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We report results from a search for gravitational waves produced by perturbed intermediate mass black
holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to
astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns,
with frequency 50 < f,/Hz <2000 and decay timescale 0.0001 < 7/s <0.1 characteristic of those
produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report
upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 < M /Mg < 450
and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 < M /Mg < 150, we report
a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass
components of 6.9 x 1078 Mpc=3 yr~!. We also report a rate upper limit for ringdown waveforms from
perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, £ = m = 2,
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oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

DOI: 10.1103/PhysRevD.89.102006

I. INTRODUCTION

Intermediate mass black hole (IMBH) binary systems
represent a potential strong source of gravitational radiation
accessible to ground-based interferometric detectors such as
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1] and Virgo [2]. Although yet to be discovered,
binary systems with total masses in the range 50 <
M/Mg < 10° could form in dense star clusters such as
globular clusters [3-5].

The coalescence of a compact binary system generates a
gravitational wave signal consisting of a low frequency
inspiral phase when the compact objects are in orbit around
each other, a merger phase marking the coalescence of the
objects and the peak gravitational wave emission, and a
high frequency ringdown phase after the objects have
formed a single perturbed black hole [6,7]. For low mass
systems, most of the signal-to-noise ratio comes from the
inspiral phase of the coalescence. Several searches for
gravitational waves from the inspiral of low mass compact
objects have been performed by LIGO and Virgo [8-10].
However, since the merger frequency is inversely pro-
portional to the mass of the system, it is shifted to
lower frequencies for higher mass binaries. Searches for

PACS numbers: 95.85.Sz, 04.70.-s, 04.80.Nn, 07.05.Kf

gravitational waves from the inspiral, merger and ringdown
of binary black holes with total masses 25 < M /M, < 100
have also been performed in LIGO-Virgo data [11,12].

For an IMBH binary, typically only the merger and
ringdown parts of the signal fall above the low frequency
cutoff of 40 Hz for the initial LIGO and Virgo detectors.
Thus it is sufficient to conduct a search solely for these
particular phases of the gravitational wave signal [13—15].
A binary black hole merger is expected to result in a
single perturbed black hole, and black hole perturbation
theory and numerical simulations provide us with a well-
understood ringdown signal model, a superposition of
quasinormal modes that decay exponentially with time
[16-23]. Indeed, any perturbed black hole, not just that
produced by a compact merger (e.g., a black hole formed
as the result of the core collapse of a very massive star
[24-26]), will emit ringdown gravitational waves described
by its quasinormal modes.

Since the gravitational waveform of perturbed black
holes has a well-defined model, the method of matched
filtering is used to search for ringdown signals. The first
such search was carried out on data from the fourth LIGO
science run (S4) which took place between February 22 and
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March 24, 2005 [27]. Additionally, two burst searches with
less-constrained waveform models looked for gravitational
waves from mergers of IMBHs in data collected by LIGO
and Virgo between 2005 and 2010 [28,29]. No events were
observed in these searches. In this paper, we present the
results of a matched filter ringdown search of data from
LIGO’s fifth and sixth science runs and Virgo’s science
runs 2 and 3. We compare the resulting rate upper limits to
the previous searches for gravitational waves from IMBHs.

Sections [ A and IB describe the expected ringdown
sources and waveform. Section II provides a brief descrip-
tion of the detectors and their sensitivities during the data
collection epochs. Section III describes the search, and
results are presented in Sec. I'V. Upper limits are presented
in Sec. V and discussed in Sec. VI.

A. Ringdown sources

Observed black holes of known masses fall into two
broad mass ranges. Stellar mass black holes have masses
<35 Mg, [30-32] although theoretical modeling of stellar
evolution and population synthesis raises the possibility
that significantly heavier stellar black holes could exist
[33,34]. Supermassive black holes have masses >10° Mg,
[35,36] and are thought to be cosmological in origin,
possibly formed through galactic mergers leading to their
growth through coalescences and accretion [37,38]. The
large gap between the mass ranges of stellar and super-
massive black holes is predicted to be populated by an
elusive class of objects known as intermediate mass black
holes (IMBHs) [3,39-42]. Observational evidence from
ultra- or hyperluminous x-ray sources and star cluster
dynamics suggest a population of IMBHs with masses
in the range 10> My, to 10* M, [3]. Ultraluminous x-ray
sources with angle-averaged fluxes many times that of a
stellar mass black hole accreting at the Eddington limit
(>3 x 10* ergs™') may be explained by black holes
with masses larger than any known stellar mass black
hole. The brightest known hyperluminous x-ray source and
the strongest IMBH candidate is the pointlike x-ray source
HLX-1. Its maximum x-ray luminosity of 10** ergs~!
requires a black hole mass 2 a few 103 M, [43.44].
Other hyperluminous x-ray sources include M82 X-1
[45], Cartwheel N10 [46], and CXO J122518.6 [47].
Furthermore, the excess of dark mass at the centers of
globular clusters could be explained by ~10° M, IMBHs
formed from repeated mergers between other compact
objects and/or stars [48—50]. However, both hyperluminous
x-ray sources and central globular cluster masses can be
explained via phenomena that do not include IMBHs
[51,52]. Still, most observational evidence for globular
cluster IMBHs using radio emissions can place upper
bounds of <103 Mg [53-58], and do not rule out lower
mass systems that are above the expected maximum mass
of a normal stellar mass black hole [33]. Thus, the existence
of IMBHs currently remains speculative.
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Numerical simulations suggest that IMBH binaries could
form in collisional runaway scenarios in young dense star
clusters. Initially, in young star clusters, IMBHs could form
via the runaway collapse of very massive stars [41,59-61].
After separate formation, two IMBHs could settle to the
core of the cluster through dynamical friction and form a
common binary via dynamical interactions. The binary
would tighten due to three-body encounters, finally merg-
ing quickly via gravitational radiation [4,62,63].

From [64], we know that the astrophysical rate of IMBH
binary coalescence in globular clusters (GC) should be no
higher than 0.07 GC~! Gyr~! assuming that all globular
clusters are sufficiently massive and have a sufficient binary
fraction to form this type of binary once in their lifetime of
13.8 Gyr [5]. Also, globular clusters have a space density of
roughly 3 GCMpc~ [65]. This allows us to convert the
astrophysical upper limit to 2 x 107! Mpc=3 yr~!. If we
assume that only 10% of globular clusters meet these
requirements, the rate would still be as high as one tenth
this value [64].

Numerical simulations also suggest the possibility of
forming intermediate mass ratio inspirals (IMRIs) (e.g., a
coalescence of an IMBH with a compact stellar mass
companion) in these same dense star clusters. This occurs
through a combination of gravitational wave emission,
binary exchange processes, and secular evolution of hier-
archical triple systems [42,66—69]. Ringdown searches
in the advanced detector era could be important for
detecting IMRIs, particularly if the inspiraling companion
is a black hole with m 2 10 M, or if the system is a
compact object coalescing with a slowly spinning IMBH
with m 2 350 My, [65].

B. Ringdown waveform

A black hole can be perturbed in a variety of ways, e.g.,
by interaction with a companion, by accretion or infall of
matter, or in its formation through asymmetric gravitational
collapse. A perturbed Kerr black hole will emit gravita-
tional waves, relaxing to a stable configuration through
radiation generated by a superposition of quasinormal
modes of oscillation [16-23]. The emitted gravitational
waves are exponentially decaying sinusoid signals charac-
terized by a complex angular frequency wy,,, from which
we can derive both the real frequency f,,,, and the quality
factor Qy,,:

ffmn = m(wfmn)/2”9 (])

Qfmn = ﬂffmn/‘(“s(wfmn)v )

where £ = 2,3,..., and m = -7, ..., ¢ are the spheroidal
harmonic indices and n denotes the overtones of each
mode. Overtones with n > 0 are generally negligible
in amplitude compared with the fundamental n =0
mode. Numerical simulations have demonstrated that the
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¢ = m = 2 fundamental mode dominates the gravitational
wave emission, particularly in the case of an equal mass
compact object merger [70]. The ringdown search uses
single-mode waveform templates. However, other modes
can contribute significantly to the gravitational wave
signal, particularly in cases where the binary’s mass
ratio ¢ = m., /m_+#1 where m. = max(m,m,) and m_ =
min(m;,m,). Reference [71] reports that single-mode
templates can result in a loss 210% in detected events
over a significant mass range and also result in large errors
in the estimated values of parameters (especially the quality
factor). A multimode ringdown search would perform
better both in efficiency and parameter estimation [71].
Nevertheless, we show that the single-mode ringdown
search will still provide good sensitivity to comparable
mass binary systems (see average sensitive distances given
in Sec. V B).

The response of an interferometric detector to a gravi-
tational wave is

h(t) = F+(97 d’v l//)h-&-(t) + Fx(ev ¢v l//)hx(t)7 (3)

where F, and F, are the antenna pattern functions that
depend on the direction to the source as described by a
polar angle 8, an azimuthal angle ¢, and a polarization
angle y. The plus and cross polarizations /4, and A, of a
single-mode (¢, m, n) = (2,2,0) ringdown waveform take
the approximate form

A
he(tng)=—(1+ cos?1)eoli=10)/Q

x cos 2z fo(t — to) + o) )

hy (l‘; 1, ¢) = é (2 cos l)e—”fo(’—fo)/Q
x sin [2zfo (1 — tg) + o). (5)

fort > ty where fo = f10 and Q = Q5 are the oscillation
frequency and the quality factor of the (¢, m,n) = (2,2,0)
mode, r is the distance to the source, ¢ is the initial phase
of the mode, and : is the inclination angle. The oscillation
amplitude of the (£, m,n) = (2,2,0) mode, A, is given
approximately by (see Appendix A)

A=\ Fo R @ @
c 2

where G is the gravitational constant, M is the black
hole mass, ¢ is the speed of light, ¢, known as the
ringdown efficiency, is the fraction of the black hole’s
mass radiated, @ = ¢S/GM? where S is the black hole’s
spin angular momentum, F(Q) = 1 + 1/(4Q?) and g(a) =
[1.5251 — 1.1568(1 — @)*1292] [cf. Egs. (7), (8), and (AS5)].

The total ringdown efficiency of a black hole binary with
nonspinning components is known to scale with the square
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of the symmetric mass ratio, v = m;m,/(m, + m,)* =
q/(1 + q)?, as € = 0.441% [72-74]. Thus, forg = 1, ¢ ~ 3%
and, for ¢ = 4, € ~ 1%. Gravitational waves from extreme
mass ratio systems will not be detectable unless the system
is sufficiently close (see Sec. V B). A black hole binary
with spinning components will radiate more energy if the
spins are aligned with the orbital angular momentum and
less if the spins are antialigned [73,75].

The black hole mass M and dimensionless spin param-
eter a can be determined numerically using fitting formulae
to Kerr quasinormal mode frequency and quality factor
parameters tabulated in Table VIII of [76]. For the
(¢,m,n) = (2,2,0) mode, the fits are of the form:

1 3
fo= %c?—M [1.5251 — 1.1568(1 — 2)%122),  (7)
0 = 0.7000 + 1.4187(1 — &)~049%. ®)

These fitting functions allow us to relate a measurement of
the frequency and quality factor from a match filter ring-
down template to the mass and angular momentum of the
final perturbed black hole.

We can approximate the ringdown gravitational wave
strain by

ho(t) = Aegre™0=10)/C cos2afo(t — ty) + o], (9)

for t > #, where A,y = A/Dyy and D is the effective
distance to the source and ¢, is the effective initial phase
depending on the initial phase ¢, as well as on the signal
polarization [see Eqs. (1.7) and (1.9) in [77]]. Note that
both ¢, and time of arrival at the detector #, are set to zero
for simplicity in the template waveform given in Sec. III A.

II. DATA SET

The data analyzed spans multiple science runs for both
the LIGO and Virgo detectors. We report results both for
data collected between November 2005 and September
2007 and between July 2009 and October 2010.

The first time period covers LIGO’s fifth science run
(S5). The LIGO site in Hanford, Washington hosted two
collocated interferometers: a 4 km detector H1 and a 2 km
detector H2. The LIGO site in Livingston, Louisiana,
hosted one 4 km detector L1. Additionally, the Virgo
3 km detector in Cascina, Italy, operated from May 2007 to
September 2007 during its first science run (VSR1) which
overlapped with the last few months of LIGO’s S5 run.
However, this search did not analyze VSR1 data. Thus, for
the first time period, which we designate period 1, we
report results for the threefold coincident search of the
HIH2LI1 detector network. We also report results for two-
detector combinations of this network including HIL1 and
H2L1. We chose to exclude HIH2 coincident events since
accurately measuring the significance of gravitational wave
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final black hole mass for period 1 (left) and period 2 (right). Here we have set ¢ = 1%. The dimensionless spin parameter is set to
a = 0.9. For example, during period 1, a ~200 M, ringdown source with € = 1%, @ = 0.9, and optimal location and orientation at a
distance of ~530 Mpc would produce a signal-to-noise ratio of 8 in the HI detector.

candidates is complicated by this network’s correlated
detector noise.

The second time period covers LIGO’s sixth science run
(S6) during which only the H1 and L1 LIGO detectors were
operating. The Virgo detector conducted two science runs
during this period: VSR2 which ran from July 2009 to
January 2010 and VSR3 which ran from August 2010 to
October 2010. For this second time period, which we
designate period 2, we report results for the coincident
search of the HIL1V1 detector network. We also report
results for all two-detector combinations within this
network.

LIGO’s S5 run marked the final data collection of the
initial LIGO detector configuration during which design
sensitivity was achieved [1]. Figure 1 (left) demonstrates
the H1, H2, and L1 detectors’ sensitivities to ringdown
signals from spinning black holes with ¢ =0.9 and
e =1%'" for typical period 1 performance. This figure
shows the horizon distance Dy divided by the square root
of the ringdown efficiency ¢, scaled to a canonical value
€ = 1%, as a function of the final black hole mass. The
horizon distance is the distance at which a given source
with optimal location and orientation would produce a SNR
of 8 in a given detector; some details of its derivation for
ringdowns are given in Appendix B. Dips in the ringdown
horizon distance correspond directly to features of the
detectors’ noise spectral density curves. For instance, the
strong dip in sensitivity at 360 M, is due to 60 Hz electric
power noise.

The S6 run, during the phase of the enhanced LIGO
detector configuration, followed a series of upgrades to

'These values were chosen so that a direct comparison could
be made with Fig. 2 in [27].

the initial detectors to improve sensitivity. These enhance-
ments included a higher power laser and a new DC readout
system [78]. Similarly, the Virgo detector saw several
improvements between its VSR1 and VSR2 runs including
a more powerful laser, a thermal compensation system, and
improved scattered light mitigation. Before Virgo’s VSR3
run in early 2010, monolithic suspensions with fused-silica
fibers were installed [79]. Figure 1 (right) demonstrates the
HI1, L1, and V1 detectors’ sensitivities to ringdown signals
from spinning black holes with ¢ = 0.9 and ¢ = 1% for
typical period 2 performance.

Gravitational-wave strain data from each of the detectors
are known to be both non-Gaussian and nonstationary.
Non-Gaussianity is often manifested as noise transients, or
glitches, in the strain data. Efforts are made to diagnose and
remove glitches and stretches of elevated noise from the
data set using environmental and instrumental monitors
[80-82]. In this search, as in previous searches of LIGO-
Virgo data, we apply three levels of data quality vetoes
[83,84] (see Appendix A of [8] for more details). Data

TABLE I. Length of each network’s total analyzed time after
the third level of vetoes has been applied and the playground data
set has been removed.

Analysis Time® (years)

Network Period 1 Period 2
HI1L1 0.09 0.17
H1V1 e 0.10
H2L1 0.07 .
L1Vl e 0.06
H1H2L1 0.63 e
HIL1V1 e 0.08
Total 0.79 0.41

“Excluding playground time.
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remaining after the first and second veto levels have been
applied are searched for possible detection candidates (see
Sec. 1IV). Data remaining after all three veto levels have
been applied are searched for detection candidates and are
also used in constraining the IMBH merger rate (see
Sec. V). Table I gives the total analyzed time after all
three veto levels are applied and after the removal of the
“playground” data set used for pipeline tuning as described
in Sec. [II D. The total analysis time for both period 1 and
period 2 was 1.2 years.

III. RINGDOWN SEARCH
A. Search algorithm

The ringdown search algorithm, first introduced in
[13,27], is based on the optimal method for finding
modeled signals buried in Gaussian noise, the matched
filter [85]. The data from multiple gravitational wave
detectors are match filtered with single-mode ringdown
templates to test for the presence or absence of signals in
the data. The output is a signal-to-noise ratio (SNR) time
series [27] from which local maxima above a predeter-
mined SNR threshold, called triggers, are retained for
further analysis. Since the noise in the detector data is
nonstationary and non-Gaussian, matched filtering alone is
not enough to establish that a trigger is a gravitational wave
signal. Since detector noise can often mimic the signal for
which we are searching, additional tests are employed
including detector coincidence and SNR consistency. We
use a search pipeline similar to the THOPE pipeline described
in [86]. Here we summarize the main steps of the ringdown
search pipeline.

The data conditioning and segmentation is discussed in
detail in [87]. Each segment of data is filtered using a bank
of ringdown templates characterized by frequency f, and
quality factor Q. Following [27], the template used in this
search is

() = e cos(2nfor),  0<i<tyy  (10)

[cf. Eq. (9)], with a length of ten e-folding times,
Imax = 10Q/”f0’2

The template bank is tiled in (f,, Q)-space according to
the analytic approximate metric computed assuming white
detector noise as described in [14,27,88] so that no point in

’An arbitrary initial phase parameter (or equivalently, a
quadratic sum of sine and cosine template outputs) could be
implemented in the template waveform to reduce the fraction of
power lost in the event of a pure sine wave signal. The problem is
most acute for the detection of perturbed black holes with high
frequency (f( = 1000 Hz) and low dimensionless spin parameter
(a £0.6) where significant power is lost by using a cosine
template [77]. However, allowing an arbitrary phase would
increase the noise level of the search. Furthermore, any ringdown
signal would follow a preceding waveform and there is some
arbitrariness in the division of one from the other.
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the parameter space has an overlap of less than 97% with
the nearest template.3 The template parameters cover a
frequency band between 50 Hz and 2 kHz and quality
factor in the physical range between 2 and 20. This
corresponds roughly to masses in the range 10 to
600 M, and spins in the range 0 to 0.99. A fixed bank
of 616 templates was used for all detectors.

Triggers with an SNR statistic above a predetermined
threshold p* are retained for further analysis. For both
period 1 and period 2, we set pi;; = pf; = 5.5. For the least
sensitive detector in each analysis period, we set lower
thresholds: py, = 4.0 and py,; = 5.0.

B. Coincidence and vetoes

Once triggers are found in a single detector, we apply
a coincidence test, analogous to the one introduced in [90],
to check for multidetector parameter and arrival time
consistency. In order to include information about time
coincidence dt and template coincidence for df; and dQ in
a single coincidence test, we construct a three-dimensional
metric [88] to calculate the distances ds? between two
triggers in (fy, Q, t)-space. The quantity (1 —ds?) is a
measure of normalized signal mismatch. To account for
the finite travel time between noncollocated detectors, we
minimize ds? for each detector pair over a range of allowed
time differences. Only pairs of triggers for which ds? <
ds? = 0.4 are kept as coincident candidates. During times
when three detectors are operating, triple coincident events
are constructed from sets of three triggers if each trigger in
the set passes the coincidence test with every other one. We
also consider H1L1 coincidences in a HIH2L1 network.

We also apply second and third level vetoes to segments
of poor data quality as described in [86]. Additionally, for
period 1, we apply a number of amplitude consistency tests
that exploit the coalignment of H1 and H2 [86]. These tests
allow us to apply cuts to reduce the background of false
alarms.

C. Ranking events

Finally, the pipeline ranks the coincidences and deter-
mines significance. For this purpose, a detection statistic is
designed to separate signal-like coincidences from noise-
like coincidences. Given the large number of parameters
that describe multidetector coincidences, we employ a
multivariate analysis using cuts on multiple parameters
to help in classifying coincidences as signals or false
alarms: i.e., a multivariate statistical classifier. The param-
eters provided to the classifier to aid in characterizing the
multidetector coincidences included single-detector SNRs

The template placement metric is derived using a sine
template in [88] whereas a cosine template is used to filter the
data. Optimally, the metric derivation should account for initial
phase dependence as derived in [89]. In the high Q limit, the sine
and cosine metrics coincide.
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and differences in time and template parameters between
detectors, recovered effective distances, composite SNR
statistics,” the three-dimensional metric distance between
triggers and the metric coefficients as well as data quality
information from the hierarchical veto method described in
[91]. Additional details of these parameters will be
described in a future paper.

To perform the multivariate analysis, we use a machine
learning algorithm known as a random forest of bagged
decision trees [92,93]. Similar techniques have been
implemented for detecting gravitational-wave bursts [94]
and cosmic strings [95]. The training of the classifier uses
two sets of data: a collection of coincidences associated
with simulated signals and a collection of accidental
coincidences that act as a proxy for the background.

The simulated signal set is generated by adding software-
generated gravitational waveforms to the data and running
a separate search. The simulated waveforms, described in
more detail in Sec. III D, included both full coalescence
IMBH merger signals and lone ringdown signals.

The set of accidental coincidences is generated using the
method of time-shifted data that takes advantage of the fact
that a real signal will produce triggers in each detector that
are coincident in time. The data streams of detectors are
shifted in time with respect to one another by intervals
longer than the light travel time between sites plus timing
uncertainties, then a search for coincidences is performed.
These time-shifted coincidences are then almost certainly
due to noise. For period 1, the L1 data stream was shifted
by multiples of five seconds relative to H1 and H2 for a
total of 100 time-shifted analyses; the H1 and H2 data
streams were not time-shifted relative to one another. For
Period 2, the L1 data stream was shifted by multiples of five
seconds and the V1 data stream was shifted by multiples of
10 seconds relative to H1 for a total of 100 time-shifted
analyses.

The classifier assigns a likelihood ranking statistic £ to
each coincidence. A high likelihood implies the coinci-
dence is signal-like; a low likelihood implies the coinci-
dence is noiselike. For each candidate, we need to be able to
assign a significance to its likelihood ranking. This is done
by mapping a false alarm rate (FAR) to a candidate’s rank in
order to assess its significance. We count the number of
false coincidences in the time-shifted searches, record their
likelihood values, and determine the analysis time 7', of all
the time-shift searches for a particular experiment time
(e.g., HILI coincidences in a HIL1V1 network, HIL1V1
coincidences in a HIL1V1 network, etc.). We perform this
calculation separately for each type of coincidence in each
of the different experiment times. Then, for each candidate
in each experiment, we determine the FAR at its likelihood
value £* with the expression

‘Some details of the composite SNR statistics used for
classification are given in [77].
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WO N (L= L)
T,

FAR = , (11)

where N, is the measured number of coincidences with
L > L£* in the kth shifted analysis. We performed a total of
100 time-shifted analyses. Finally, we can rank candidates
by their FARs across all types of experiment times into
a combined ranking, known as combined FAR, for a
single experiment time as described in detail in [96].
The combined FAR is the final detection statistic that
allows us to combine the candidate rankings from the
various experiment types into a single list of candidates
ordered from most significant to least significant.

D. Tuning and simulations

The analysis was tuned using the set of false alarm
coincidences obtained from time-shifted searches, a set of
simulated signals (“injections”) added to the detectors’ data
streams in a separate stage of data analysis, and a small
chunk of the actual search data, approximately 10%,
designated “playground”, that was later excluded from
the analysis to preserve blindness. The goal of tuning the
analysis is to maximize the sensitivity of the search while
minimizing the false alarm rate. For this, we injected a set
of ringdown-only waveforms with ¢ = 1% into the data set.
The waveforms were determined by Eq. (3), (4), and (5)
with sky location and source orientation sampled from an
isotropic distribution. Several sets of ringdown waveforms
were injected with a uniform distribution in f; and Q to
cover the parameter range of the ringdown template bank.
Also, in order to cover the broad mass and spin range
accessible to the ringdown search when signals have
€ = 1%, several sets of ringdown waveforms were injected
with a uniform distribution in M and a: 50 < M/ Mg <
900 and 0.0 < a <£0.99. Additionally, we also injected a
set of full coalescence waveforms with isotropically-
distributed sky location and source orientation parameters
into the data. These full coalescence waveforms included
the recently-implemented nonspinning EOBNRvV2
family [97] and the spinning PhenomB family [98]. The
EOBNRV2 injections were distributed uniformly in total
mass 50 < M /Mg <450 and in mass ratio 1 < ¢ < 10.
The PhenomB injections were given the same mass dis-
tribution and a uniform dimensionless spin parameter 0.0 <
ay, <0.85 where @, = cSl.z/Gmf2 for the spin angular
momentum S and the mass m of the two binary compo-
nents. For a discussion of the injection sets used in
computing rate upper limits, see Sec. V.

IV. SEARCH RESULTS

The search yielded no significant gravitational wave
candidates, as all events were consistent, within 1 sigma,
with the background from accidental coincidences.
Figure 2 shows the cumulative distributions of coincident
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FIG. 2 (color online). Cumulative distributions of coincident
events found as a function of inverse combined false alarm rate
after all vetoes up to the third level are applied. The figures
combines results from both triple and double coincident searches
over the total analysis time of period 1 and period 2. Grey
contours mark the 1o through 5o region of the expected back-
ground from accidental coincidences. No search candidates stand
out from the background.

events found as a function of inverse combined false alarm
rate after all vetoes up to the third level are applied. These
plots combine results from both triple and double coinci-
dent searches over the total analysis time of period 1 and
period 2.

The most significant event was found in triple coinci-
dence during period 1 in HI, H2, and L1. After the first
and second level vetoes were applied, it was found with
a combined FAR = 2.07 yr! and, after the third level
vetoes were additionally applied, with a combined
FAR = 0.45 yr~'. Thus we expect an accidental coinci-
dence to be found by the search with this significance ~
once per two years of analysis. Since the total analysis time
was 1.2 years, the event is consistent, within 1 sigma, with
the accidental coincidence rate. In both H1 and H2, a
trigger was found barely above threshold with matched
filter SNRs of 5.5 and 4.4, respectively. However, the
candidate was found as a very loud trigger in L1 with a
matched filter SNR of 48.9. Performing a coherent
Bayesian parameter estimation follow-up [99] on these
triggers, we found that a coherent analysis favored a
solution for the binary’s sky location and orientation that
yield a very strong signal in L1, but virtually no response in
H1 and H2 detectors. While it is theoretically possible that
very particular location and orientation parameters could
produce such a signal, an excursion from stationary,
Gaussian noise (a glitch) in L1 is more likely.

V. RATE LIMITS

In this section, we compute the 90% confidence upper
limits on IMBH coalescence rates and IMBH black hole
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ringdown rates. The former will allow us to make an
astrophysical statement as well as to compare the sensi-
tivity of the ringdown search to various other searches that
have made statements in this mass regime, including
[11,12,28,29].

We used a procedure similar to that discussed in [11,12]
for the upper limit calculation based on the loudest event
statistic [100,101]. In order to capture the variability of the
detector noise and sensitivity, we analyzed the data in
periods of ~ one to two months. In each of these analysis
times, we estimate the volume to which the ringdown
search is sensitive by injecting many simulated signals
into the data and performing an analysis to recover them.
In Sec. VB, we describe the distribution of EOBNRv2
waveforms used to model the source population of IMBH
binaries. Our sensitivity to these signals depends on total
mass, mass ratio, source distance, and sky location as well
as other parameters such as component spins. We explore
the changing sensitivity of the ringdown search to these
binaries over a range of total masses for both equal mass
and 4:1 mass ratio systems. Other distance and orientation
parameters are randomly sampled. Due to the significant
variation of the search sensitivity over the large mass and
mass ratio parameter space that we explore in Sec. V B, we
have chosen to include only systems with nonspinning
components in this study. In Sec. VC, we describe the
distribution of ringdown waveforms used to model the
population of perturbed black holes first explored in [27].

For each of these injection sets, we compute the sensitive
volume for a given mass range and mass ratio by integrat-
ing the efficiency of the search over distance

Ve = 4ﬂ/n(r)r2dr, (12)

where the efficiency #(r) is calculated as the number of
injections found with a lower combined FAR than the most
significant coincident event in each analysis time for the
search divided by the total number of injections made at a
given distance. As described in [11,12,100,101], we
estimate the likelihood parameter A of the loudest event
being a signal versus being caused by an accidental
coincidence for each type of coincident network time
and each mass and mass ratio bin. For each analysis
time (excluding playground time), effective volume from
Eq. (12), and estimated A, we marginalize over statistical
uncertainties given in Sec. VA and construct a margin-
alized likelihood as a function of the astrophysical rate in
units of mergers per Mpc® per year for our EOBNRv2
injection sets and in units of ringdowns per Mpc? per year
for our ringdown injections. In order to obtain a combined
posterior probability distribution for the rate over all the
analysis times, we multiply a prior on the rate by the
product of the marginalized likelihood functions to obtain a
posterior probability and integrate to 90% to obtain the
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90% confidence upper limit on the rates. For our combined
period 1 result, we assumed a uniform prior on the rate.
However, for the main period 2 result, we were able to use
the period 1 posteriors over coalescence or ringdown rate as
priors for the upper limit calculation.

A. Sources of uncertainty

We must account for several sources of random and
systematic error when computing rate upper limits.
Uncertainties on the sensitive volume as well as incomplete
knowledge of waveforms and source populations form the
largest contributors. As described in earlier search papers
[10-12], we marginalize over random uncertainty (i.e.
calibration and statistical Monte Carlo uncertainties) for
each analysis time. The 90% confidence upper limits based
on the marginalized posterior distributions are the main
results of this search.

The calibration of the data is a source of both random
and systematic error. Reference [102] reports uncertainties
on the magnitude of the response function for each detector
in period 1. We find an overall distance uncertainty of 8%.
Thus, the random uncertainty on the visible volume for
period 1 is approximately 8% cubed, or 24%. For period 2,
references [103] and [104] report uncertainty on h(z) for
LIGO and Virgo detectors. Additionally, an uncertainty on
the scaling of A(r) was reported in [103] and should be
treated as a systematic error similar to the systematic
waveform uncertainties discussed below that could over-
or under-bias the amplitude of a signal. However, the
uncertainty on the scaling of h(t) also has an associated
random error that we fold into the random uncertainty
calculation for period 2. We find an overall distance
uncertainty of 14% corresponding to a 42% uncertainty
on the visible volume for period 2. See [105] for a detailed
explanation of how the uncertainties were propagated.

In addition to the systematic error associated with the
overall scaling of %(t) that could lead to amplitude bias as
mentioned above, there is a larger source of systematic
error due to differences between the injected model wave-
forms and the true waveform. For EOBNRvV2 waveforms
below ~250 Mg, comparisons with numerical models
indicate that uncertainties in these waveforms result in <
10% systematic uncertainty in the SNR, corresponding to a
< 30% uncertainty in sensitive volume. For higher masses,
the systematic uncertainty in the SNR could be as high as
25%. Due to our incomplete knowledge of the true wave-
form and its changing uncertainty over the mass range we
have explored, no systematic errors associated with imper-
fect waveform modeling were applied to the rate upper
limits reported in this paper. Systematic errors were also not
applied to previous searches [11,12] using full coalescence
waveforms up to 100 M, and thus we can compare the
upper limits directly with those results. A previous weakly
modeled burst search [28] used waveform errors of ~15%.
Thus, in order to compare with these results, the upper
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limits reported here should be rescaled as described below.
Regarding ringdown waveforms, due to our lack of knowl-
edge about the population of black holes producing the
waveforms and the waveforms themselves, we again assign
no systematic error to rate upper limits computed with
ringdown waveforms.

In general, we can rescale our rate upper limits by any
systematic uncertainty by applying the scaling factor
(1 —06)7 where o is the systematic uncertainty. Thus,
we can apply a conservative systematic uncertainty of 15%
by rescaling our rate upper limit upward by a factor of 1.63.

The statistical error originating from the finite number of
Monte Carlo injections that we have performed is the final
source of error for which we must account. These errors on
the efficiency at a given distance are found to range
between 1.7% and 6.2% and were marginalized over using
the method described in [100,101].

B. Rate limits from full coalescence injections

In order to evaluate the sensitivity of the ringdown search
to waveforms from binary IMBH coalescing systems with
nonspinning components, we used a set of injections from
the EOBNRvV2 waveform family described in Sec. III D.
Due to the variation in ringdown search sensitivity over
different mass ratios, we chose to compute IMBH coa-
lescence rate upper limits separately for ¢ = 1 and g = 4.
The injection sets were distributed uniformly over a total
binary mass range from 50 < M /Mg <450 and upper
limits were computed in mass bins of width 50 M. The
final black hole spins of these injections can be determined
from the mass ratios and zero initial component spins [106].
For ¢g=1, we find a=0.69, and for g =4, we
find a = 0.47.

The average sensitive distances of the ringdown search to
IMBH binaries described by EOBNRv2 signal waveforms
for both ¢ = 1 and g = 4 are shown in Fig. 3 for period 1
and period 2. The most sensitive mass bin in both cases is
100 < M/My <150 corresponding roughly to 110 <
fo/Hz <170 near the peak sensitivity of the LIGO
detectors. For g = 1, the average sensitive distance of
the 100 < M/Mg < 150 mass bin was 240 Mpc. For
q =4, the average sensitive distance for this mass bin
decreases by more than a factor of two to 110 Mpc. As
discussed in Sec. I B, the reduced ringdown efficiency for
q = 4 binary systems leads to lower amplitude waveforms
and hence, to lower average sensitive distances.
Additionally, the lower final black hole spin for ¢ =4
binary systems acts to decrease the average sensitive
distance relative to ¢ = 1 binary systems for which the
final spin is larger. The sensitive distance of higher mass
bins drops off significantly due to the steeply rising seismic
noise in the detector at low frequencies. This affect is
accentuated for g = 4 systems relative to ¢ = 1 systems at
a fixed mass because a smaller final spin leads to a lower
frequency ringdown. The sensitive distance of mass bin
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FIG. 3 (color online). Average sensitive distances of the ring-
down search to binary systems described by EOBNRV2 signal
waveforms over a range of total binary masses for period 1 [¢ = 1
(vellow), g =4 (green)] and period 2 [qg =1 (cyan), g =4
(blue)]. These distances are equivalent to appropriate averages
over each of the detector networks shown for period 1 and period
2 in Table I, weighted by the percentage of time analyzed for each
network. Thus, while in general the HIL1V1 and HIL1 networks
during period 2 were more sensitive than the HIH2L1 and HIL1
networks during period 1, the consistently smaller average
sensitive distances for period 2 reflect the large duty cycle of
its least sensitive detector networks compared to period 1.

400 < M /Mg <450 is over an order of magnitude less
than the sensitive distance of our most sensitive mass bins
for both ¢ = 1 and g = 4 cases.

Figure 4 shows the 90% confidence upper limits on
nonspinning IMBH coalescence rates for a number of mass
bins. We find an upper limit of 0.069 x 10~ Mpc=3 yr~!
on the coalescence rate of equal mass IMBH binaries with
nonspinning components and total masses 100 < M/
Mg < 150. From the discussion of astrophysical rates of
IMBH mergers in Sec. [ A, we see that this rate upper limit
is still several orders of magnitude away from constraining
the astrophysical rate from GCs.

Previous searches for weakly-modeled burst signals
found no plausible events [28,29]. The most recent search
reports a rate upper limit for nonspinning IMBH coales-
cences of 0.12 x 107 Mpc—3 yr~! at the 90% confidence
level for the mass bin centered on m; = m, = 88 Mg, [29].
A direct comparison of our ¢ = 1 upper limits shown in
Fig. 4 to this burst search result should be made with care
due to the following differences between the two analyses:
statistical approaches leading to different search thresholds,
treatment of uncertainties, analyzed detector networks, and
mass and distance binnings. Additionally, while the ring-
down search employed the Bayesian formulation [100,101]
for calculating the rate upper limit, the burst search used a
frequentist method. Nevertheless, although the impact of
the reported differences is hard to quantify, the upper limits
determined by the two analyses can be considered

PHYSICAL REVIEW D 89, 102006 (2014)
107!

1072
1073
10,4 ..............

10=°

Rate (Mpc™® yr1)

1076 o

10—7 ............ |

-8 i i i i i H 1
10 50 100 150 200 250 300 350 400 450

Total Mass (M)

FIG. 4 (color online). Upper limits (90% confidence) on IMBH
coalescence rate in units of Mpc=> yr~! as a function of total
binary masses, evaluated using EOBNRv2 waveforms with g =
1 (slate grey) and g =4 (grey). In both cases, upper limits
computed using period 2 with period 1 as a prior are shown in a
darker shade. Overlaid in a lighter shade are upper limits
computed using only period 1 data with a uniform prior on rate.

consistent with each other. A more robust comparison of
the sensitivity of the burst searches and an earlier version of
the ringdown search without a multivariate classifier will be
presented in a future paper [107].

Additionally, we can make a comparison with the upper
limits reported from the matched filter search for gravita-
tional waves from the inspiral, merger, and ringdown of
nonspinning binary black holes with total masses 25 <
M /Mg < 100 [12]. This search considered similar uncer-
tainties and similar analyzed networks to those used by the
ringdown search so a result comparison is fairly straight-
forward. From Table I of [12], we find that for systems
with g = 1, the rate upper limits for masses 46 M to
100 My, vary in the range 0.33 x 107 Mpc3yr~! to
0.070 x 107® Mpc— yr~'. From Fig. 4, we find a rate
upper limit for mass bin 50 < M/Mg < 100 of 0.16x
107% Mpc—3yr~!, a value consistent with the BBH rate
upper limit range for these masses and mass ratio.

Note that we can rescale our rate upper limits by a 15%
systematic uncertainty by applying the scaling factor of
1.63 as described in Sec. V A. From Fig. 4, we find a rescaled
rate upper limit of 0.11 x 107% Mpc— yr~! for mass bin
100 < M/Mg, < 150 and 0.15 x 1076 Mpc=3 yr~! for mass
bin 150 < M /M, < 200.

C. Rate limits from ringdown injections

In order to compare with [27], we determined a 90%
confidence upper limit of 4 x 1078 Mpc™3 yr~! on rates of
pure ringdowns from perturbed black holes with uniformly
distributed masses 85 < M /Mg < 146, uniformly distrib-
uted spins 0 < a < 0.99, and a fixed ringdown efficiency of
€ = 1%. We expect ringdown signals from IMBH mergers
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to emit near this efficiency in the (£ = m = 2) fundamental
mode if the mass ratio is near unity. However, for other
sources of perturbed black holes, such as a hypermassive
star collapse directly to a perturbed IMBH, we expect
€ < 1%. Thus, the rate upper limit reported in this section
will not be applicable to such sources.

Reference [27] placed a 90% confidence upper limit on
the rate of ringdowns from black holes with frequencies
distributed uniformly in log;y(f,) in the range 70 <
fo/Hz <140 and uniformly in quality factor 2 < Q <
20 of 3.2 x 107> Mpc > yr~!. Thus, a rough comparison
indicates an improvement of nearly three orders of magni-
tude. A significant portion of this improvement results from
a huge increase in the analysis time. Due to the high false
alarm rate in double coincident analysis time, an upper limit
was set in [27] using only triple coincident time, a total of
0.0375 years. We analyzed both triple and double coinci-
dent time in both period 1 and period 2, a total of 1.2 years.
Such an increase in analysis time results in a factor of ~ 32
improvement in the upper limit. Additionally, a significant
improvement in detector sensitivity due to detector
upgrades between science runs contributed to a better
upper limit. Furthermore, since only triple coincident time
was analyzed in [27], the sensitivity was limited by the least
sensitive detector, H2, which was shown to have a horizon
distance of ~ 130 Mpc at 250 M as shown in Fig. 2 in
[27]. However, since we analyzed both triple and double
coincident triggers, the limiting detector was typically the
L1 detector. We can compare the H2 horizon distance in
Fig. 21in [27] to the L1 horizon distance in Fig. 1 at 250 M
to see that the horizon distance of the limiting detector
improved by a factor of ~3 for a = 0.9. Since the upper
limit scales with volume, a factor of ~3 in distance results
in a factor of ~27 in the upper limit. However, we expect
this factor of improvement to decrease for the lower masses
on which the ringdown upper limit was set.

Thus, from the improvements both in analysis time and
detector sensitivity, we find already roughly three orders of
magnitude improvement. However, several caveats would
apply to a direct comparison: different injection distributions
in (M, a)-space, the improvements from pipeline enhance-
ments such as the implementation of a machine-learning
algorithm, differences in the fitting functions for final black
hole mass and spin defined in Eq. (7) and (8), differences in
the method used in the volume integral in Eq. (12), and
differences in marginalization over errors. A careful study of
the improvement due to the use of a machine-learning
algorithm will be presented in a future paper.

VI. SUMMARY

This paper presents the results of the search for ringdown
gravitational waves in data collected by LIGO and Virgo
between 2005 and 2010. No significant gravitational wave
candidate was identified. We place upper limits on the
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merger rates of nonspinning IMBH binaries as well as on
the rates of ringdowns from perturbed black holes.

We conducted a detailed study of the pipeline’s sensi-
tivity to full coalescence IMBH merger signals using
nonspinning EOBNRv2 waveforms. For simplicity, we
focused our studies on only two mass ratios: ¢ = 1 and
q = 4. The average sensitive distances in our most sensitive
total mass bin, 100 < M /M, < 150, indicate that the
ringdown search is sensitive to an equal mass system at
twice the distance of a 4:1 mass ratio system. The most
efficiently detected mass bin gives an upper limit on the rate
of nonspinning, equal mass IMBH mergers with total
masses 100 < M /Mg < 150 of 6.9 x 1078 Mpc =3 yr™!.
This does not account for any uncertainty in the waveform,
which could be as high as 10% for the mass bin. Our upper
limits for ringdown waveforms from perturbed IMBHs
with masses 85 < M/My < 146 and spins 0 < a < 0.99
show an improvement of nearly three orders of magnitude
over the previous result reported [27], which we can
attribute to improved detector sensitivity, increased live-
time, and pipeline enhancements.

While our rate upper limits are still two to three orders of
magnitude away from constraining the astrophysical IMBH
merger rate from globular clusters, we note that we will
soon approach this optimistic rate with the improved
sensitivity of Advanced LIGO and Virgo detectors
expected to begin operation in 2015. With the improved
low frequency performance of the advanced detectors, we
will have sensitivity to gravitational waves from perturbed
intermediate mass black holes with masses up to ~1000 to
2000 M. At peak sensitivity, the Advanced LIGO ring-
down horizon distance for black holes with € = 1% will
approach cosmological distances.
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APPENDIX A: RINGDOWN AMPLITUDE

The amount of energy dE carried by gravitational
radiation crossing an area dA orthogonal to its propagation
direction in a time dt is given by the energy flux equation,

dE 3

Bt ) )
dAdr 162G (hy + hx),

(A)
where A, and h, are given by the generalized forms of
Eq. (4) and (5) for an arbitrary location on a two-sphere
with m =2 and time of arrival #;, set to zero. Taking

the time derivative and squaring the plus and cross
polarizations, we find
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(A3)

Integrating this flux over a sphere with area element
dA = r’d(cos1)d¢, we find that the trigonometric func-
tions simplify greatly, leaving only the exponential time
dependence over which to integrate
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Finally, we note that the energy radiated as gravitational
waves during the ringdown phase is E = eMc?, where € is
the ringdown efficiency discussed in Sec. I B. Thus, the
amplitude can be found by solving Eq. (A4) for A,

_ [¢GM 1) LN
A=\ <1+4Q2> 012 (A5)

APPENDIX B: RINGDOWN HORIZON DISTANCE

The ringdown horizon distance, similar to the inspiral
horizon distance, is a useful measure of the sensitivity of
the detectors to ringdown gravitational waves from a
particular type of black hole. It is equal to the distance
at which an optimally oriented and located IMBH merger
would produce an SNR of 8 in the detector. The horizon
distance is derived from the representative strain noise
power spectral density of a detector and the /,, or root sum
squared of the strain, for a signal with optimal orientation at
1 Mpc. The definition of A, comes from the need to
measure the amplitude of a gravitational wave without
reference to a particular detector. In general, it is

oo
W= [T rmE @y
where h, and h, are given in Eqgs. (4) and (5) for the
single-mode (Z,m,n) = (2,2,0) ringdown waveform.
Here, under the assumption of optimal orientation, we
set 1 = 0. We find that the A, takes the form

(A
4 =4(2) ()

where A is derived in Eq. (A5). If h(f) represents the
Fourier transform of the expected signal, then the average
SNR this signal would attain in a detector with spectral
density S,(f) is given by

[ elior

Typically, the horizon distance is found by setting (p) = 8 and
solving for the distance r which parametrizes the waveform #.
We can use the fact that the single-mode ringdown signal is
quasimonochromatic and S, (f) assumes approximately one
value for each f so it can be treated as a constant:

(B2)

(B3)

4 © .
=/ h df. B4
) \/Sn(fo)/) HpPar. @
Using Parseval’s theorem, we can write Eq. (B4) as
) = |—2 / " B2(1)a. (BS)
Si’l (f()) —00
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Also, since optimally oriented and located sources imply
maximization over all the angles 6, ¢, and y in F, and F,
then F, =1 and F, = 0. This then gives us the result that
h(t) = h, (t) (whichis defined for# > 0), so Eq. (B5) becomes

2 e 2 1420
v ‘¢ S, o \/Sn<fo>hf“1+4Q2

B 2, 1 Mpc\ 21 +20?
¢m’“m“ e (57) T

(B6)
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where hZ,(1 Mpc) is Eq. (B2) evaluated at a distance of
1 Mpc. Then, we simply solve Eq. (B6) for the horizon
distance,

1 Mpc 2, 1+20?
— PO 2 (] Mpe) 2 B7
=) \/ 5,0 M) g o BT

We then set (p) = 8 to define the ringdown horizon distance
used in Fig. 1.
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