpretation of the bump is that, while a
beam splitter introduces a π phase shift in the reflected beam,
the spatial mask in our case does not produce any phase shift
when the same two LG modes in the incident and diffracted
beams are considered. This fermionlike antibunching behavior
has been more thoroughly investigated in Ref. [43].

V. CONCLUSION

We have analyzed Gaussian beams both classically and
quantum mechanically. We have developed a clear method
to calculate the interaction between quantum states in various
Gaussian modes. While we focus on the mode interactions
introduced by an iris, it is straightforward to extend our method
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to other spatial masks or other optical devices. The framework
we established allows us to analyze arbitrarily many Gaussian
modes including various orbital angular momentum LG modes
as well as HG modes. We verified our theory via our
experiment, in which we generated squeezed states in various
LG modes and found that the experimental data agreed with our
numerical simulation. We, finally, gave three examples to show
some interesting phenomena that can be easily tested in future
experiments. These examples are displaced (and nondisplaced)
squeezed-vacuum input states, along with single- and double-
photon input states. These examples predict that the diffraction
process gives rise to photon-number entanglement and a Hong-
Ou-Mandel-like effect, which implies that the spatial mask
behaves similarly to an ordinary beam splitter. As we pointed
out, the purpose of this work is to set up a general method for
analyzing quantum-state interaction between Gaussian modes,

which can be useful in many ways, including creating a specific
quantum state in higher-order modes from lower-order modes,
creating entanglement between modes, optimizing overall
squeezing, and designing specific interaction between different
OAM modes.
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