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ABSTRACT

We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser
Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova
remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron
stars. One targetʼs parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a
broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches
coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the
matched-filtering  -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong
(low) as 4 × 10−25 on intrinsic strain, 2 × 10−7 on fiducial ellipticity, and 4 × 10−5 on r-mode amplitude. These
beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star
ellipticities and r-mode amplitudes.

Key words: gravitational waves – ISM: supernova remnants – stars: neutron
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1. INTRODUCTION

Young neutron stars are attractive targets for searches for
continuous gravitational waves (GWs) even if they are not
detected as pulsars (Wette et al. 2008; Owen 2009; Abadie
et al. 2010). Some are seen as non-pulsing central compact
objects (CCOs) in supernova remnants (SNRs), and some
young pulsar wind nebulas (PWNs) and SNRs indicate the
location of a young neutron star with enough precision for a
directed search—a search over frequency and spin-down
parameters, but not over sky positions. Some young pulsars
spin fast enough to emit GWs in the frequency band of ground-
based interferometers such as the Laser Interferometer
Gravitational-wave Observatory (LIGO) and Virgo, and there-
fore some young non-pulsars may also spin fast enough. Even
without observed pulsations and spin-down parameters, it is
possible to estimate an indirect upper limit on GW emission,
analogous to the spin-down limit (Shklovskii 1969) for known
pulsars, based on the age of and distance to the star plus energy
conservation (Wette et al. 2008). Given the great uncertainties
in predictions of GW emission from young neutron stars, we
use this indirect limit rather than those predictions to pick
targets for directed searches.

We describe such searches of data from the sixth LIGO
science run (S6) for continuous GWs from Cas A and eight
more SNRs with known or suspected young isolated neutron
stars with no observed electromagnetic pulsations. These
targets were chosen so that a computationally feasible coherent
search similar to Abadie et al. (2010) could beat the indirect
limits on GW emission. Therefore, each search had a chance of
detecting something, and non-detections could constrain the
starʼs GW emission, provided that emission is at a frequency in
the band searched. No search found evidence for a GW signal,
and hence the main result is a set of upper limits similar to
those presented in Abadie et al. (2010). These upper limits on
GW emission translate into upper limits on the fiducial
ellipticity and r-mode amplitude of each neutron star as a
function of GW frequency the star could be emitting (see
Section 3.2). The ellipticity and r-mode upper limits set by the
searches described here were within the ranges of theoretical
predictions (Bondarescu et al. 2009; Johnson-McDaniel 2013),
another indicator that these searches reached interesting
sensitivities (see Section 4).

For context, we compare to the other continuous GW
searches, which correspond to three other astronomical
populations that nonetheless share astrophysical emission
mechanisms and other properties (Owen 2009). Directed
searches occupy a middle ground between all-sky searches
and targeted searches for known pulsars in the key trade-off for
continuous waves: searches with greater sensitivity and less
computational cost require more astronomical information, and
have different indirect limits to beat to reach an interesting
sensitivity.

The first search for continuous waves in LIGO data, from its
first science run (S1), was for a single known pulsar (Abbott
et al. 2004). Such a search, guided by a precise timing solution,
is computationally cheap and achieves the best strain sensitivity
for a given amount of data since all available data can be
integrated coherently. Since then, searches of data up to S6
have targeted up to 195 pulsars (Abbott et al. 2005b, 2007c,
2008b, 2010; Abadie et al. 2011a; Aasi et al. 2014c). The four
most recent of these papers set direct upper limits on GW

emission stricter than the spin-down limits derived from energy
conservation, for a few of the pulsars searched, thereby
marking the point at which LIGO and Virgo began revealing
new information about these pulsars. The upper limits also
corresponded to neutron-star ellipticities within the range
of theoretical predictions for exotic equations of state
(Owen 2005).
Other continuous GW searches have surveyed the whole sky

for neutron stars not seen as pulsars, using great computational
power to cover wide frequency bands and large ranges of spin-
down parameters (Abbott et al. 2005a, 2007a, 2008a, 2009a,
2009b, 2009c; Abadie et al. 2012; Aasi et al. 2013b, 2014a,
2014d) and recently possible binary parameters too (Aasi
et al. 2014b). Several of the recent all-sky searches have set
direct upper limits competitive with indirect upper limits based
on simulations of the galactic neutron-star population (Knispel
& Allen 2008).
Between these two extremes of computational cost and

sensitivity are the directed searches, where the sky location
(and thus the detector-frame Doppler modulation) is known but
the frequency and other parameters are not. Directed searches
can be divided further into searches for isolated neutron stars
(the type of search described in this paper), and searches for
neutron stars in binary systems, with particular emphasis on
accreting neutron stars in close (low-mass X-ray) binaries. For
accreting neutron stars, a different indirect limit can be set
based on angular momentum conservation (Papaloizou &
Pringle 1978). Unlike the energy conservation-based indirect
limits for other neutron star populations, there is an argument
(partially based on observations) that accreting neutron stars
emit close to their limit, which also corresponds to reasonable
ellipticities and r-mode amplitudes (Bildsten 1998). So far the
only accreting neutron star targeted has been the one in the
low-mass X-ray binary Sco X-1 (Abbott et al. 2007a, 2007b;
Abadie et al. 2011b; Aasi et al. 2015c). Searches for this object
must cover not only a range of GW frequencies since no
pulsations are observed, but also a range of orbital parameters
since there are substantial uncertainties in these. Direct upper
limits from searches for Sco X-1 have not beaten the indirect
limit derived from accretion torque balance (Papaloizou &
Pringle 1978), but may with data from interferometers
upgraded to the “advanced” sensitivity (Harry 2010; Sammut
et al. 2014; Aasi et al. 2015a).
The type of directed search described here, for isolated

neutron stars not seen as pulsars, was first performed on data
from the fifth LIGO science run (S5) for the CCO in the SNR
Cas A (Abadie et al. 2010). Since then, similar searches, using
different data analysis methods, have been performed for
supernova 1987A and unseen stars near the galactic center
(Abadie et al. 2011b; Aasi et al. 2013a). Directed searches for
isolated neutron stars are intermediate in cost and sensitivity
between targeted pulsar searches and all-sky searches because a
known sky direction allows for searching a wide band of
frequencies and frequency derivatives with much less comput-
ing power than the all-sky wide-band searches (Wette
et al. 2008) and no search over binary parameters is needed.
The indirect limits to beat are numerically similar to those for
known pulsars—the strain limit for Cas A is almost identical to
that for the Crab pulsar. One disadvantage of this type of search
compared to pulsar searches is that the spin frequencies of the
neutron stars are not known. Based on pulsar statistics, it is
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likely that most of these stars are not spinning fast enough to be
emitting GWs in the detectable frequency band, making it all
the more important to search multiple targets. Here we improve
the methods of the S5 Cas A search (Abadie et al. 2010) and
extend our search targets to nine young SNRs total.

The rest of this article is structured as follows. In Section 2,
we present the methods, implementation, and results of the
searches. The upper limits set in the absence of evidence for a
signal are presented in Section 3, and the results are discussed
in Section 4. In the appendix, we describe the performance of
the analysis pipeline on hardware injected signals.

2. SEARCHES

2.1. Data Selection

S6 ran from 2009 July 7 21:00:00 UTC (GPS 931035615) to
2010 October 21 00:00:00 UTC (GPS 971654415). It included
two interferometers with 4-km arm lengths, H1 at LIGO
Hanford Observatory (LHO) near Hanford, Washington and L1
at LIGO Livingston Observatory (LLO) near Livingston,
Louisiana. It did not include the 2-km H2 interferometer that
was present at LHO during earlier runs. Plots of the noise
power spectral density (PSD) curves and descriptions of the
improvements over S5 can be found, for example, in Aasi et al.
(2015b). A description of the calibration and uncertainties can
be found in Bartos et al. (2011). The phase calibration errors at
the frequencies searched were up to 7◦ and 10◦ for H1 and L1,
respectively, small enough not to affect the analysis. The
corresponding amplitude calibration errors were 16% and 19%
respectively. For reasons discussed in Aasi et al. (2014c), we
estimate the maximum amplitude uncertainty of our joint H1-
L1 results to be 20%.

Concurrently with the LIGO S6 run, the Virgo interferometer
near Cascina, Italy had its data runs VSR2 and VSR3.
Although Virgo noise performance was better than LIGO in
a narrow band below roughly 40 Hz, it was worse than LIGO
by a factor of two to three in amplitude at the higher
frequencies of the searches described here. Virgoʼs declination
response function for many-day observations averaged over
inclinations and polarizations is within about 10% of that of
LHO, and even extreme inclinations and polarizations are not
too far from average (see Figure 4 and Equation (86),
respectively, of Jaranowski et al. 1998). Hence Virgoʼs
single-interferometer sensitivity is worse by a factor of two
to three in amplitude, and since the signal-to-noise is added in
quadrature between interferometers, the addition of Virgo
would enhance the sensitivity to a typical source by at most a
few percent—much less than the LIGO calibration uncertainty.
Since data analysis costs the same for all interferometers and
computational resources are limited, the searches described
here only used LIGO data.

Like many other continuous-wave searches, those reported
here used GW data in the Short Fourier Transform (SFT)
format. The series of science-mode data, interrupted by planned
(maintenance) and unplanned downtime (earthquakes, etc.),
minus short segments which were “category 1” vetoed (Aasi
et al. 2015b), was broken into segments of =T 1800 s.SFT
There were a total of 19,268 of these segments for H1 and L1
during the S6 run. Each 30-minute segment was first high pass
filtered in the time domain through a tenth-order Butterworth
filter with a knee frequency of 30 Hz to attenuate low-
frequency seismic noise. Then it was Tukey windowed with

parameter 0.001 (i.e., only 0.1% of samples were modified) to
mitigate edge artifacts. Finally, each segment was Fourier
transformed and frequencies from 40–2035 Hz were recorded
in the corresponding SFT.
Although a directed search is computationally more tractable

than an all-sky search, computational costs nonetheless
restricted us to searching a limited time span Tspan of the S6
data. This span, and the frequency band fmin–fmax, were
determined for each target by an algorithm designed to fix the
computational cost per target as described in Section 2.4. The
data selection criterion was the same as in Abadie et al. (2010),
maximizing the figure of merit

å
S f t

1

,
1

f t h, ( ) ( )

where the sums run over the given Tspan, fmin, and fmax for each
target. Here f is the frequency of each bin (discretized at

T1 SFT), t is the time stamp of each SFT, and Sh is the strain
noise PSD harmonically averaged over the H1 and L1
interferometers. Maximizing this figure of merit roughly
corresponds to optimizing (minimizing) the detectable GW
strain, harmonically averaged over the frequency band.
Although the frequency band for each search varied target by
target, the sum was dominated by the least noisy frequencies
that are searched for all targets, and thus the optimization
always picked time spans near the end of S6 when the noise at
those frequencies was best (least) and the SFT duty factor (total
SFT time divided by Tspan divided by numbers of interferom-
eters [two]) was highest. This figure of merit also neglects the
small effect where LHO is better for high declination sources
and LLO is better for low (Jaranowski et al. 1998). Since the
optimal data stretches tended to have comparable amounts of
H1 and L1 data, the declination effect was at most a few
percent, less than the amplitude calibration uncertainties.

2.2. Analysis Method

The analysis was based on matched filtering, the optimal
method for detecting signals of known functional form. To
obtain that form, we assumed that the instantaneous frequency
of the continuous (sinusoidal) GWs in the solar system
barycenter was

+ - + -f t f f t t f t t
1

2
. 20 0

2( ) ˙ ( ) ̈ ( ) ( )

That is, we assumed that none of the target neutron stars
glitched (had abrupt frequency jumps) or had significant timing
noise (additional, perhaps stochastic, time dependence of the
frequency) during the observation. We also neglected third and
higher derivatives of the GW frequency, based on the time
spans and ranges of ḟ and f ̈ covered. The precise expression
for the interferometer strain response h t( ) to an incoming
continuous GW also includes amplitude and phase modulation
by the changing of the beam patterns as the interferometer
rotates with the Earth. It depends on the sourceʼs sky location
and orientation angles, as well as on the parameters of the
interferometer, and takes the form of four sinusoids. We do not
reproduce the lengthy expression here, but it can be found in
Jaranowski et al. (1998).
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The primary detection statistic was the multi-interferometer
 -statistic (Cutler & Schutz 2005). This is based on the single-
interferometer  -statistic (Jaranowski et al. 1998), which
combines the results of matched filters for the four sinusoids of
the signal in a way that is computationally fast and nearly
optimal (Prix & Krishnan 2009). In Gaussian noise 2 is
drawn from a c2 distribution with four degrees of freedom, and
hence  2 is roughly a power signal-to-noise ratio.

We used the implementation of the  -statistic in the
LALSuite package, tag S6SNRSearch, publicly available at
https://www.lsc-group.phys.uwm.edu/daswg/projects/
lalsuite.html. In particular, most of the computing power of the
search was spent in the ComputeFStatistic_v2_SSE
program, which unlike the version used in the preceding search
of this type (Abadie et al. 2010) uses the Intel SSE2 floating-
point extensions and only 8 terms rather than 16 in the Dirichlet
kernel. Both of these changes sped up the analysis (see below).

The algorithm for setting up a “template bank,” or choosing
discrete points in the parameter space of f f f, ,( ˙ ̈) to search,
was the same as in Abadie et al. (2010). The “mismatch” or
maximum loss of 2 due to discretization of the frequency and
derivatives (Owen 1996; Brady et al. 1998) was 0.2, again the
same as in Abadie et al. (2010). Choosing to keep the
computational cost the same for all searches resulted in some
variation of the total number of templates per search,
3–12 × 1012 compared to the 7 × 1012 in Abadie et al. (2010).

2.3. Target Objects

The goal of these searches was to target young non-pulsing
neutron stars. Starting with the comprehensive catalog of SNRs
(Green 2009, 2014), augmented by a search of the recent
literature, we narrowed the list to remnants with confirmed
associated non-pulsing “point” sources—CCOs (mostly soft
thermal emission, no radio, sub-arcsecond size) or small PWNs
(mostly hard nonthermal emission, sub-arcminute size) or
candidates. These strongly indicate the presence of a neutron
star, though they do not indicate if it is emitting in the LIGO
frequency band. We made our searches in the hopes that some
of the stars are emitting in this band. We also included
SNRG1.9+0.3, though a point source is not visible (and may
not exist since the supernova may have been Type Ia), because
this remnant is the youngest known and is small enough to
search with a single sky location.

The final selection of target objects and search parameters
was based on beating the indirect upper limit on GW emission
due to energy conservation. This upper limit is based on the
optimistic assumption that all of the starʼs (unobserved) spin-
down is due to GW emission, and has been since the
supernova. In terms of the “intrinsic strain amplitude” h0
defined by Jaranowski et al. (1998), this indirect limit is (Wette
et al. 2008)

< ´ - ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠h

D a
1.26 10

3.30 kpc 300 years
, 30

24
1 2

( )

where D is the distance to the source and a is its age. This
assumes a moment of inertia 1045 g cm2 and (spherical
harmonic m = 2) mass quadrupole GW emission, the usual
assumptions in the GW literature; and also assumes that the star
has spun down at least 10%–20% since birth, the usual
assumption in the pulsar literature. For current quadrupole (r-
mode) emission, the indirect limit on h0 is slightly higher

(Owen 2010); but we used the mass quadrupole value. The
intrinsic strain h0 is generally a factor two of two to three
greater than the actual strain amplitude response of a detector; it
is defined precisely in Jaranowski et al. (1998) and related to
standard multipoles and properties of the source in Owen
(2010). It can be converted to fiducial ellipticity and r-mode
amplitude of a neutron star via Equations (7) and (8). In order
to beat the limit (3) over as wide a frequency band as possible,
we generally used the most optimistic (lowest) age and distance
estimates from the literature, corresponding to the highest
indirect limit, with exceptions noted below. The algorithm for
that final selection is described in the next subsection.
The resulting target list and astronomical parameters are

shown in Table 1. The individual SNRs and the provenance of
the parameters used are:
G1.9+0.3: currently the youngest known SNR in the galaxy

(Reynolds et al. 2008). Nothing is visible inside the remnant,
which although more than an arcminute across is small enough
to be searched with one sky position for the integration times
used here (Whitbeck 2006). Several arguments favor it being a
Type Ia (Reynolds et al. 2008), which would leave no neutron
star behind, but this is not definite and the remnantʼs youth
makes it an interesting target on the chance it is not Type Ia.
We used the position of the center of the remnant from the
discovery paper (Reich et al. 1984). The age and distance are
from the “rediscovery” paper (Reynolds et al. 2008).
G18.9–1.1: the position is that of the Chandra point source

discovered by Tüllmann et al. (2010). There is also an X-ray
and radio PWN candidate trailing back toward the center of the
SNR (Tüllmann et al. 2010). Age and distance estimates are
from Harrus et al. (2004).
G93.3+6.9: also known as DA 530. The position and age are

from Jiang et al. (2007). No true (sub-arcsecond) Chandra
point source is seen, but since the X-ray and radio PWN
candidate is barely detected in X-rays and the SNR overall is
anomalously faint in X-rays, it is plausible that the pulsar
powering the nebula is weak and remains to be detected in the
brightest part of the PWN. The e-folding scale of X-ray
intensity at the center of the PWN candidate is 6″, which
qualifies as a point source for the GW search. The distance
estimate is from Foster & Routledge (2003).

Table 1
Target Objects and Astronomical Parameters Used in Each Search

SNR Other name R.A.+decl. D a
(G name) (J2000) (kpc) (kyr)

1.9+0.3 174846.9−271016 8.5 0.1
18.9−1.1 182913.1−125113 2 4.4
93.3+6.9 DA 530 205214.0+551722 1.7 5
111.7−2.1 Cas A 232327.9+584842 3.3 0.3
189.1+3.0 IC 443 061705.3+222127 1.5 3
266.2−1.2 Vela Jr. 085201.4−461753 0.2 0.69
266.2−1.2 Vela Jr. 085201.4−461753 0.75 4.3
291.0−0.1 MSH 11−62 111148.6−603926 3.5 1.2
347.3−0.5 171328.3−394953 0.9 1.6
350.1−0.3 172054.5−372652 4.5 0.6

Note. Values of distance D and age a are at the optimistic (nearby and young)
end of ranges given in the literature, except for the second search for Vela Jr.
See the text for details and references.
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G111.7–2.1: also known as Cas A. The point source is the
prototypical CCO and was discovered with Chandraʼs first
light (Tananbaum 1999). The position is from that reference,
the distance from Reed et al. (1995), the age from Fesen et al.
(2006). In this search, we used 300 years rather than 330 years
as in Abadie et al. (2010), reflecting the idea of using optimistic
ends of ranges given in the literature, which also corresponds to
broader parameter space coverage. There is no evidence for a
PWN, indicating that the neutron star may be slowly spinning
or (better for GW emission) that it may have a weak surface
magnetic field.

G189.1+3.0: also known as IC 443. The position is that of
the Chandra point source found by Olbert et al. (2001). It is a
CCO-like object, though not at the center of the remnant,
buried in a comet-shaped X-ray, radio, and possibly γ-ray
PWN. This object is often studied, with a wide range of
distance and age estimates in the literature. We used Petre et al.
(1988) for an optimistic age estimate. We did not use the most
optimistic distance quoted, but the assumed association with
the I Gem cluster from Fesen & Kirshner (1980).

G266.2–1.2: also known as Vela Jr. The position is that of
the Chandra point source found by Pavlov et al. (2001). It is a
CCO with no evidence of a PWN. The literature on this object
also features a wide range of age and distance estimates,
enough that we performed two searches (“wide” and “deep”).
We used Iyudin et al. (1998) for the most optimistic age and
distance, which were used in the wide search. The more
pessimistic numbers, for the deep search, are from Katsuda
et al. (2008). Even more extreme numbers have been quoted in
the literature, but we restricted ourselves to those publications
that contained some derivations of the numbers. (This was true
at the time the computations were performed: as this manu-
script was about to be submitted, a manuscript with derivations
of more pessimistic numbers was made public (Allen
et al. 2015).)

G291.0–0.1: also known as MSH 11−62. The position and
age are from the Chandra point source discovery paper (Slane
et al. 2012). The distance is from Moffett et al. (2001). The age
and distance are derived in slightly inconsistent ways, but,
rather than attempt to repeat the calculations, we stuck to the
numbers quoted in the literature. The point source is embedded
in a powerful PWN seen in X-rays and radio and possibly γ
rays, although the poor Fermi-LAT spatial resolution makes
the latter identification uncertain (Slane et al. 2012).

G347.3–0.5: Mignani et al. (2008) obtained the sub-
arcsecond position from archival Chandra data, although the
CCO had been identified in ASCA data earlier (Slane
et al. 1999). There is no evidence of a PWN. We used the
distance from Cassam-Chenaï et al. (2004) and the age from the
proposed identification with a possible SN 393 (Wang
et al. 1997). Although this identification may be problematic
given the inferred properties of such a supernova, other age
estimates are comparable (Fesen et al. 2012).

G350.1–0.3: position and distance estimates are from the
discovery paper of the XMM-Newton point source by Gaensler
et al. (2008). This is a CCO candidate with no evidence of a
PWN. The age is from Chandra observations Lovchinsky
et al. (2011).

2.4. Target Selection and Search Parameters

The final selection of targets involved estimating GW search
sensitivities and computing costs to determine which objects

could feasibly be searched well enough to beat the energy
conservation limits on GW emission—see Equation (3). The
sensitivity of each search was worked out in two iterations.
The first iteration made an optimistic sensitivity estimate

using the noise PSD harmonically averaged over all S6 and
both LIGO interferometers. Writing the 95% confidence upper
limit (see Section 3) on intrinsic strain h0 as

= Qh
S

T
, 4h

0
95%

data
( )

where Tdata is the total data live time, the first iteration used a
threshold factor Θ of 28 to ensure that it was too optimistic and
thus did not rule out any targets that the second iteration would
find feasible. (The second iteration results are not sensitive to
the precise Θ chosen in the first iteration, as long as the first
iteration value is slightly lower than the true values, which are
in the 30 s as was seen in Abadie et al. 2010 and in the results
of the second iteration.)
For a given frequency, we chose the range of first and second

frequency derivatives in the same manner as Abadie et al.
(2010). That is, we assumed a range of braking indices
=n ff f 2̈ ˙ from 2–7, so that
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The physical reasoning behind these choices is explained
further in Abadie et al. (2010). The goal is to cover observed
braking indices plus a variety of predicted GW emission
mechanisms whose relative importance may have changed over
time. Note that the range of ḟ does not extend up to zero. This
might seem to be an issue as it would not include “anti-
magnetars,” or young neutron stars which are observed to spin
down very slowly and hence must have small surface magnetic
fields (Gotthelf et al. 2008). However, these are stars we would
not detect anyway—any star with GW emission close enough
to the indirect limit to be detected would have a high spin-down
due to that emission, even if it had a low surface magnetic field.
The computational cost is a function of the parameter space

covered. That functional dependence was used to choose the
parameters of these searches and will be used in planning future
searches. The product of the ranges on f, ḟ , and f ̈ suggests that
the size of the parameter space and the computational cost
should scale as -f a Tmax

3 3
span
7 (Wette et al. 2008). In the limit

that only one value of f ̈ is used, the range of that parameter
should be eliminated from the product, the parameter space
should be two-dimensional rather than three, and the scaling
should be -f a T .max

2 1
span
4 By setting up several searches with

different parameters perturbed from those of the Cas A search,
we observed that the computational cost scaled roughly as

-f a T .max
2.2 1.1

span
4 Comparing this to Wette et al. (2008) shows

that the effective dimensions of the template banks were nearly
two rather than three, as confirmed by the fact that the number
of different f ̈ values in the template banks was typically more
than one but small.
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Assuming a 70% duty factor, and the empirical scaling for
computational cost above, we determined the three unknowns
f f T, ,min max span( ) by setting the sensitivity (4) equal to the
indirect limit on h0 (3) at both ends of the search frequency
band (fmin and fmax). The third condition to fix the three
unknowns was to keep the computational cost per search at
roughly the same nominal value as Abadie et al. (2010),
although because of hardware and software improvements the
total computational time was less (see below).

The second iteration involved running the analysis pipeline
on small bands to get true template densities, the noise PSD of
the optimal data stretch for each search, upper limits, and thus a
better estimate of each Θ. For at least a 10 Hz band near each
fmin and fmax, we ran the search (without looking at detection
candidates) to get upper limits. We then read off the value of Θ
(from the observed upper limits and inverting Equation (4)) at
frequencies near fmin and fmax. These values were spot checked
beforehand to verify that upper limits were comparable to
indirect limits. This second iteration was good enough,
considering calibration uncertainties and other errors. The
lowest (best) values of Θ were comparable to the 31.25
predicted by averaging the calculation of Wette (2012) over
declination, but in some bands Θ could be more than 40
because of narrow noisy and/or non-stationary bands. In
general, Θ rose slightly at higher frequencies because of the
increasing density of templates (per Hz).

Table 2 lists the targets and other GW search parameters
determined by the sensitivity algorithm. These parameters were
confirmed by several consistency checks.

For each search, we checked that f ̈ was the highest
frequency derivative needed for the resulting Tspan using the
parameter-space metric of Whitbeck (2006). Specifically, we
computed the diagonal metric component for the third
frequency derivative and verified that the 2 lost by neglecting
that derivative in the worst corner of parameter space searched
was much less than the 20% template bank mismatch: in the
worst case, the Vela Jr. wide search, it was just under 1%.

For each search we also checked the “pixel size” obtained
from the metric on the sky position parameters to verify that
more than one sky position was not needed. The position error
ellipses for a 20% mismatch were roughly 0.8–2 arcmin across
the minor axis for Tspan of two weeks, and that width scaled as
the inverse of Tspan. Most of the target positions are known to
sub-arcsecond accuracy. The location of the object in
SNR G93.3+6.9 is known to a few arcseconds. SNR G1.9

+0.3 has no known object inside, but the remnant itself is
barely an arcminute across; and, given the age and distance,
any neutron star would have moved only a few arcseconds
from the center of the remnant even at transverse kick
velocities of the order of 1000 km s−1. Since the integration
time for that SNR was short, the error ellipse was several
arcminutes across.
We also confirmed that the standard 1800 s SFTs do not

cause problems. The  -statistic code requires that signals not
change more than a frequency bin over the duration of an SFT.
The maximum ḟ feasible is then 1/(1800 s) » ´ -3 102 7

Hz s−1. The strongest ḟ from orbital motion in these searches is
2 kHz p´ ´ » ´- -10 2 1 year 4 104 8 Hz s−1, where the
10−4 is the Earthʼs orbital velocity in units of c. The strongest
intrinsic spin-down is 2 kHz/690 year » ´ -9 10 8 Hz s−1.
(Both of these figures come from the Vela Jr. wide search.)

2.5. Implementation

All searches ran on the Atlas computing cluster at the Max
Planck Institute for Gravitational Physics (Albert Einstein
Institute) in Hanover, Germany. Most searches used
140,000–150,000 computational core-hours on Intel Xeon
3220 processors, except the Vela Jr. wide search which used
about 110,000. The costing algorithm became less accurate for
that search because the effective dimensionality of the
parameter space was closer to three than to two, as the range of
f ̈ searched was more than usual. This will need to be accounted
for in future searches over wide bands and/or short spans. The
number of matched filtering templates used in each search was
about 3−12 × 1012, comparable to the 7 × 1012 used in Abadie
et al. (2010). The latter cost about 420,000 core-hours; the
factor of three speed-up was due mainly to the SSE2 floating-
point extensions used in the new code.
The way the search costs were split into cluster computing

jobs affected the automated vetoes described in the next
subsection. Each search was split into nominal 5-hr jobs,
typically 28,000–30,000 jobs per search, except the Vela Jr.
wide search which was about 22,000. In order to keep the
search jobs at roughly the same computational cost, the
frequency band covered by each job varied with frequency. The
Vela Jr. wide search had jobs covering bands from 35 mHz to
nearly 2 Hz at low frequencies, while the other searches had
search job bands on the order of a few mHz to tens of mHz.
Each search job recorded all candidates with 2 above about

Table 2
Derived Parameters Used in Each Search

SNR fmin fmax Tspan Tspan Start of Span H1 L1 Duty
(G name) (Hz) (Hz) (s) (days) (UTC, 2010) SFTs SFTs factor

1.9+0.3 141 287 788345 9.1 Aug 22 00:23:45 356 318 0.77
18.9−1.1 132 298 2186572 25.3 Aug 13 02:02:24 786 912 0.70
93.3+6.9 109 373 2012336 23.3 Aug 10 18:49:49 770 813 0.71
111.7−2.1 91 573 730174 8.4 Aug 22 10:27:49 332 289 0.77
189.1+3.0 101 464 1553811 18.0 Aug 13 07:55:32 650 634 0.74
266.2−1.2 46 2034 456122 5.3 Jul 30 06:17:12 218 186 0.80
266.2−1.2 82 846 1220616 14.1 Aug 17 02:58:47 525 503 0.76
291.0−0.1 124 315 1487328 17.2 Aug 14 00:53:35 629 615 0.75
347.3−0.5 82 923 903738 10.5 Aug 20 22:00:05 397 370 0.76
350.1−0.3 132 301 1270309 14.7 Aug 16 13:10:34 538 519 0.75

Note. The span reported is the final one, including the possible extension to the end of an SFT in progress at the end of the originally requested span. The duty factor
reported is the total SFT time divided by Tspan divided by the number of interferometers (two).
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33.4, or 1 per million in stationary Gaussian white noise. In
bands with “clean” noise, typical jobs with a few times 108

templates thus recorded a few hundred candidates. This choice
of recording (which was different from the S5 search which
recorded the loudest 0.01% of events) was needed to ease the
manual investigation of outliers surviving the automated vetoes
by making sure to record some noise at expected Gaussian
levels. Such investigation was more important than in Abadie
et al. (2010) because of the “dirtier” nature of the S6 noise and
housekeeping issues associated with excessive disk space and
input/output. The searches recorded a total of about 800 GB of
candidates.

2.6. Vetoes

A high value of 2 is not enough to claim a detection, since
instrumental lines lead to non-Gaussian and/or non-stationary
noise in many narrow frequency bands. Hence we vetoed many
candidates before further investigating a few survivors.

First, we used an “Fscan veto” similar to the one used in
Abadie et al. (2010). An Fscan is a normalized spectrogram
formed from the SFTs. First, it normalizes SFTs by scaling the
power to the running median over 50 frequency bins, correcting
for the bias between the finite-point running median and the
mean. (While more complicated than simply normalizing to the
mean, this procedure is more robust to fluctuations in the time
or frequency domain.) Then, the Fscan time-averages the
normalized power in each SFT frequency bin. In stationary
Gaussian white noise the Fscan power for NSFT SFTs is drawn
from a c2 distribution with N2 SFT degrees of freedom scaled to
unit mean (thus having a variance NSFT). Therefore, deviations
from a χ2 indicate nonstationarity, spectral lines, or both.

In Abadie et al. (2010), the Fscan veto was triggered at a
threshold of 1.5 times the expected power, which was about 11
standard deviations for H1 and 10.5 for L1. When triggered, it
vetoed all signals overlapping a region 16 frequency bins on
either side of the central frequency (the number of terms kept in
the Dirichlet kernel) since those could be contaminated as well.
Since the SSE2 code used here kept only eight terms, we
changed the window to eight frequency bins.

In the present searches, we also changed the threshold of the
Fscan veto because we found that the S5 threshold was too
lenient: S6 data had many more instrumental noise artifacts.
Since the highest number of SFT frequency bins (in the Vela Jr.
wide search) was about ´4 10 ,6 an Fscan power threshold of
six standard deviations above the mean and five below would
be unlikely to veto any Gaussian noise. We increased the S6
threshold further to ±7 standard deviations to allow for a
roughly 3% bias (at most, one standard deviation for these
searches) observed in the Fscan power due to the effect of
estimating the PSD with a running median over a finite number
of bins (Prix 2009).

The second veto was based on the  -statistic consistency
veto introduced in Aasi et al. (2013b), which uses the fact that
an astrophysical signal should have a higher joint value of 2
(combining data from the two interferometers) than in either
interferometer alone. Recorded candidates that violate this
inequality were vetoed. This is a simpler and more lenient
version of the more recent line veto (Keitel et al. 2014). In
clean noise bands, we found that it vetoed less than 1% of the
candidates recorded.

We extended the consistency veto to limited frequency
bands as follows: for each search jobʼs frequency band (minus

any Fscan vetoed bands), if the number of candidates vetoed
for consistency was greater than the number of templates not
vetoed, the entire search job was vetoed as being contaminated
by a broad feature in one interferometer. Since we kept
candidates at the 1 per million level for Gaussian noise, search
jobs in clean noise bands recorded hundreds of templates, and
hence this veto was only triggered if the number of
consistency-vetoed candidates was about two orders of
magnitude greater than usual.
The combination of these vetoes, although each was fairly

lenient, greatly reduced the number of candidates surviving for
human inspection. The vetoes also proved to be safe, in the
sense that they were not triggered by the hardware-injected
signals, with the exception of a few injections that were so loud
that they distorted the data PSD and made it nonstationary (i.e.,
triggered the Fscan veto). It was easy to check that no
astrophysical signals were vetoed this way by verifying that the
small number of bands vetoed in both interferometers were due
to the loud hardware-injected signals described in the Appendix
or to known instrumental artifacts. The total frequency band
vetoed was just over 1% of the frequency band searched, for all
searches. We also checked with a full pipeline run of several
hundred software injections and confirmed that, for 2 less
than about 230, about 1% went undetected due to vetoes.

2.7. Detection Criteria and Results

For each search, we computed the 2 value corresponding
to a 5% false alarm probability assuming Gaussian noise, and
gave a further look to search jobs with nonvetoed candidates
passing this threshold. Because of potential correlations
between templates, we checked for an effective number of
independent templates Neff. The distribution of the loudest
nonvetoed event per search job for each target was nearly
Gaussian. Therefore, we determined Neff by minimizing the
Kolmogorov–Smirnov distance between the observed and
expected cumulative distributions. For all searches, this
produced Neff roughly 90% of the true number of templates
and resulted in a further-look threshold of 2 ≈ 71–73.
The search jobs that produced outliers surviving the

automatic vetoes and thus warranting manual investigation
are listed in Table 3. For all investigations, it sufficed to make

Table 3
Outliers Warranting Manual Investigation

Search Job Min. and Max. Note
Frequency (Hz)

G18.9−1.1 192.470 192.477 Pulsar 8
G189.1+3.0 393.167 393.176 H1 & L1 clock noise
G189.1+3.0 399.264 399.272 L1 clock noise
G266.2−1.2 wide 441.004 441.212 H1 geophone
G266.2−1.2 wide 1397.720 1397.780 Pulsar 4
G266.2−1.2 wide 1408.100 1408.170 H1 electronics
G347.3−0.5 108.790 108.920 Pulsar 3
G347.3−0.5 192.448 192.522 Pulsar 8
G350.1−0.3 192.465 192.472 Pulsar 8
G350.1−0.3 192.472 192.479 Pulsar 8

Note. Search jobs that produced non-vetoed candidates above the 95%
confidence (5% false alarm probability) Gaussian threshold, along with the
most likely causes. Notes of the form “Pulsar N” refer to hardware-injected
signals (see the Appendix). The others are described in the text. Frequencies are
shown in the solar system barycenter frame at the beginning of each
observation span.
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two plots of the results of the search job, demonstrated in
Figure 1 for the last outlier in Table 3 (top panels) and the first
(and barely detected in 10 days’ integration) hardware
injection, “Pulsar 0” (bottom panels, see the Appendix for
more on the hardware injections).

Examples of the first plot, of 2 versus frequency, are
shown in the left-hand panels of Figure 1. Injected signals
showed up as near-δ-functions in this plot, as in the bottom left
panel of Figure 1, while noise outliers had broader structures as
in the top left panel. In most cases, the outliers are clearly
leaking past the edges of a vetoed band. Most of the outliers
were near those hardware-injected signals that were loud
enough to trigger the Fscan veto.

The second plot used in each investigation was a histogram
of the probability density function of the recorded candidates,
exemplified in the right-hand panels of Figure 1. All jobs with
outliers surviving the veto process clearly showed the tail of a
χ2 distribution with the wrong normalization, as in the top right
panel, indicating that the estimator of the noise PSD was off
because of a narrow spectral feature or nonstationarity. Injected
signals in clean data showed a correctly normalized χ2 tail with
a relatively small number of outliers extending to high 2
values, which was visibly distinguishable from the candidates
caused by noisy data, as can be seen in the bottom right panel.

We also tracked down the instrumental sources of the
outliers in Table 3. (This was done after the outliers had already
been dismissed by the inspections above, and was directed
toward improving future searches rather than adding con-
fidence to the results of this one.) In all cases, the search jobs
producing outliers were adjacent in frequency to Fscan vetoed
bands or consistency-vetoed search jobs, and the outliers were
apparently produced by strong lines (including some very
strong hardware injections) leaking past the vetoes (which were
fairly lenient). Six of the outliers were associated with strong
hardware injections, which appeared as broad spectral features
rather than δ-functions due to residual Doppler modulation
(since their sky positions did not match the positions being
searched). Of the other outliers, the first two were associated
with digital clock noise lines in both interferometers which
drifted around bands of a few Hz. In the former outlier, the
lines happened to coincide at the time of the observation;
the latter outlier was just contributed by L1. In addition,
there was an outlier associated with a 441 Hz calibration signal
in a geophone prefilter in H1. The last non-injection outlier
was part of a very stable and wide-ranging structure with
dozens of sidebands seen in H1, identified also as digital
electronic noise.

Figure 1. Inspection of the last outlier (top) and hardware-injected Pulsar 0 (bottom). Top left: 2 vs. frequency for the search job. The higher line is the 95%
confidence (5% false alarm) Gaussian threshold for the whole search; the lower line is the same for that search job. Top right: histogram (tail) of 2 for the search job.
The line is for Gaussian noise, a c2 with four degrees of freedom. Bottom left: 2 vs. frequency for the hardware injection search job; the line is the 95% confidence
(5% false alarm) Gaussian threshold for that job. Bottom right: histogram (tail) of 2 ; the line is a c2 with four degrees of freedom.
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3. UPPER LIMITS

3.1. Methods

The method for setting upper limits was essentially the same
as in Abadie et al. (2010). We divided each search into 1 Hz
bands. For each of these upper limit bands, we recorded the
loudest 2 which passed the automated vetoes. We then
estimated the intrinsic strain h0 at which 95% of signals would
be found, if drawn from a population with random parameters
other than h0, with a louder value than the loudest 2 actually
recorded for that upper limit band. That is, we set a 5% false
dismissal rate over a population of neutron stars randomly
oriented and uniformly distributed over the 1 Hz band, with the
loudest observed 2 in that band setting the false alarm rate.

This 95% confidence limit was first estimated for each upper
limit band with a combination of analytical and computation-
ally cheap Monte Carlo methods. Then, in the more
computationally intensive step (in some cases 20%–30% of
the cost of the original search), we software-injected 6000
signals into the band at that h0 to test that the confidence level
was truly 95%. The frequencies of these software injections
were randomly chosen within the band, and the polarization
and inclination angles were chosen randomly. The upper limit

injection runs have some safety margin built in, and in fact the
confidence level was typically 96%–97%. For a few upper limit
bands—less than 1% of the total for each search—this test
showed that the confidence level was actually lower than 95%.
These typically corresponded to bands known to contain
significant numbers of instrumental lines, and, rather than
iterate the computationally expensive procedure, we chose not
to present upper limits for these bands.

3.2. Results

The resulting upper limits on h0, in 1 Hz bands, are plotted in
Figures 2 and 3. They closely follow the shape of the joint
noise PSD, although with an overall scale factor and slight
shape distortions. The best (lowest) upper limits on h0
generally occur for each search around 170 Hz, where the
noise PSD is lowest. Several searches achieved upper limits on
h0 of about 4 × 10−25 in that band, as can be seen in Table 4
(which also includes the indirect limits from energy conserva-
tion). Table 5 lists data for our observational upper limits on h0
for all searches, i.e., the black points in Figure 2 and the top
panel of Figure 3, in machine-readable form.

Figure 2. Direct observational upper limits (95% confidence, 5% false dismissal) on intrinsic strain h0 are plotted as a function of frequency for all searches except the
Vela Jr. wide search. They are shown as dots (black), each one representing an upper limit over a 1 Hz frequency band. Bands where no upper limit is set (see the text)
are given artificial values so as to form a visibly distinguishable line of dots (red) near the top of each plot. These bad bands consist of 5%–10% of the total for each
search. The solid horizontal lines are indirect limits on h0 based on the ages of and distances to the remnants.
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In all of these plots, the main set of points does not include
bands where more than 5% of the 1 Hz upper limit band is
vetoed or where the injection-checked false dismissal rate was
more than 5%. Most of these frequencies correspond to known
instrumental disturbances, such as calibration lines or clock
noise. We also removed 2 Hz bands centered on the electrical

mains frequency of 60 Hz and its harmonics up to 300 Hz, as
well as the band 339–352 Hz which is full of the extremely
strong “violin modes” of the test mass suspension system.
While a few upper limit bands containing these lines did pass
the false dismissal and vetoed-band tests, the upper limits were
much higher (weaker) on account of the increased noise; and
upper limits on bands where the noise PSD varies greatly
within the band are not so informative. Hence all of these bad
bands are removed from the main set of points, but are plotted
near the top of each plot (in red online, at a constant h0 in each
plot) so as to give an idea of their numbers (5%–10% of the
total for each search) and locations (clustered around suspen-
sion violin modes, etc.).
The strain upper limits can be converted to upper limits on

the fiducial ellipticity  = -I I Ixx yy zz∣ ∣ of each neutron star
using (e.g., Wette et al. 2008)

 = ´
´

-
-
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assuming a fiducial value of =I 10zz
45 g cm2. We used this

equation to convert both the energy-conservation limit and the
direct 95% confidence limits obtained here. The results are
plotted in the middle panel of Figure 3 for the Vela Jr. wide
search. This and the similar plots for the other searches are all
tilted, curved versions of the plot for h0, and, therefore, we
display only this one as an example. For all of the searches, we
summarize the ranges of ellipticity upper limits in Table 4.
Note that this fiducial ellipticity is really a dimensionless

version of the (spherical harmonic m = 2 part of the) mass
quadrupole moment, not the true shape of the star. Conversion
factors to these other quantities can be found in Owen (2010)
and Johnson-McDaniel (2013), respectively. The quantity truly
inferred from the measurement of h0 (and the measured
frequency and assumed distance) is a component of the mass
quadrupole. The conversion factor to ellipticity can have
uncertainties of a factor of five or more (Johnson-McDa-
niel 2013) depending on the neutron star mass, which has an
observed range of about a factor of two, and the equation of
state, which is significantly uncertain.
Strain upper limits can also be converted to limits on the r-

mode amplitude α (Lindblom et al. 1998) via

a =
-
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for a typical neutron star, with about a factor of two to three
uncertainty depending on the mass and equation of state—see
Equation (24) of Owen (2010) and the discussion preceding it
for details. We used this equation to convert both the energy-
conservation limit and the direct 95% confidence obtained here.
The results are plotted in the bottom panel of Figure 3 for the
Vela Jr. wide search. Like the plots of upper limits on fiducial
ellipticity, the α upper limit plots are tilted, curved versions of
the h0 upper limit plots. Thus we do not display them for the
other searches, although we do summarize all of the ranges in
Table 4. Similarly to the case of fiducial ellipticity, the quantity
most directly inferred from h0 here is the (m = 2 part of the)
current quadrupole. While α is a convenient dimensionless

Figure 3. Top plot is the analog of Figure 2 for the Vela Jr. wide search. The
middle and bottom plots are the corresponding upper limits on fiducial
ellipticity and r-mode amplitude.
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measure, the conversion factor—like that for ò—is uncertain by
a factor of a few.

4. DISCUSSION

Our searches improved sensitivity and parameter space
coverage over previous searches, beat indirect limits on GW
emission from electromagnetic observations, and entered the
range of theoretical predictions for neutron stars.

The best direct (observational) upper limits on h0 and the
indirect (theoretical) upper limits on h0 from energy conserva-
tion are shown in Table 4. The S5 search for Cas A (Abadie
et al. 2010) obtained a best upper limit on h0 of 7 × 10−25. Our
best S6 limit on Cas A was 6 × 10−25, less of an improvement
than the improvement in noise would indicate because we
reduced the integration time. This in turn was because we
searched a broader parameter space, including more than
doubling the frequency band. Several of the S6 searches
described here obtained upper limits on h0 as strong (low) as
4 × 10−25, nearly a factor of two better than Abadie et al.
(2010) in spite of aiming in general for broad parameter space
coverage. Several searches beat their corresponding indirect
limits on h0 by a factor of two, and the Vela Jr. wide search
beat its indirect limit by about a factor of 20.

It is also interesting to compare our upper limits on neutron
star fiducial ellipticities and r-mode amplitudes to the
maximum values predicted theoretically. Although these
predictions have many uncertainties, observational limits that
beat them are more interesting than those that do not (even if

the latter have beaten energy conservation limits). However, we
must be careful about interpreting GW emission limits as
constraints on the physics of the targets—first of all, any target
neutron star may just be spinning too slowly to emit in the
frequency band searched. The spin frequency is half the GW
frequency for mass quadrupole emission, or roughly three
quarters for current quadrupoles (r-modes)—see Idrisy et al.
(2015) for a more precise range of numbers for the latter. Each
emission mechanism has a different range of predicted
maximum quadrupoles. Depending on what is known about
mechanisms for driving the quadrupoles toward maximum, we
may set some constraints on individual neutron stars, although
we cannot constrain universal properties such as the equation of
state.
For mass quadrupoles supported by elastic forces, the analog

of terrestrial mountains, we can say this: many of our upper
limits, summarized in Table 4, get well into the range for stars
composed of normal nuclear matter rather than exotic
alternatives, which has not been the case for previous GW
searches. The most up-to-date numbers for elastically
supported maximum quadrupoles are in Johnson-McDaniel &
Owen (2013): they correspond to maximum fiducial ellipticities
of the order of 10−5 for normal neutron stars, 10−3 for quark-
baryon hybrid stars, and 10−1 for quark stars. For instance, the
Vela Jr. wide search beat a fiducial ellipticity of 10−5 over
almost all of its frequency band. Since little is known about
what processes could drive an elastic quadrupole toward its
maximum in a young neutron star, we cannot use this
information to constrain the composition or other properties
of the neutron star or the properties of the processes.
Maximum values for magnetically supported mass quadru-

poles depend on details of the field configuration such as the
relative strengths of the poloidal and toroidal components as
well as the hydrostatic structure of the star. Although the
literature on the problem grows rapidly, the highest ellipticities
predicted remain, as in Abadie et al. (2010), on the order of

- B10 10 G4 15 2( ) —see Ciolfi & Rezzolla (2013) for a recent
example and summary. Magnetic fields must deform the star,
and hence there is a minimum deformation for a given internal
field (found by varying the configuration) that does not greatly
differ from the maximum (Mastrano et al. 2011). Thus our
upper limits on h0 correspond to upper limits on an average
internal magnetic field if the object is emitting GW at the right
frequency—for example, about 1014 G for the Vela Jr. wide

Table 4
Upper Limit Summary

Search Indirect h0 Direct h0 Direct ò Direct α
Lowest (Best) at fmin at fmax at fmin at fmax

G1.9+0.3 ´ -8.4 10 25 6.4 × 10−25 2.9 × 10−4 7.6 × 10−5 4.2 × 10−2 5.4 × 10−3

G18.9−1.1 5.4 × 10−25 4.2 × 10−25 5.9 × 10−5 1.2 × 10−5 5.7 × 10−3 5.4 × 10−4

G93.3+6.9 6.0 × 10−25 3.7 × 10−25 8.1 × 10−5 6.8 × 10−6 1.1 × 10−2 2.6 × 10−4

G111.7−2.1 1.3 × 10−24 5.8 × 10−25 4.6 × 10−4 1.2 × 10−5 1.5 × 10−1 6.3 × 10−4

G189.1+3.0 8.7 × 10−25 4.6 × 10−25 1.2 × 10−4 5.7 × 10−6 2.4 × 10−2 2.6 × 10−4

G266.2−1.2 wide 1.4 × 10−23 6.8 × 10−25 1.1 × 10−3 2.3 × 10−7 7.6 3.7 × 10−5

G266.2−1.2 deep 1.5 × 10−24 4.4 × 10−25 1.4 × 10−4 1.4 × 10−6 5.7 × 10−2 5.8 × 10−5

G291.0−0.1 5.9 × 10−25 4.2 × 10−25 1.3 × 10−4 2.0 × 10−5 1.5 × 10−2 9.0 × 10−4

G347.3−0.5 2.0 × 10−24 5.6 × 10−25 2.0 × 10−4 2.0 × 10−6 1.2 × 10−1 1.1 × 10−4

G350.1−0.3 6.5 × 10−25 5.1 × 10−25 1.6 × 10−4 3.1 × 10−5 1.9 × 10−2 1.6 × 10−3

Note. Here we summarize the range of upper limits set in these searches. The line for the G266.2−1.2 wide search summarizes the plots in Figure 3 and the “Direct h0”

column summarizes the plots in Figure 2. The remaining elements summarize similar results for the remaining searches, which were not plotted. The best (lowest)
upper limits on h0 were set near 170 Hz for all searches, and the corresponding limits on α and ò were near the fmax of each search.

Table 5
Upper Limit Data

Search Frequency (Hz) h0 upper limit

G1.9+0.3 141.5 7.38 × 10−25

G1.9+0.3 142.5 7.08 × 10−25

G1.9+0.3 143.5 7.09 × 10−25

G1.9+0.3 144.5 7.44 × 10−25

Note. This table lists data for our observational upper limits on h0 for all
searches, i.e., the black points in Figure 2 and the top panel of Figure 3.
Frequencies are central frequencies for the upper limit bands. Only a portion of
this table is shown here to demonstrate its form and content.

(This table is available in its entirety in machine-readable form.)
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search over much of its frequency band. While these internal
field limits are high (magnetar strength), they do not require the
objects to be magnetars since the external dipole fields could be
much lower (Mastrano et al. 2011).

It is also interesting to compare to the largest r-mode
amplitudes predicted by theory. This is also a complicated
subject, depending on the history as well as the composition of
the star. As at the time of Abadie et al. (2010), the most detailed
calculation of nonlinear hydrodynamical saturation of the r-
mode remains that of Bondarescu et al. (2009), and the answer is
an amplitude of the order of 10−3 in terms of the quantity α used
here. Thus, as seen in Figure 3, the Vela Jr. wide search reached
interesting values over most of its frequency band. Furthermore,
as seen in Table 3, most of the searches reached interesting
values at least at the high end of their frequency bands. Since the
GW-driven instability of the r-modes drives them toward
saturation (Andersson 1998), probably even in realistic condi-
tions for young neutron stars (Lindblom et al. 1998), these upper
limits also have more constraining power than for elastic
deformations: if an object is emitting in the frequency band
searched but not detected, we can say that either the saturation
amplitude is smaller or the damping mechanisms more effective
than commonly thought; though, due to the complicated physics
of r-mode evolution scenarios, it is difficult to be more precise.

In the near future, the Advanced LIGO and Virgo
interferometers will come online and take data with strain
noise amplitude reduced from S6 values by a significant factor,
which by the end of the decade will reach an order of
magnitude. Re-running the analysis pipeline used here on such
data would result in better sensitivity to h0, ò, and α by the
same factor. Improved analysis methods are likely to improve
the sensitivity even more, making it interesting (i.e., possible to
detect a signal or at least to set upper limits that beat indirect
limits) for many more SNRs and other targets.
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APPENDIX

S6 featured a suite of hardware-injected continuous-wave
signals, similar to previous science runs. Their nominal
parameters (i.e., not allowing for calibration errors), in the
notation of Jaranowski et al. (1998), are listed in Table 6. They

Table 6
Nominal Hardware Injection Parameters

Pulsar No. R.A.+decl. (J2000) Base Frequency (Hz) -ḟ (Hz s−1) h0 ι (rad) ψ (rad) f0 (rad)

0 044612.5−561303 265.576360874 4.15 × 10−12 2.47 × 10−25 0.652 0.770 2.66
1 022934.5−292709 849.029489519 3.00 × 10−10 1.06 × 10−24 1.088 0.356 1.28
2 142101.5+032638 575.163548428 1.37 × 10−13 4.02 × 10−24 2.761 −0.222 4.03
3 115329.4−332612 108.857159397 1.46 × 10−17 1.63 × 10−23 1.652 0.444 5.53
4 183957.0−122800 1398.60769871 2.54 × 10−8 4.56 × 10−23 1.290 −0.648 4.83
5 201030.4−835021 52.8083243593 4.03 × 10−18 4.85 × 10−24 1.089 −0.364 2.23
6 235500.2−652521 147.511962499 6.73 × 10−9 6.92 × 10−25 1.725 0.471 0.97
7 145342.1−202702 1220.77870273 1.12 × 10−9 2.20 × 10−24 0.712 0.512 5.25
8 232533.5−332507 192.756892543 8.65 × 10−9 1.59 × 10−23 1.497 0.170 5.89
9 131532.5+754123 763.847316497 1.45 × 10−17 8.13 × 10−25 2.239 −0.009 1.01
10 144613.4+425238 26.3588743499 8.50 × 10−11 2.37 × 10−24 2.985 0.615 0.12
11 190023.4−581620 31.4248595701 5.07 × 10−13 1.80 × 10−23 1.906 0.412 5.16
12 220724.6−165822 39.7247751375 6.25 × 10−9 2.66 × 10−25 1.527 −0.068 2.79

Note. Base frequencies are solar system barycentered at 2009 July 07, 21:00:00 UTC (the start of S6). The first derivatives ḟ were constant, i.e., the injections did not
include second derivatives. The inclination angle ι, polarization angle ψ, and signal phase offset f0 were not used in this work. They, and the detailed waveforms, are
explained in detail in Jaranowski et al. (1998).
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are used by most searches, including those described here, for
basic sanity checks of the analysis pipeline. For each of the first
10, called Pulsars 0–9, we searched a 1 Hz wide band around
the injected frequency for a Tspan of 10 days, and for Pulsar 0
we also did a 20 day search (see below). We did not search for
Pulsars 10–12 since they were out of the frequency band of the
SFTs we used. For each pulsar we ran the analysis pipeline
using f f3∣ ˙ ∣ as the age so that the search would cover the
injected spin-down parameter in roughly the middle of the
range.

With these searches, we were able to detect all 10 hardware
injections above the “further look” threshold (95% confidence
in Gaussian noise). Since Pulsar 0 was just barely above
threshold in the first search, we made a first follow-up by
doubling the integration time to 20 days to verify that 2
doubled, similar to what would have been done in the early
stages of following up a plausible non-injected candidate. The
loudest injections (Pulsar 3 and Pulsar 8) triggered the Fscan
veto, which had to be switched off to complete this exercise.
Although this might cause concerns about the safety of the
veto, these injections are unreasonably loud, with
 » ´2 2 10 .4 Real signals that loud would have been
detected in earlier LIGO data runs. Also, very few frequency
bands triggered an Fscan veto in both detectors, and we
checked that (other than the loud hardware injections) these
bands corresponded to known instrumental artifacts. By
contrast, Pulsar 4 had  » ´2 2 104 and was not Fscan-
vetoed, apparently because of its large > ´ -f 2.5 10 8∣ ˙ ∣
Hz s−1 spreading the power over several SFT bins.

The recovered parameters of the hardware injections were
typically off by the amount expected from template parameter
discretization and the fact that the injections did not include a
second spin-down parameter while the search templates did. In
a real potential detection scenario, candidates would have been
followed up in a more sophisticated way, such as a hierarchical
search or the gridless method of Shaltev & Prix (2013).
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