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Directed search for continuous gravitational waves from the Galactic center
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We present the results of a directed search for continuous gravitational waves from unknown, isolated
neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run
from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments,
each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers
gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-
order spindown values down to —7.86 X 10~8 Hz/s at the highest frequency. No gravitational waves were
detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic
center are ~3.35 X 10~2 for frequencies near 150 Hz. These upper limits are the most constraining to
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date for a large-parameter-space search for continuous gravitational wave signals.

DOI: 10.1103/PhysRevD.88.102002

L. INTRODUCTION

In the past decade the LIGO Scientific Collaboration and
the Virgo Collaboration have developed and implemented
search techniques to detect gravitational wave (GW) sig-
nals. Among others, searches for continuous gravitational
waves (CGWs) from known objects have been performed
[1], including, for example, searches for CGWs from
the low-mass x-ray binary Scorpius X-1 [2,3], the Cas A
central compact object [4] and the Crab and Vela pulsars
[5-7]. Extensive all-sky studies searching for as yet un-
known neutron stars have been performed in recent years
[8—14]. Because of the very weak strength of CGW signals,
long integration times—of order weeks to years—are re-
quired to detect a signal above the noise. When the pa-
rameter space to search is large, this is computationally
expensive, and techniques have been developed to max-
imize the attainable sensitivity at fixed computing cost.

In this paper we present the first directed search for gravi-
tational waves from yet unknown, isolated neutron stars in
the direction of the Galactic center. We use the term Galactic
center (GC) as a synonym for the coordinates of Sagittarius
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A* (Sgr A*). Current evolutionary scenarios predict that
pulsars are born in supernova explosions of massive stars
[15]. At least three stellar clusters in the GC region contain
massive stars [16] making the GC a promising target for this
search. Due to the high dispersion measure toward the GC,
however, out of ~2000 known pulsars [17] only six are
located within ~240 pc of Sgr A* [18], of which four are
within ~24 to ~36 pc of Sgr A* [16] and one magnetar is
less than 2 pc away from Sgr A* [19]. Twenty pulsar wind
nebulae are believed to be within 20 pc from Sgr A* [20]. The
existence of these objects supports the belief that the GC
might harbor a large population of pulsars [16] not apparent
to radio surveys because of the dispersion of the radio signal
by galactic matter along the line of sight.

The fact that this search targets previously unknown
objects leads to a very large parameter space to be
covered. A coherent search, which consists of matched
filtering the data against single templates over long ob-
servation times and over a large parameter space, would
have difficulty reaching an interesting sensitivity with
reasonable computational power, so we resort to using a
hierarchical search technique [21,22] that allows us to
integrate over the entire data set of LIGO’s fifth science
run (S5). This consists of a coherent step over shorter
duration segments, using a maximum-likelihood statistic
[23,24], followed by an incoherent combination of the
results from these segments.
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The plan of the paper is as follows: We start with the
scientific motivation of the search (Sec. II) and illustrate
the parameter space and the setup (Sec. III A). Then we
present the selection of the used data set (Sec. IIIB).
We briefly describe the analysis method and the computa-
tional setup (Sec. III C). The various stages of postprocess-
ing and a coherent follow-up search are presented in
Sec. III D. No candidate was confirmed by the follow-up.
We set 90% confidence upper limits on the GW amplitude
(Sec. IV) and discuss the results in Sec. V.

II. MOTIVATION

Rapidly rotating neutron stars with small deviations from
perfect axial symmetry are the most promising sources for
continuous gravitational wave emission. No search for gravi-
tational waves from such sources, however, has resulted in a
detection yet. A possible explanation is that the detectors
were not sensitive enough or that the nearest neutron stars all
happen to be very close to axisymmetric. Therefore, the most
interesting regions are those that contain a large number of
yet undiscovered neutron stars. Among such a large popula-
tion it might be possible to find one neutron star that has a
gravitational wave luminosity high enough or that is unusual
enough to be detected with this search.

The GC area is believed to be such a region. The central
parsec is one of the most active massive star formation
regions and is believed to contain about 200 young massive
stars [25,26]. Because of this overabundance of massive
stars, it is assumed to contain also a large number of neutron
stars [ 18]. Massive stars are believed to be the progenitors of
neutron stars: the star undergoes a supernova explosion and
leaves behind the neutron star. The wide GC area (R =
200 pc) contains more stars with initial masses above
100 Mg, than anywhere else known in the Galaxy, plus three
of the most massive young star clusters [27]. One of these is
the central cluster, which is concentrated around the center
of the Galaxy and contains at least 80 massive stars [27].
In the innermost 1 pc, the main electromagnetic radiation
comes from only a few supergiants [28], which are located
in a dense, rich cluster, centered around Sgr A*. Among the
brightest stars we find 20 hot, massive supergiants. These
stars form a subgroup concentrated strongly towards the
center. The core radius of the entire central cluster is about
0.38 pc [29]. The formation of so many massive stars in the
central parsec remains a mystery [27], but current estimates
predict roughly as many pulsars within 0.02 pc distance to
Sgr A* as there are massive stars [30]. Current estimates
assume at least ~100 radio pulsars to be presently orbiting
Sgr A* within this distance [30].

III. THE SEARCH

A. The parameter space

The targets of this search are GWs from fast-spinning
neutron stars with a small deviation from perfect axial
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symmetry. If the star rotates about its principal moment
of inertia axis I,,, the equatorial ellipticity € of the neutron
star is defined to be the fractional difference in the other
moments of inertia,

€ = J_ (1)
The amplitude of a CGW from a source emitting due to an

ellipticity € from a distance r is [23]

472G Izzf2

]’lo =
ct r

€, 2)

where G is the gravitational constant, ¢ is the speed of
light, and the gravitational wave frequency is twice the
star’s rotational frequency, f = 2v.

The range of frequencies that is covered by this search
spans 78 to 496 Hz and is located around the most sensitive
region of the detectors (around 150 Hz). Based on the
computational feasibility of the search, the first-order spin-
down spans —f/200 yr = f =< 0 Hz/s. These ranges of
frequencies and spindowns have to be covered with a set
of discrete templates. The coherent analysis of the single
data segments is done on a coarse rectangular grid in
frequency and spindown. At the combination step the spin-
down parameter is refined by a factor y of ©(1000). The
resolutions are

df = Ts_eéy dfcoarse = Ts::é dffine = y_lTs_eé) (3)

with y = 3225. This choice leads to an average mismatch'
of ~0.15. In only a small fraction of cases (1%), the mis-
match could be as high as 0.4.

The search assumes a GW source at the position of the
dynamical center of the Galaxy, the ultracompact source
Sgr A* [31],

a =4.650rad and 6 = —0.506 rad. 4

The angular resolution is such that the initial search is
sensitive to sources within a distance R =< 8 pc around
Sgr A*, although a coherent follow-up stage (Sec. III D)
focuses on the region with R < 3 pc.

B. The data

The data used for the search come from two of the three
initial LIGO (Laser Interferometer Gravitational-Wave
Observatory) detectors. Initial LIGO consists of two
4-km-arm instruments in Livingston, Louisiana (L1) and
Hanford, Washington (H1) and a 2-km-long detector colo-
cated in Hanford (H2). For this search we use data from H1
and L1 at the time of the fifth science run [32]. The fifth
science run, called S5, started on November 4, 2005, at
16:00 UTC in Hanford and on November 14, 2005, at

"The fractional loss in detection statistic due to the finite
resolution in template parameters is called mismatch.
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16:00 UTC in Livingston and ended on October 1, 2007,
at 00:00 UTC.

There exist a number of reasons for interruption of the
data collection process: the detectors experience unpredict-
able loss of lock from seismic disturbances (earthquakes or
large storms), as well as anthropogenic activities. In addi-
tion to these down-times, scheduled maintenance breaks
and commissioning take place. Some data are excluded
from the analysis because of poor data quality. The remain-
ing data are calibrated to produce a gravitational wave
strain h(z) time series [12,32]. The time series is then
broken into 1800-s-long segments. Each segment is high-
pass filtered above 40 Hz, Tukey windowed, and Fourier
transformed to form short Fourier transforms (SFTs) of
h(z). These SFTs form the input data to our search code.

During S5 the detectors were operating close to or
at their design sensitivity. The average strain noise of H1
and L1 was below 2.5 X 10723 Hz'/2 in the most sensi-
tive frequency region (around 150 Hz). The performance of
the detectors as well as the duty cycle improved over the
course of the S5 run.

Our data comprise 630 segments, each spanning 11.5
hours of coincident data in H1 and L1 with the best sensitivity
to a CGW signal from the GC. This setup yields the best
sensitivity for given computational resources. To select the
630 segments, we use a running window of the size 11.5 h,
calculate the expected signal-to-noise ratio (SNR) assuming
a constant strength of the GW signal coming from the GC for
the particular segment, and move the window by half an hour.
To optimize sensitivity, we sort the so-obtained list of seg-
ments by their SNR values, pick the best segment, remove
from the list all segments that overlap this segment and then
select the next segment by taking the next on the list. This
procedure is repeated until the 630th segment.

C. The analysis method

We use the hierarchical approach of [33] (known as
the global correlation transform) and divide the data into
single segments, which are coherently analyzed and after-
wards incoherently combined. We use the search algorithm
HIERARCHSEARCHGCT that is part of the LAL/LALAPPS
software suite [34]. The coherent analysis of each single
data segment is done with a matched filter technique called
the F statistic [23,24], which has been used extensively in
CGW searches, most recently in [4,14]. The incoherent
combination step is simply a sum. What to sum, i.e., the
mapping between the coarse grid and the fine grid, is
described in the references provided on the global correla-
tion transform [22,33].

The gravitational wave amplitude A(r) at the output of
each detector is a linear combination of the gravitational
wave functions 4, and &y, where + and X denote the two
different polarizations of the gravitational wave signal

h(t) = F()h (1) + Fy ()hy(2). (5)
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t is the time in the detector frame and F', « are called the
antenna pattern functions [23]. 4(z) depends on the detector
position and on the signal parameters, which are the sky
location of the source of the signal, the signal’s frequency
defined at the solar system barycenter at some fiducial
time, its first time derivative and four further parameters
related to the amplitude and polarization: the intrinsic
strain h, the initial phase constant ¢, the inclination
angle ¢ of the spin axis of the star to the line of sight and
the polarization angle W. These last four parameters are
analytically maximized over, leaving only four parameters
for which to explicitly search: the right ascension, decli-
nation, frequency and spindown.

Since the search covers only a single sky position, the
right ascension and the declination are fixed to the coor-
dinates given in Eq. (4). The search templates are arranged
in a rectangular grid in frequency and spindown. The result
of the matched filter stage is a 2F value for each segment
and each template. The incoherent combination of the
segments consists of summing a 2F value from each seg-
ment and then dividing by the number of segments to
obtain the average. By appropriately choosing which
values to sum, the incoherent combination performs a
refinement in spindown by a factor of O(1000) with respect
to the coherent spindown grid. The result is a value of (2 F)
for each point in this refined parameter space. The search
technique does not require refinement in frequency.

The search is performed on the ATLAS cluster at the
Max Planck Institute for Gravitational Physics in Hanover,
Germany. The parameter space contains a total of N =
4.4 X 10" templates and is divided among 10,678 jobs,
each covering a different frequency band and a range in
spindown values from —fy,., /200 yr = f <0 Hz/s,
where f... is the upper frequency of the band for each
job. The frequency bands become smaller and smaller as
the frequency increases in such a way that the computation
time is about constant and equal to about ~5 hours on an
Intel® Xeon® CPU X3220@2.40 GHz. Each job returns
the values of the detection statistic at the most significant
100,000 points in parameter space.

D. Postprocessing

The search returns results from 1,067,800,000 points in
parameter space. With the postprocessing we subject these
candidates to a set of vetoes aimed at removing the ones
stemming from disturbances, reduce the multiplicity by
clustering the ones that are not independent from one
another, and zoom in on the most significant subset of
these.

The first step is the removal of all candidates that have
frequencies within bands that are known to be contami-
nated by spectral artifacts. Various disturbances affect the
data, like mechanical resonances and electrical compo-
nents of the detectors, and may result in enhanced (2F)
values. Many of these spectral disturbances are well known
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(see Tables VI and VII of [14]), and we discard candidates
that stem from the analysis of potentially contaminated
data, which leaves us 889,650,421 candidates (~83.3%).

Because of the low mismatch of the search grids, a
detectable signal would produce significant values of the
detection statistic in parameter space cells neighboring
the actual signal location. In the second postprocessing
step, we cluster candidates that could be ascribed to the
same signal and associate with the cluster the value
of its most significant candidate. Based on results of
Monte Carlo studies, we pick a fixed rectangular cluster
of 2 X 25frequency X spindown bins, which is large
enough to enclose parameter space cells with detection
statistic values down to half of the maximum of the detec-
tion statistic of a real GW candidate. After the application
of this clustering procedure, we are left with 296,815,037
candidates (~ 33.3% from previous stage).

To confirm that a high (2 F) value is the result of a GW
signal, the signal must show consistent properties in the
data from both detectors. A very simple but efficient veto
used in previous searches [14] compares the outcome of
single and multidetector (2 F) values and identifies candi-
dates stemming from local disturbances at one of the
detector sites. In a false dismissal study, 500 simulated
signals all passed. This veto removes ~11.8% of the
candidates surviving from the previous stage.

The next signal consistency check is computationally
time consuming, and hence we do not apply it to the whole
set of 261,655,549 candidates that survive up to this stage.
Rather, we apply it only to the subset of candidates that
could potentially show up as statistically significant in a
follow-up search. This allows us to keep candidates whose
(2F) value is significantly below what we expect for the
loudest from the entire parameter space search on Gaussian
noise.”

The probability density p'°"des{(2 F*|N) for the largest
summed 2 F value over N independent trials, 2 F*, is [4]

P 2FIN) = Np(Xixeso: 2F7)
F* (N—1)
X I:fz P(X421><630?2~7:)d(2-7:)] ’
0
(6)

where x3,430 denotes a x? statistic with 4 X 630 degrees
of freedom. The expected value of the largest detection
statistic value over N = 4.4 X 10'? independent trials
simply is

E2F"] = ﬁ e Fol4.4 % 10dRF), (7)

*We could of course have applied this selection as a first step
in the postprocessing. We did not because it was the most
practical to apply the signal-based vetoes described above first,
and then tune the threshold for this selection based on the follow-
up only.
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which yields a value of 4.88 with a standard deviation of
less than 0.03. The N templates are not independent,
and Eq. (7) slightly overestimates the actual expected
value. A fit of the actual distribution suggests that the
number of effective independent templates is N ~%.
This moves the actual distribution of p((2F*)) towards
lower values of (2 F), increasing the actual significance of
candidates. We set the threshold to (2 F)y,. = 4.77, which
reduces the number of candidates to 27,607. The 4.77
threshold corresponds to more than 3.5 standard deviations
below the expectations for the loudest over the entire
search in Gaussian noise for N as low as % and to 4
standard deviations below the expectations for Nz ~ N
templates.

The next veto is based on the idea that for a real signal
the signal-to-noise ratio would accumulate steadily over
the 630 segments, rather than be due to the high contribu-
tion of a few single segments. In contrast, noise artifacts
are often limited to shorter durations in time, and hence
influence the (2 F) values only within a limited number of
segments. To detect candidates with such a behavior, the
average (2F) value is recomputed omitting the contribu-
tion from the highest 2 F over the 630 segments. A candi-
date is rejected if its recalculated (2F) is lower than
Q2 F - This veto has a false dismissal rate of 0.8% over
500 trials. There are 1138 candidates that survive this veto.
Of this set, about 90% can be ascribed to the hardware-
injected pulsar 3 (see Appendix A), leaving 59 candidates,
of which 20 are several standard deviations above what is
expected for the loudest. Only a more sensitive follow-up
search could shed light on the nature of these.

We follow up the surviving 59 candidates with a coher-
ent search spanning T, con = 90 days of data from the
H1 and L1 detectors between February 1, 2007, 15:02:57
GMT and May 2, 2007, 15:02:57 GMT. The data set was
again chosen based on the sensitivity to a CGW from the
GC. It contains a total of 6522 half-hour baseline SFTs
(3489 from H1 and 3033 from L1), which is an average of
67.9 days from each detector. The resolution in frequency
and spindown is derived from the time spanned,

dfcoh = (2Tseg,coh)7l: dfcoh = (2Tszcg,coh)71‘ (8)
The resolution in spindown turns out to be comparable to
the fine grid resolution of the initial search. The frequency
resolution is much finer. The covered frequency and spin-
down ranges are

Af =5df = 5Tg), Af = 11dfge = 11y 1TSE

9

centered around the frequency and spindown of the candi-
date to follow up. These ranges are chosen because the
parameters of the highest recovered (2F) are always
within a distance of two frequency bins and five spindown
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bins of the true signal parameters. We are most concerned
with the central 2 or 3 pc of the GC, not the entire 8 pc
region covered by the initial search. Therefore, we concen-
trate on ~3 pc around Sgr A*, and place a fine template
grid of 36 sky points, covering a total of 7.2 X 10~ rad in
right ascension and declination, centered around it. With
this setup, the average mismatch of the follow-up search
is 1.4%. Based on the number of searched templates,
the expected maximum 2F for Gaussian noise is around
~41 * 3, while a gravitational signal that passed the pre-
vious steps of the postprocessing is expected to show up
with values distributed between ~50 and ~400, with a
mean ~ 157 and a prominent peak at ~68. Whereas it is not
possible to claim a confident detection based solely on this
follow-up, it is in fact possible to discard candidates as not
consistent with the expectations for a signal by discarding
candidates whose 2F value in the coherent follow-up
analysis is smaller than 50% of the value we predict based
on the (2/F) of the original candidate. In Monte Carlo
studies with 1000 trials, this procedure has a false dismissal
rate of 0.4%. The injected signal strengths were chosen
such that the resulting (2F) values lie within the range
4.4 = (2F) =< 7.3. None of the 59 candidates survives this
follow-up.

IV. RESULTS

We place 90% confidence frequentist upper limits (ULs)
on the maximum intrinsic GW strain, hg’%, from a popu-
lation of signals with parameters within the search space,
based on the loudest candidate from the search that could
not be discarded as clearly not being of astrophysical
origin. In particular, the upper limits refer to 3000 portions
of the frequency-spindown parameter space with equal
number of templates of about 1.5 X 10°. They refer to
sky positions within ~3 pc distance of Sgr A*, and to
uniformly distributed nuisance parameters cos ¢, ¢, and
W. "% is the CGW amplitude such that 90% of a popu-
lation of signals would have yielded a more significant
value of the detection statistic than the most significant
measured by our search in that portion of parameter space.
The 90% confidence includes the effect of different real-
izations of the noise in the band and of different signal
shapes (different combinations of cos ¢, ¢q, V¥, f, f ,a, 0)
over the sub-band parameter space. This is a standard
upper limit statement used in many previous searches,
from [35] to [14]. We exclude from the upper limit state-
ments frequency bands where more than 13% of the pa-
rameter space was not considered due to postprocessing
vetoes (this reduces the UL bands to 2549 bands). The
choice of 13% was empirically determined as a good
compromise between not wanting to include in the UL
statements frequency bands where the searched parameter
space had been significantly mutilated and wishing to keep
as many valid results as possible. Ten further frequency
bands were excluded from the upper limit statements.
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FIG. 1. This plot shows the 90% confidence upper limits on

the intrinsic GW strain 4, from a population of signals with
parameters within the search space. The tightest upper limit is
~3.35 X 107 at ~150 Hz. The large value upper limit values
close to 350 Hz are due to the residual spectral of the detectors’
violin modes.

These bands are at neighboring frequencies to strong dis-
turbances and are themselves so disturbed that our upper
limit procedure could not be applied to these frequency
bands. Figure 1 shows the upper limit values. The tightest
upper limit is ~3.35 X 1072 at ~150 Hz in the spectral
region where the LIGO detectors are most sensitive.

Assuming a nominal value for the moment of inertia,
the upper limits on %, can be recast as upper limits on the
pulsar ellipticity, €°°%. Figure 2 shows these upper limits
for values of the moment of inertia between 1 and 3 times
the fiducial value Iy = 10°® kg m?. The upper limits range
from 6.2 X 1073 at 78 Hz to 2.7 X 107> at 496 Hz for I.
The most constraining value is 8.7 X 107® at 496 Hz
for 3 X Iy.

Following [36], the upper limits can also be translated
into upper limits on the amplitude of r-mode oscillations,
% as shown in Fig. 3. The upper limits range from 2.35
at 78 Hz to 0.0016 at 496 Hz.
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FIG. 2. This plot shows the 90% confidence upper limits on the
ellipticity e for our target population of sources, at a distance
r = 8.3 kpc and for three different values for the moment of
inertia.
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FIG. 3. This plot shows the 90% confidence upper limits on the
amplitude a of r-mode oscillations.

V. CONCLUSION

Although this is the most sensitive directed search to
date for CGWs from unknown neutron stars, no evidence
for a GW signal within 3 pc of Sgr A* was found in the
searched data. The first upper limits on gravitational
waves from the GC were set by [37], a search analyzing
the data of the resonant bar detector EXPLORER in the
frequency range 921.32-921.38 Hz. The sensitivity that
was reached with that search was 2.9 X 10724, More
recent upper limits on permanent signals from the GC
in a wide frequency band (up to 1800 Hz) were reported
by [38]. A comparison between the results of [38] and the
upper limits presented here is not trivial, because the
upper limits set in [38] refer only to circular polarized
waves, while our results refer to an average over different
polarizations. Also, the effect of frequency mismatch
between the signal parameter and the search bins is not
folded in the results of [38], whereas it is for this search.
A further difference is that the upper limits of [38] are
Bayesian, while the results presented here are given in the
frequentist framework. Taking these differences into ac-
count, we estimate that within a 10% uncertainty our
results tighten the constraint of [38] by a factor of 3.2 in
hg. The tightest all-sky hq upper limit in the frequency
range 152.5-153.0 Hz from [14] is 7.6 X 1072°. The
results presented here tighten the [14] constraint by about
a factor of two. This improvement was possible because
of the longer data set used, the higher detection efficiency
of this search that targets only one point in the sky, and the
comparatively low number of templates. For comparison,
the targeted search for a CGW signal from Cas A, which
used 12 days of the same data as this search and analyzed
them with a fully coherent method, resulted in a 95%
confidence at ~150 Hz of 7 X 1072 [4]. The improve-
ment in sensitivity compared to the search of [4] is gained
by having used much more data and low-threshold
postprocessing.

Following [14,39] we express the GW amplitude upper

limits as h)’% = H4/S,/Tge, where S, is the detector
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noise and Ty, = NgegTseo- The factor H can be used for
a direct comparison of different searches, with low values

of H implying, at fixed 4/S},/T ., @ more effective search
[40]. This search has a value of H ~ 77, which is an
improvement of a factor 2 compared to [14], where H
varies within ~141 and ~150 with about half of the
data. This confirms that the improvement in sensitivity
for this search with respect to [14] can be ascribed to an
overall intrinsically more sensitive technique being em-
ployed, for the reasons explained above.

This search did not include nonzero second-order
spindown. This is reasonable within each coherent search
segment: the largest second-order spindown that over a
time Ty, produces a frequency shift, f Tszeg, that is less
than one half of a frequency bin is

S
fTseg = T

seg

(10)

Inserting Ty, = 11.5 h, the maximum-second order
spindown that satisfies Eq. (10) is f ~7 X 10~'° Hz/s2.
Using the standard expression for the second-order
spindown,

(1

and substituting | f/f|] = 1/200 yr, a braking index n = 5,
and f = —7.86 X 1078 Hz/s (the largest spindown cov-
ered by the search) implies that the highest f that should
have been considered is f ~ 6 X 107'7 Hz/s>. We con-
clude that for the coherent searches over 11.5 hours,
not including the second-order spindown does not preclude
the detection of systems in the covered search space
with second-order spindown values less than ~6 X
10717 Hz/s%. Due to the long observation time (almost
two years), the second-order spindown should, however,
not be neglected in the incoherent combination. The mini-
mum second-order spindown signal that is necessary to
move the signal by a frequency bin 8 f within the obser-
vation time is

Fonin = fo ~ 6 X 10721 Hz/s% (12)

obs

This means the presented results are surely valid for all
signals with second-order spindown values smaller than
6 X 1072 Hz/s?>. Computing the confidence at a fixed
h{** value for populations of signals with a second-order
spindown shows that signals with f = 5 X 10720 Hz/s? do
not impact the results presented in this work. This value is
larger than all reliably measured values of known neutron
stars as of today, where the maximum value measured is
f=12x10"2 Hz/s? [17].

However, the standard class of signals with large spin-
down values is expected to also have high values of the
second order spindown [Eq. (11)]. Not having included a
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second-order spindown parameter in the search means
that not a standard class of objects but rather a population
with apparently very low braking indices is targeted. Such
braking indices are anomalous, i.e., it would be surprising
to find such objects; however, they are not fundamentally
impossible and could appear, for example, for stars with
either a growing magnetic surface field or a growing
moment of inertia [41]. Under these circumstances the
relationship between observed spindown and ellipticity
may break down. The ellipticity of the star might be large
enough that gravitational waves, even at a distance as far as
the GC, can be measured at a spindown value that would
not imply such strong gravitational waves in the standard
picture. This is an important fact to keep in mind when
interpreting or comparing these results.

For standard neutron stars, the maximum predicted
ellipticity is a few times 107> [42]. The upper limits on €
presented here are a factor of a few higher than this over
most of the searched frequency band and for /4. Exotic star
models do not exclude hybrid or solid stars, which could
sustain ellipticities up to a few 10~ or even higher [43—45],
well within the range to which our search is sensitive.
However, since the predictions refer to the maximum values
that model could sustain, they don’t necessarily predict
those values, and hence our nondetections do not constrain
the composition of neutron stars or any fundamental prop-
erty of quark matter. We have considered a range of varia-
bility for the moment of inertia of the star between 1-3 .
Reference [46] predicts moments of inertia larger than
Itq for stars with masses = 1My, which means for all
neutron stars for which the masses could be measured.
Reference [47] has estimated the moment of inertia for
various equations of state (EOS) and predicts a maximum
of I = 2.3 X I;4. Reference [48] found the highest moment
of inertia to be I = 3.3 X I3 for EOS G4 in [49].

For frequencies in the range 50-500 Hz, the lower limits
on the distance derived in [14] at the spindown limit range
between 0.5 and 3.9 kpc, but because of the smaller spin-
down range the corresponding spindown ellipticities are
lower, down to 7 X 107% at 500 Hz, with respect to the
ellipticity upper limit values that result from this search.
This reflects a different target population: closer by, and
with lower ellipticities in [14], farther away, at the GC, and
targeting younger stars in this analysis. We note that the
h{** upper limits presented here could also be reinter-
preted as limits on different ellipticity-distance values (as
done in Fig. 13 of [13]) for sources lying along the direc-
tion to the GC.

At the highest frequencies considered in this search,
a”% reaches values that are only slightly higher than the
largest ones predicted by [50]. We stress that the uncer-
tainties associated with these predictions are large enough
to encompass our results.

The main uncertainty affecting the prospect for detection
of CGWs as the ones targeted by this search is the
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ellipticity of the source, whose possible values span
many orders of magnitude, from 107> to 10”7 and lower.
Because of this, no detection is guaranteed, not with the
tenfold sensitivity improvement of the second generation
of GW detectors (Advanced LIGO [51], Advanced Virgo
[52,53], KAGRA [54]) and not even with the third-
generation detectors (e.g., FEinstein telescope [55]).
However, since there is no fundamental constraint for the
maximum ellipticity to be lower than 1077, it is plausible
to assume that objects do exist with ellipticities in the
range 107°—1073. This is a range that will be accessible,
and partly already is, to gravitational wave detectors for
objects at the GC, which clearly is a promising region to
search because of its richness of neutron stars.
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APPENDIX: HARDWARE INJECTIONS

Over the course of the S5 run, ten simulated pulsar
signals were injected into the data stream by physically
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exciting the detectors’ mirrors. Most of these fake pulsars
have sky locations far away from the GC, but one of them
is close enough that it contributes to the (2 F) values of the
templates in our search that are close to the injection
parameters. The parameters of this hardware-injected
signal are shown in Table I. The distance between that
hardware injection and the GC position is ~1.537 rad in
right ascension and ~0.077 rad in declination. This is not
within the covered parameter space. Nevertheless, the in-
jected signal is so strong—the plus- and cross-polarization
translate into an implied iy ~ 1.63 X 1072% which s a factor
of ~40 louder than our 7)°% at 108 Hz—thateven arelatively
marginal overlap with a template produced a significant
(2F) value. This pulsar is detected with this search, even
though it lies outside the defined parameter space.
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TABLE I. The parameters of the hardware injection that was
detected with this search.

Value Property

751680013 Pulsar #.; in SSB frame [GPS sec]
3.2766 X 10720 Plus-polarization signal amplitude
—5.2520 X 1072! Cross-polarization signal amplitude

0.444280306 Polarization angle

5.53 Phase at 7,.¢

108.8571594 GW frequency at t..; [Hz]
—0.583578803  Declination [rad]

3.113188712 Right ascension [rad]

—1.46 X 1077 First spindown parameter [df,/d¢]
0.0 Second spindown parameter [df,/d*]
0.0 Third spindown parameter [df,/d]
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