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We present a theoretical analysis of the propagation of light pulses through a medium of four-level atoms, with
two strong pump fields and a weak probe field in an N-scheme arrangement. We show that four-wave mixing has
a profound effect on the probe-field group velocity and absorption, allowing the probe-field propagation to be
tuned from superluminal to slow-light regimes with amplification.
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1. Introduction

Precise rotation sensors are critical components for
stabilization, navigation, and targeting applications.
At the moment, the most sensitive commercial devices
are optical gyroscopes based on the Sagnac effect [1].
Such a device consists of a ring interferometer with two
counter-propagating light waves, as shown in Figure 1.
The rotation of such an interferometer results in a
phase difference between the two optical fields pro-
portional to the magnitude of the rotational angular
velocity ~O:

D� ¼
4p!
c2

~A � ~O, ð1Þ

where ! is the light angular frequency, c is the speed of
light, and ~A is the area of the optical loop. The most
successful realizations to date are fiber-optics gyro-
scopes, in which the interferometer ring is formed by a
loop of an optical fiber. The sensitivity of such an
interferometer is usually boosted by using a large
number N of loops that increase the effective area in
Equation (1) by a factor of N. The Sagnac phase shift
can be measured directly from the interference of the
two counter-propagating waves at the output, or by
monitoring the resulting frequency difference between
corresponding counter-propagating modes of the inter-
ferometer cavity. In either case, the reciprocity of light
propagation dramatically reduces effects of environ-
mental factors (temperature, vibrations, etc.), and
enhances reliability. As a result, the sensitivity of
state-of-the-art compact fiber-optic gyroscopes has
reached the shot-noise-limited value of 10�7–10�8 rad
s�1 Hz�1=2 [2], while large-area laser gyroscopes have

achieved even greater sensitivities, on the order of
10�10 rad s�1 Hz�1=2 [3].

Similar sensitivity has been also achieved with
matter-based Sagnac interferometers. In this case, the
rotation-induced phase equation may be written as

D� ¼
4p
�dBv

~A � ~O, ð2Þ

where v and �dB ¼ 2p�h=ðmvÞ represent the velocity and
the de Broglie wavelength of the massive particles,
respectively. Here, the advantage gained by the use of
massive particles (mc2 � �h!) is offset by the much
smaller effective area compared to fiber-optics devices,
resulting in similar performance [4].

Recent demonstrations of slow light pulse propa-
gation in coherent optical media stirred active debate
on the possibility of using slow-light pulses to enhance
the Sagnac effect. It was quickly established that
neither large positive (‘slow light’) nor negative (‘fast
light’) dispersion has a direct influence on the magni-
tude of the Sagnac phase shift in Equation (1) [5].

Nevertheless, it still seems to be possible to take
advantage of a large group index to enhance gyro-
scopic performance. For example, the output signal of
a rotating interferometer with a highly dispersive slow-
light medium can be enhanced by its differential
response to opposite Sagnac phase shifts of two
counter-propagating light waves [6]. A modest factor-
of 2.5 enhancement of the observed phase difference
has been recently demonstrated in a slow-light fiber
ring [7], and a more significant enhancement (up to a
factor of 200) is predicted in certain coupled resonator
structures [6].
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Even more dramatic improvements are predicted
for the measurement of the Sagnac-effect-induced
mode splitting in an active ring cavity with strong
negative dispersion [8]. Calculations have shown that
the resulting frequency difference between two coun-
ter-propagating modes is inversely proportional to the
group index, and thus nominally diverges for ng¼ 0
(i.e. for n ’ �!ð@n=@!Þ) [8,9]. While this divergence
disappears after correcting for higher-order nonlinear
effects, a 106 improvement in gyroscope sensitivity
should still be possible [8].

The current status of these debates shows that while
strong positive or negative optical dispersion may
indeed be capable of dramatic improvements in optical
gyroscope performance, there is no clear winning
approach. Thus, an atomic system that can be easily
reconfigured to exhibit either strong positive or strong
negative dispersion is an ideal candidate for the devel-
opment of such a new generation of advanced optical
gyroscopes. In the last decade, controllable manipula-
tions of the group velocity of light have been demon-
strated in a wide range of systems [10,11]. Nevertheless,
atomic systems with long-lived spin coherences still
provide the largest values of group index in both the
slow and fast light regimes [12]. In such atomic systems,
the group velocity for a probe optical field can be widely
tuned by adjusting parameters of a strong control field
that provides strong coupling of the probe optical field
to a collective atomic spin state [13].

An ideal test system for the development of a new
type of optical gyroscope with improved rotational
sensitivity should have a dispersion that can be contin-
uously controlled in the widest possible range – from the
highest positive group index to the highest negative
group index – with minimal changes in the experimental

arrangement. While several interaction schemes are
capable of such wide tunability [14,15], a so-called
N-scheme has recently emerged as a promising candi-
date [16–20]. A possible realization of an N-scheme is
via three optical fields interacting with four-level atoms
in the arrangement shown in Figure 2 (omitting for now
the field �4). The strong control (�1) and weak probe
(�2) fields by themselves form a regular � system
exhibiting electromagnetically induced transparency
(EIT) and slow light [13]. The interaction of the atoms
with the second strong control field O3 splits this single
EIT peak into two, separated by a narrow enhanced-
absorption peak. This spectral region exhibits a fast-
light effect, desired for gyroscope performance enhance-
ment. However, this fast-light regime cannot be directly
utilized in the proposed active enhanced-sensitivity
optical gyroscope due to its unavoidable high optical
losses.

In this manuscript, we provide an extended treat-
ment of the four-level N-scheme that includes the
possibility of four-wave mixing (FWM) by allowing
optical transitions (and spontaneous decay) between
states j4i and j1i. The associated FWM gain modifies
the transmission of the probe field [21,22], and provides
a smooth switch between slow- and fast-light regimes by
varying the strength of one of the pump fields (O3).

2. Slow and fast light in a four-level N-scheme

The evolution of a four-level N-system, shown in
Figure 2, can be described under the rotating-wave
approximation by the following Hamiltonian:

Ω

beam
splitter

input

detector

output

Ecw

Eccw

Figure 1. A generic schematic of an optical gyroscope based
on the Sagnac effect. (The color version of this figure is
included in the online version of the journal.)
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Figure 2. Schematic for three optical fields �1,2,3 interacting
with four-level atoms in an N-configuration. A fourth field
�4, generated by four-wave mixing, may also be included, as
described in the text. (The color version of this figure is
included in the online version of the journal.)

Ĥ ¼ i�h

0 0 � 1
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1
2 expð�i�4ÞO4
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1
2 expð�i�3ÞO3

� 1
2 expði�1ÞO1 �

1
2 expði�2ÞO2 ��1 0

� 1
2 expði�4ÞO4 �

1
2 expði�3ÞO3 0 ��1 þ �2 � �3
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where Oi and �i are the Rabi frequencies and phases of

the corresponding optical fields, respectively, and �i are
their detunings from the corresponding optical transi-

tions, as shown in Figure 2. In this model we only

considered interactions of each optical field with one
atomic transition, as shown. Any far off-resonant

couplings to other transitions will result, in first order,

in additional light shifts of the corresponding levels; at
high optical density they may considerably affect the

pulse propagation dynamics, and must be included in

calculation using, for example, Floquet analysis
[23,24]. We also have assumed the four-photon reso-

nance condition ��1 þ �2 � �3 þ �4 ¼ 0, as well as the
phase-matching condition on the optical wavenumbers

ki, �k1 þ k2 � k3 þ k4 ¼ 0, which results in the elim-

ination of the explicit time and space dependence from
the Hamiltonian [25]. We note that the phase-matching

condition is written in the scalar form because all wave

vectors are collinear since the three applied fields are
collinear. The four-photon resonance condition is

automatically satisfied in the situation that we will

primarily consider, in which the Stokes field O4 is
spontaneously generated. Namely, any variation in the

probe two-photon detuning �P ¼ �2 � �1 is matched

by the corresponding change in the Stokes field
two-photon detuning �S ¼ �4 � �3 ¼ ��P.

The ability to control the dispersion of the probe

field O2 by adjusting the intensities of two strong

control fields O1 and O3 is illustrated in Figure 3,
obtained by numerically solving the evolution equations

obtained from the above Hamiltonian for the steady-
state condition. Figure 3(a) shows a traditional EIT

regime, with a moderately strong first control field

O1 ¼ ð2pÞ 3MHz and the second control fieldO3 turned
off. As expected, we observe a dip in the absorption

spectrum (dashed line) and steep, positive, linear

dispersion of the refractive index (solid line) near zero
two-photon detuning �P ¼ �2 � �1 ¼ 0, between two

absorption peaks corresponding to the Autler–Townes

splitting of the excited state by the strong control field.
Figure 3(b) depicts the situation in which the atoms

interact with both strong control fields O1 and O3 in a

standard N-configuration, in which optical transition
from state j4i to j1i is not allowed by selection rules. In

this case, the spectrum consists of four partially-

resolved absorption resonances, which can be inter-
preted as unequal Autler–Townes splittings of the states

j2i and j3i by the control fields of different intensities
O1 ¼ ð2pÞ 3MHz and O3 ¼ ð2pÞ 6MHz. Even though

there are several spectral regions in which steep anom-

alous dispersion is realized, all of them occur in
conjunction with enhanced absorption.

Finally, Figure 3(c) shows that the situation is quite

different if optical transitions are allowed from both

excited states to each of the ground states. In this case,
the four-wave mixing process in a double-� system is

possible, and it is enhanced through the long-lived spin

coherence between states j1i and j2i [13,22,23]. As a
result, a new optical Stokes field O4 is efficiently

generated (even though the input Stokes field is set to

zero), and the probe-field transmission spectrum con-
sists of two antisymmetric Raman resonances, with

gain regions at both positive and negative probe-field

detunings. For properly chosen intensities of the two
control fields, it is possible to adjust the frequency

splitting and widths of these peaks to achieve a
negatively-sloped refractive index for the probe field

near the zero two-photon detuning �P ¼ 0, while the

gain drops to zero between the two gain peaks. Thus,
the probe field experiences minimal absorption or gain
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Figure 3. Real and imaginary parts of the probe-field susceptibility �P for various interaction configurations: (a) only one
control field O1 ¼ ð2pÞ 3MHz is on (standard EIT regime); (b) both control fields O1 ¼ ð2pÞ 3MHz and O3 ¼ ð2pÞ 6MHz are
present, but no radiative transition between states j4i and j1i is allowed (standard N-scheme); (c) both control fields
O1 ¼ ð2pÞ 3MHz and O3 ¼ ð2pÞ 6MHz are present, and both excited states have equal decay rates into each of the ground states.
For all graphs, the excited state decay rates are �3 ¼ �4 ¼ ð2pÞ 3MHz, the ground-state relaxation rate is ð2pÞ 0:01MHz, we
assume equal branching ratios for all optical transitions, zero one-photon detunings for both pump fields, and atomic number
density of 109 cm�3. (The color version of this figure is included in the online version of the journal.)
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for frequencies near the two-photon resonance, which

are the desired characteristics of an atomic medium for

gyroscope enhancement.
From this picture, it is clear that optimization of

the control-field intensities allows for smooth tuning of

the probe field’s dispersion from slow to fast light

regimes by changing the frequency shift and shape of

the Raman peaks. To find the optimal operational

parameters numerically, we computed the transmission

spectrum for the probe field O2 for the range of the

control fields’ Rabi frequencies and then calculate the

dispersion, @�P=@!, at the two-photon resonance.
We display the on-resonance group index, ng � 1þ

ð!=2ÞRe @�P=@!½ �, in the left-hand side graph in

Figure 4. One can see that depending on the values

of the intensities of the two control fields, the probe

experiences either slow light (when the two gain peaks

for positive and negative two-photon detuning are not

resolved and form a single gain peak), or fast light

(when the two peaks are farther apart, forming a

distinct dip between them). In the graph, regimes

exhibiting fast light are shown as dark blue, where as
regimes exhibiting slow light behavior are indicated by

the redder colors. When both fields are very strong, the

Raman resonances are shifted too far from the origin,

leading to flat dispersion. Additionally, we have

investigated the absorption experienced by the probe

field at the two-photon resonance, and we plot the

resonant absorption coefficient, ð!=2cÞImð�PÞ, in the

right-most graph of Figure 4. We note that the units of

the absorption coefficient are cm�1. In this plot, the

darker blue indicates less absorption than the dark red
region, although in general, very little absorption is

experienced for the selected ranges of O1 and O3. From

this analysis we have identified O1 ¼ ð2pÞ 3MHz and

O3 ¼ ð2pÞ 6MHz as suitable values for producing the

desired fast-light behavior with vanishing absorption.
Under the four-wave mixing condition, the spon-

taneously generated Stokes field O4 experiences strong

gain, and thus its intensity increases as it propagates

through the medium. Moreover, its presence has a

strong effect on the probe field amplitude due to their

mutual coupling through the atomic spin coherence,

even though both probe and Stokes fields remain

significantly weaker than either control field. In

Figure 5, we plot the real and imaginary parts of

optical polarizations for both the probe (top) and

Stokes (bottom) fields, under conditions corresponding

to different points along the optical path through the

atomic medium. The left column represents the

entrance of the vapor cell, where only the probe field

is present, and O4 ¼ 0 since it is not yet generated.

Under these conditions, O4 experiences strong gain,

which leads to its spontaneous generation.
As the unattenuated probe light and generated

Stokes field propagate along the cell, the increasing

strength of O4 starts affecting the propagation of the

probe field through the FWM coupling. In particular,

the negatively-sloped refractive index is somewhat

flattened out, due to the appearance of a small

amount of gain (Figure 5(c)). Farther along the cell,

the probe field experiences stronger gain, but the

dispersion switches to non-anomalous, associated with

the slow-light propagation regime. The observed

behavior indicates the amplitude of the Stokes field

offers an additional control mechanism of the group
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Figure 4. Probe-field group index ng � 1þ ð!=2ÞRe @�P=@!½ � (left) and the logarithm of the absorption coefficient
log ð!=2cÞ Imð�PÞ½ �, where the absorption coefficient is in cm�1 (right) as functions of both control fields’ strengths. For this
calculation, the experimental parameters are the same as in Figure 3. (The color version of this figure is included in the online
version of the journal.)
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index through, for example, the optical depth of the
atomic ensemble. At the same time, the four-wave
mixing process produces higher gain for the probe field
at the output, and thus allows for compensation of
unavoidable optical losses when operating inside a
cavity.

3. Analytical solution

The results presented above were obtained by numer-
ical solution of the propagation equations for all four
optical fields using the interaction Hamiltonian of
Equation (3) without making any additional assump-
tions about the parameters of the system. However,
with a few reasonable approximations, we also can find
an analytical solution for time-dependent weak optical
fields O2 and O4 and strong cw optical fields O1 and
O3. In this case we can assume a linear response of the
atomic medium with respect to both weak optical
fields. The strong control fields determine the popula-
tions of the atomic levels and optical polarizations for
the j1i ! j3i and j2i ! j4i transitions that are coupled
with these fields. Thus, the corresponding density
matrix elements can be calculated assuming only the
interaction of the two strong fields with the atoms,
which in the interaction scheme under consideration
(Figure 2) reduces to the simple case of two

independent two-level systems, connected only through

the decays of the excited states j3i and j4i:

_�1,1 ¼ �31�3,3 þ �41�4,4 þ
1

2
iO1ð�3,1 � �1,3Þ, ð4Þ

_�2,2 ¼ �32�3,3 þ �42�4,4 þ
1

2
iO2ð�4,2 � �2,4Þ, ð5Þ

_�3,3 ¼ ��3�3,3 �
1

2
iO1ð�3,1 � �1,3Þ, ð6Þ

_�4,4 ¼ ��4�4,4 �
1

2
iO2ð�4,2 � �2,4Þ, ð7Þ

_�1,3 ¼ �ð�3=2þ i�1Þ�1,3 �
1

2
iO1ð�1,1 � �3,3Þ, ð8Þ

_�2,4 ¼ �ð�4=2þ i�3Þ�2,4 �
1

2
iO3ð�2,2 � �4,4Þ: ð9Þ

Here �3 ¼ �31 þ �32 and �4 ¼ �41 þ �42 are the popula-

tion decay rates of the excited states. For simplicity, we

have neglected the population decay rates from the two

ground states, assuming that they are significantly

smaller than the excited state decays and the strong

optical fields’ Rabi frequencies. Comparison with the
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Figure 5. Top row: real and imaginary parts of atomic polarization �3,2, proportional to the refractive index and absorption for
the probe field O2 for various strengths of the Stokes field. Bottom row: same for real and imaginary parts of atomic polarization
�4,1 for the Stokes field O4. Pump fields are O1 ¼ ð2pÞ 3MHz and O3 ¼ ð2pÞ 6MHz, the probe field O2 ¼ ð2pÞ 1:0 kHz; the values
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for (e) and ( f). (The color version of this figure is included in the online version of the journal.)
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exact numerical solutions indicates that this is a good
approximation.

Solving Equations (4)–(9) in the steady state and
assuming equal branching ratios for the excited
state decay channels (�31 ¼ �32 ¼ �3=2 and
�41 ¼ �42 ¼ �4=2), we obtain the following expressions
for the atomic populations and optical coherences:

�ð0Þ1,1

�ð0Þ2,2

�ð0Þ3,3

�ð0Þ4,4

�ð0Þ1,3

�ð0Þ2,4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼
1

T

O2
3ð4�

2
1 þ O2

1 þ �
2
3 Þ�4

O2
1ð4�

2
3 þ O2

3 þ �
2
4 Þ�3

O2
1O

2
3�4

O2
1O

2
3�3

�O1O2
3�4ð2�1 þ i�3Þ

�O3O2
1�3ð2�3 þ i�4Þ

0
BBBBBBBB@

1
CCCCCCCCA
, ð10Þ

where

T ¼ 2O3
2�4 2�1

2 þ O1
2

� �
þ �3�4 O3

2�3 þ O1
2�4

� �
þ 2O1

2�3 2�3
2 þ O3

2
� �

is the common denominator. We make an additional
approximation that the values of these density matrix
elements do not change along the length of the cell.
The validity of this approximation may be questioned,
since, in fact, both strong fields will experience some
absorption. Later we will demonstrate that, in the
range of the strong-field intensities that produce the
desired fast-light regime, this absorption is insignifi-
cant, and the non-depletion approximation is
reasonable.

We are interested in calculating the propagation of
the weak probe field O2, as well as in the possible
generation of the four-wave-mixing field O4 connecting
the j4i and j1i states, governed by the wave equations,

ð�i!þ c@zÞO2 ¼ ig2N�3,2, ð11Þ

ð�i!þ c@zÞO4 ¼ ig4N�4,1, ð12Þ

where g2,4 are coupling coefficients for the correspond-
ing optical transitions.

The remaining density matrix elements are
described by the following equations:

_�1,2 ¼ �G12�1,2 þ
1

2
iO1�3,2 �

1

2
iO3�1,4

�
1

2
iO2�

ð0Þ
1,3 þ

1

2
iO4�

ð0Þ
4,2; ð13Þ

_�1,4 ¼ �G14�1,4 þ
1

2
iO1�3,4 �

1

2
iO3�1,2

þ
1

2
iO4ð�

ð0Þ
4,4 � �

ð0Þ
1,1Þ; ð14Þ

_�3,2 ¼ �G32�3,2 þ
1

2
iO1�1,2 �

1

2
iO3�3,4

�
1

2
iO2ð�

ð0Þ
3,3 � �

ð0Þ
2,2Þ; ð15Þ

_�3,4 ¼ �G34�3,4 þ
1

2
iO1�1,4 �

1

2
iO3�3,2

þ
1

2
iO2�

ð0Þ
2,4 �

1

2
iO4�

ð0Þ
3,1; ð16Þ

where G12 ¼ ið�1 � �2Þ, G14 ¼ �4=2þ ið�1 � �2 þ �3Þ,
G32 ¼ �3=2� i�2, and G34 ¼ ð�3 þ �4Þ=2þ ið�3 � �2Þ.

It is important to emphasize that we assume that

the detuning of the generated field is such that it always

obeys the four-photon resonance condition

��1 þ �2 � �3 þ �4 ¼ 0. For example, if both strong

fields are tuned to the atomic transition frequencies

(�1 ¼ �3 ¼ 0) and the probe field detuning �2 is

scanned, the detuning of the generated Stokes field

changes in the opposite direction �4 ¼ ��2 to maintain

the resonance.
Equations (13)–(16) can be compactly written as

_�# ¼M�# þ B, ð17Þ

where the vector �# consists of the four unknown

density matrix elements ð�#Þ
T
¼ f�1,2, �1,4, �3,2, �3,4g, M

is a 4�4 matrix:

M¼

i�2 �iO3=2 iO1=2 0

�iO3=2 i�2��4=2 0 iO1=2

iO1=2 0 i�2��3=2 �iO3=2

0 iO1=2 �iO3=2 i�2��3=2��4=2

0
BBB@

1
CCCA,

ð18Þ

and B is defined as

B ¼
1

iT

O1O3ðO2O3 þ O1O4Þ�3�4

iO3
2O4 O1

2�3 � O1
2�4 � �

2
3�4

� �
iO1

2O2 O3
2�4 � O3

2�3 � �3�
2
4

� �
O1O3ðO1O2 þ O3O4Þ�3�4

0
BBB@

1
CCCA: ð19Þ

In this case the solution of Equation (17) in the

frequency domain is

�ð1Þ# ¼ �ðMþ i!IÞ�1B, ð20Þ

where I is the identity matrix. Finally, the calculated

expressions for the density matrix elements �3,2 and �4,1
in terms of the optical-field Rabi frequencies must be

substituted into Equations (11) and (12) to obtain the

propagation equations for the probe and Stokes field

in a self-consistent form:

@z
O2

O4

� �
¼

iNg

c
M2

O2

O4

� �
, ð21Þ
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where the matrix M2 contains the information about

atomic response, and we assume equal coupling

coefficients g2 ¼ g4 ¼ g. The explicit form of the

matrix M2 consists of algebraic combinations of the

Rabi frequencies and detunings of the strong optical

fields and optical transition decay rates, but is omitted

here for brevity.
The important consequence of the non-depletion

approximation for the strong fields is that the right-

hand side of Equation (21) does not depend on

position z, allowing a direct solution:

O2ð!, zÞ

O4ð!, zÞ

� �
¼ exp

iNg

c
M2z

� �
O2ð!, 0Þ

O4ð!, 0Þ

� �

�
Að!, zÞ Bð!, zÞ

Cð!, zÞ Dð!, zÞ

� �
O2ð!, 0Þ

O4ð!, 0Þ

� �
: ð22Þ

Here O2,4ð0Þ are the Rabi frequencies corresponding to

the input probe and Stokes fields. It is important to

note that expanding the expressions for the coefficients

A–D forms in a Taylor series up to the !2 terms

accurately captures the pulse propagation dynamics,

but allows significant speed-up in the calculations. The

results presented below were obtained in this

approximation.
Fourier transformation of the solution in Equation

(22) to the time domain describes the propagation

dynamics of the probe and Stokes optical fields.

Figure 6 demonstrates the comparison between the

exact numerical solutions obtained by calculating all

time-dependent density matrix elements and propaga-

tion for all four optical fields (top graphs), and the

prediction of our simplified analytical theory for

propagation of a 100 ns Gaussian probe pulse through

an atomic medium with density 109 cm�3 (bottom

graphs). We observe that, for short lengths of the
atomic medium (15 and 25mm), the two methods

provide similar solutions, predicting small gain and

some advancement for the probe pulse, as well as

generation of the Stokes pulse propagating with some

delay. For the longer cell (50 mm), however, the

analytical model significantly overestimates the gain in

both probe and Stokes fields compared to the exact

numerical solution that takes into account the atten-

uation of both strong control fields and the associated

population redistribution. Nevertheless, it is interesting
to note that both models predict positive delay for the

probe pulse for the longer cell, with similar delay times.
The analytical solution also provides useful intui-

tion about the role of the generated Stokes field in the

dynamics of the probe optical field. For example,

Figure 7 shows the real and imaginary parts of the

coefficients A and B of the transfer matrix in Equation

(22) for a relatively short atomic medium (L¼ 1 cm).

The real part of these coefficients (Figure 7(a))
illustrates that both input probe and Stokes fields

directly contribute to the predicted amplification of the

probe field after the cell, and have no spectral

dependence near the resonance. The imaginary parts

of the coefficients, shown in Figure 7(b), represent the

dispersive effect of the atomic medium. They are both

nearly linear functions of frequency, with slopes of

opposite sign. Also, for the chosen detunings,

@ImðBÞ=@!, representing the Stokes field contribution

to the dispersion, is approximately twice as steep as
@ImðAÞ=@!. Thus, it is not surprising that for weak
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Figure 6. Comparison between exact solution (top) and approximate analytical calculations (bottom) of the signal pulse
propagation through the cell of varying length. (The color version of this figure is included in the online version of the journal.)
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Stokes fields (corresponding to low optical depth
values), the dispersion is predominantly determined
by the probe field propagation, and displays the ‘fast
light’ regime. As the amplitude of the Stokes field
increases, part of it is converted into the probe field via
four-wave mixing. This additional contribution is
associated with a positive dispersion, and eventually,
overcomes the original negative dispersion of the probe
field and changes its sign. Under these conditions, the
output probe field is delayed, as in the ‘slow light’
regime.

4. Conclusions

In conclusion, we have analyzed the propagation of a
weak resonant probe through a medium of four-level
atoms in an N-scheme with allowed four-wave mixing
generation, and found it to be a promising candidate
for the realization of tunable ‘slow-to-fast’ light with
no absorption. This is particularly interesting for the
experimental investigation of potential techniques for
the enhancement of optical-gyroscope performance, as
well as for the development of white-light-cavity
applications [26] for gravitational wave detection [27].
In addition, these results will contribute to a better
understanding of the role of four-wave mixing in
realization of single-photon nonlinear interactions in
the N-scheme [28,29].

Acknowledgements

The authors thank Frank Narducci and John Davis for
useful discussions. This research was supported by Naval Air
Warfare Center STTR program N68335-11-C-0428.

References

[1] Sagnac, G. C. R. Acad. Sci. 1913, 95, 708–710.

[2] Lefevre, H.C. Application of the Sagnac Effect in the

Interferometric Fiber-optic Gyroscope. In Optical Gyros

and Their Application: Loukianov, D., Rodloff, R., Sorg,

H., Stieler, B., Eds.; NATO: Neuilly-sur-Seine,

France, 1999; RTO AGARDograph RTO-AG-339,

pp 7:1–7:29.
[3] Stedman, G.E.; Schreiber, K.U.; Bilger, H.R. Class.

Quantum Gravity 2003, 20, 2527.
[4] Gustavson, T.L.; Landragin, A.; Kasevich, M.A. Class.

Quantum Gravity 2000, 17, 2385.
[5] Malykin, G.B. Phys.-Usp. 2000, 43, 1229.
[6] Peng, C.; Li, Z.; Xu, A. Opt. Express 2007, 15,

3864–3875.
[7] Zhang, Y.; Tian, H.; Zhang, X.; Wang, N.; Zhang, J.;

Wu, H.; Yuan, P. Opt. Lett. 2010, 35, 691–693.
[8] Shahriar, M.S.; Pati, G.S.; Tripathi, R.; Gopal, V.;

Messall, M.; Salit, K. Phys. Rev. A 2007, 75, 053807.
[9] Pati, G.S.; Salit, M.; Salit, K.; Shahriar, M.S. Opt.

Commun. 2008, 281, 4931–4935.
[10] Boyd, R.W.; Gauthier, D.J.; Wolf, E. Prog. Opt. 2002,

43, 497–530, doi: 10.1016/S0079-6638(02)80030-0.
[11] Boyd, R.W.; Gauthier, D.J. Science 2009, 326,

1074–1077.
[12] Akulshin, A.M.; McLean, R.J. J. Opt. 2010, 12, 104001.

[13] Lukin, M.D. Colloquium: Rev. Mod. Phys. 2003, 75(2),

457.

[14] Akulshin, A.M.; Cimmino, A.; Sidorov, A.I.;

Hannaford, P.; Opat, G.I. Phys. Rev. A 2003, 67,

011801.
[15] Mikhailov, E.E.; Sautenkov, V.A.; Novikova, I.; Welch,

G.R. Phys. Rev. A 2004, 69, 063808.
[16] Harris, S.E.; Yamamoto, Y. Phys. Rev. Lett. 1998, 81,

3611.
[17] Kang, H.; Hernandez, G.; Zhu, Y. Phys. Rev. A 2004,

70, 011801.
[18] Yi, C.; Wei, X.G.; Ham, B.S. J. Phys. B 2009, 42,

065506.
[19] Abi-Salloum, T.Y.; Snell, S.; Davis, J.P.; Narducci, F.A.

J. Mod. Opt. 2011, 58, 2008–2014.
[20] Abi-Salloum, T.Y.; Henry, B.; Davis, J.P.; Narducci, F.

Phys. Rev. A 2010, 82, 013834.

1.0

0.8

0.6

0.4

0.2

0.0

R
e(

A
),

 R
e(

B
) 

-2 -1 0 1 2

Probe detuning δ2 (MHz)

Re(A)

Re(B) -1

0

1

Im
(A

),
 Im

(B
) 

×
10

-8

-2 -1 0 1 2

Probe detuning δ2 (MHz)

Im(A)

Im(B)

(a) (b)

Figure 7. Coefficients A and B of the transfer matrix Equation (22) for near-zero probe detuning �2. The calculations are made
for conditions identical to those of Figure 6(a). (The color version of this figure is included in the online version of the journal.)

71Journal of Modern Optics

D
ow

nl
oa

de
d 

by
 [

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y]
 a

t 0
8:

55
 2

0 
Ja

nu
ar

y 
20

15
 



[21] Fleischhaker, R.; Evers, J. Phys. Rev. A 2008, 78,
051802.

[22] Glasser, R.T.; Vogl, U.; Lett, P.D., Phys. Rev. Lett.
2012, 108, 173902.

[23] Phillips, N.B.; Gorshkov, A.V.; Novikova, I. J. Mod.
Opt. 2009, 56, 1916–1925.

[24] Phillips, N.B.; Gorshkov, A.V.; Novikova, I. Phys. Rev.
A 2011, 83, 063823.

[25] Mahmoudi, M.; Evers, J. Phys. Rev. A 2006, 74, 063827.

[26] Fleischhaker, R.; Evers, J. Phys. Rev. A 2008, 78,
051802.

[27] Salit, M.; Shahriar, M.S. J. Opt. 2010, 12,
104014.
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