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Laser interferometer gravitational wave detectors are usually limited by displacement noise in their
lower frequency band. Recently, theoretical proposals have been put forward to construct schemes of
interferometry that are insusceptible to displacement noise as well as classical laser noise. These so-called
displacement-noise-free interferometry (DFI) schemes take advantage of the difference between gravi-
tational waves and displacement noise in their effects on light propagation. However, since this difference
diminishes in lower frequencies (i.e., �< c=LD, with LD the size of the detector), shot-noise-limited
sensitivity of DFI schemes deteriorates dramatically in these frequencies—exactly the regime in which
they are supposed to be superior, thereby limiting their applicability. In this paper, we explore the obvious
possibility of increasing the effective size of the detector in the time domain, by introducing artificial time
delays (T D � LD=c) into the interferometry scheme, with the hope of improving low-frequency
sensitivity. We found that sensitivity can only be improved by schemes in which fluctuations in the
artificial time delays are not canceled.
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I. INTRODUCTION

Gravitational waves (GWs) are ‘‘ripples’’ of space-time
curvature caused by accelerated motion of mass-energy,
according to the prediction of general relativity. Detecting
GWs from the distant universe will provide a new probe to
the strong-field regime of general relativity (from which
theses waves often originate), as well as a new window to
high-energy astrophysical processes.

A broad category of GW detectors, namely, laser inter-
ferometric GW detectors (interferometers for short), detect
GWs by sending light between various test masses and
measuring changes in light travel times (or phase shifts)
due to incoming GWs [1–5]. Laser interferometers are
susceptible, at least at first sight, to two types of noise:
(i) those due to uncertainties in timing, or timing noise,
e.g., classical and quantum fluctuations in the laser light,
and (ii) those due to uncertainties in the motions of test
masses, or displacement noise, e.g., seismic noise in
ground-based interferometers and acceleration noise in
space-based interferometers.

In laser interferometers, classical timing noise (laser
frequency noise) can be suppressed dramatically. In these
devices, one laser beam is first split into two; each of these
beams is then sent to travel a different path, picking up a
different signal from the other. The two different paths are
designed to meet again after having traveled the same
distance, with the two beams recombined with phase sub-
traction. At this point, the two beams share the same
classical phase noise. The subtraction therefore provides
a classical laser-noise-free differential signal. The level of

timing-noise suppression depends on, e.g., the accuracy at
which the lengths of the paths are balanced, and the bal-
ancing of optical losses between these two paths. It is
worth noting that this method cannot cancel quantum
noise, because independent vacuum fluctuation is intro-
duced when the beam is first split, and the two beams do
not share the same quantum laser noise. In this paper, we
shall use shot noise to denote quantum timing noise. Shot
noise can be lowered by increasing laser power.

Recently, Kawamura and Chen showed that it is possible
to remove both classical timing noise and (classical and
quantum) displacement noise by combining light travel
times among an array of test masses [6–9]. Such schemes
are called displacement-noise-free interferometry, or DFI.
DFI is enabled by the theoretical fact that GWs with non-
zero frequencies affect light propagation differently from
noisy motions of mirrors (although this difference is rather
small, when the spatial size of the detector, LD, is small
compared to the wavelength of the GW, �GW) [6,10]. In
practice, DFI must be realized by allowing multiple light
beams to reflect off each mirror, at different incident angles
(in 2-D configurations) and/or from different planes (in 3-
D configurations), such that these multiple beams sense the
mirror motion redundantly, while sensing the GW field
differently [8,11].

A shortcoming of DFI arises from the fact that when
2�LD & �GW (i.e., �GW <�peak � c=LD), the effect of
GW can be well approximated by a tidal field, which
induces relative mirror motions, without affecting propa-
gation of light. As a consequence, DFI schemes become
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significantly less sensitive to GWs at lower frequencies. To
be more precise, we have a two-part power law:
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Here Sshot DFI
h and Sshot conv

h are the shot-noise spectral den-
sities of DFI and conventional configurations with compa-
rable spatial sizes, with � � 3 for 2-D DFI configurations,
and � � 2 for 3-D DFI configurations. This strongly limits
the applicability of DFI schemes. For ground-based detec-
tors, we usually operate at frequencies much lower than
�peak. For space-based detectors like LISA, although �peak

is within our detection band, it is still above the frequency
at which displacement noise (acceleration noise) domi-
nates; since acceleration noise is�f�2 at low frequencies,
the shot-noise-limited DFI sensitivity still cannot surpass
the combined sensitivity of conventional detectors.

In order to extend the applicability of existing DFI
schemes, one might consider (i) increasing the effective
spatial size of a DFI scheme by using Fabry-Perot cavities
or optical delay lines, or (ii) increasing the effective tem-
poral size of a DFI scheme by using a time-delay device.
Approach (i) has been explored by Nishizawa et al. [12];
the result does not go beyond the expected improvement
that is achievable by applying power and signal recycling
to the existing DFI configuration in Ref. [8].

In this paper, we explore approach (ii), with the hope
that a sensitivity with �< 2 [cf. Eq. (1)] might be ob-
tained. In DFI configurations, timing signals are subtracted
from each other in order to cancel displacement and timing
noise. A GW signal can partially survive these subtrac-
tions, because these signals sense the GW field in a dis-
tributed way, over spatial and temporal extent of LD (if we
set c � 1). However, as argued before, when 2�LD <
�GW, these subtractions suppress GW sensitivity by
�2�LD=�GW�

�. Now, if we introduce long time delays
�T D � LD into our scheme, there will be two types of
subtractions, those with LD in spatial separation, and those
with T D in temporal separation. We would expect
(i) cancellation at a lower order if �peak >�>�delay �

1=T D, and (ii) enhancement of sensitivity by some power
of �T D=LD ��peak=�delay, if �<�delay. Taking 3-D
configurations as an example, we might expect the follow-
ing, three-part power law:
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In addition to testing whether such a new power law
appears in the shot-noise-limited sensitivity, an important
question is whether fluctuations in the artificial time delays
introduce noise, and whether they can be canceled without
affecting GW sensitivity.

This paper is organized as follows. In Sec. II, we briefly
review the concept of DFI without time delay, using space-
time diagrams. In Sec. III, we introduce the double-
octahedron geometry on which interferometry schemes
discussed in this paper will be based. In Sec. IV, we
show a few examples that have been introduced in
Ref. [11] as the DFI configurations with time delay, in
which delay noise is canceled or partially canceled; these
configurations either fail to cancel displacement noise or
follow the two-part power law (1) with � � 2. In Sec. V,
we theoretically demonstrate the general incompatibility
between sensitivity improvement and delay-noise cancel-
lation; we also provide an example scheme in which sen-
sitivity improvement is indeed achieved, at the price of
being susceptible to delay noise. In Sec. VI, we summarize
our main conclusions. In the appendix, we discuss delay
noise in the case with a time-delay device based on
electromagnetically-induced-transparency (EIT) [13].

II. DFI WITHOUT TIME DELAY

In Fig. 1, we use a 2-D (1� 1) space-time diagram to
make a comparison between conventional Michelson in-
terferometry and DFI. In both situations, we have light
pulses departing from X1 toward two opposite directions,
arriving at Y1 and Y2, immediately reflected back, and
subsequently arriving at the test mass from which they
originated, around X2. Note that Y1 and Y2 refer to two
different objects, while X1 and X2 refer to the same object
at different times. We use the transverse-traceless (TT)
gauge (see Ref. [6] for details), in which ideal test masses
follow geodesics and stay in constant spatial coordinates.
Nongeodesic test-mass motions are then the displacement
noise in the experiment. Up to linear order in GW ampli-
tude and displacement noise, the proper time of the test
masses, which ideal clocks are supposed to indicate, agree
with the coordinate time. In absence of GW, displacement
noise and timing noise, Y1 and Y2, are equidistant from X,
light pulses arrive at Y1;2 simultaneously, and return to X2

simultaneously—as indicated by the local clocks. In the

FIG. 1. 2-D space-time diagram comparing conventional
Michelson interferometry (which cancels clock noise, but not
displacement noise) with DFI in Ref. [6] (cancels displacement
noise, but not clock noise).
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diagram, we use vertical arrows to represent timing noise,
and horizontal arrows to represent displacement noise.
When GW and the two types of noise are present, the
time the pulses take to travel between Xi and Yj, i, j �
1, 2, as indicated by the clocks, will differ from the ideal
situation, we use �XiYj , to indicate these differences.

In conventional Michelson interferometry, light travel
times along the X1Y1X2 path and the X1Y2X2 path are
compared. In other words,

 �MI � ��X1Y1
� �Y1X2

� � ��X1Y2
� �Y2X2

� (3)

is measured. In this case, clock noise at X1;2 does not
appear since the time delays �XjY1

and �XjY2
that include

the same clock noise are subtracted at the output. On the
other hand, displacement noise at Yj does not cancel since
�X1Yj and �X2Yj are added. Clock noise at Yj does not appear
since the time delays are added but they sense clock noise
with different signs, which can be seen by the direction of
the gray arrow in terms of the black arrow in the figure.
Displacement noise at Xj appears since the phase shifts are
subtracted but with different signs as well.

In the Kawamura-Chen 1-D DFI configuration
(Ref. [6]), the following timing combination is measured:

 �DFI � ��X1Y1
� �X1Y2

� � ��Y1X2
� �Y2X2

�: (4)

In this combination, displacement noise at Xj or Yj does
not appear. However, timing noise does appear. It is inter-
esting to note that, in the space-time diagram, the DFI
configuration is 90	 rotated from the Michelson configu-
ration. This DFI configuration has shot-noise-limited sen-
sitivity with � � 1.

As shown in Ref. [7], in order to cancel both displace-
ment and timing noise without canceling GW completely,
we must use configurations with 2 or 3 spatial dimensions.
One part of such a scheme is shown in a (2� 1) space-time
diagram in Fig. 2. In this scheme, light pulses are sent from
A and B toward C, getting reflected, and then reaching B0

and A0, respectively. The timing combination is

 ��AC � �CB0 � � ��BC � �CA0 �: (5)

Note that A and B are equidistant from C; as a conse-
quence, in absence of GW and noise, the pulses they send
arrive at C simultaneously. In this situation, we have three
noise channels atC: timing noise is canceled within each of
the brackets; displacement noise of the motion parallel to
the reflective surface is also canceled within each of the
brackets (due to the law of reflection); while displacement
noise of the motion normal to the reflective surface is
canceled by subtracting the two brackets. In a complete
DFI scheme, e.g., the one constructed in Ref. [8], each
optical component should have multiple links to other
elements, such that both displacement and timing noise
are canceled.

III. OVERVIEW OF DOUBLE-OCTAHEDRON
CONFIGURATIONS

In this section, we discuss briefly some common features
of a class of schemes based on the single- or the double-
octahedron geometry. We will focus on the double-
octahedron configuration, but the argument with the single
octahedron can be made as well by taking one of the
octahedrons in the double octahedron.

A. Geometry

In Fig. 3, we construct a double-octahedron geometry,
Aa-C1D1C2D2-Ba in solid lines and Ab-C1D1C2D2-Bb in

A
B

A’
B’

Cdisplacementnoises

timing
noise

1

2

+

+

−

−

FIG. 2. 3-D space-time (2� 1) diagram illustrating cancella-
tion of both timing and displacement noise.

Aa

Ab

Ba

Bb

C1D1

C2

O
D2

FIG. 3. Double-octahedron geometry, on which all configura-
tions discussed in this paper are based. Here C1D1C2D2 is a
square, with jOC1j � l, AaO ? C1D1C2D2, jAaOj � jBaOj,
jAbOj � jBbOj. We also denote �a � 
AaC1O and �b �

AbC1O.

UTILITY INVESTIGATION OF ARTIFICIAL TIME . . . PHYSICAL REVIEW D 76, 022002 (2007)

022002-3



dashed lines, on which all schemes in this paper will be
based. We shall call Aa;b and Ba;b apex vertices, while C1;2

and D1;2 base vertices. Note that these octahedrons are in
general not regular. In our schemes, we only send light
along the edges of the octahedrons (i.e., dashed and solid
lines, but not gray lines in Fig. 3). Timing channels can
then be grouped into four sections, i.e., those involving
only one of the base vertices, C1, D1, C2, or D2, respec-
tively. In the section involving C1 (highlighted in Fig. 3 by
a shaded triangle), for example, we have 8 timing channels
AaC1, C1Aa, BaC1, C1Ba, AbC1, C1Ab, BbC1, and C1Bb
(highlighted in Fig. 3 by thicker lines). By making sub-
stitutions C1 ! D1, C1 ! C2, and C1 ! D2, we obtain
corresponding timing channels in all other sections. We
only consider schemes in which corresponding timing
channels in the C1, D1, C2, and D2 sections are combined
with a���� fashion, as in Ref. [8]. For example, in the
total combination �, the time delays �C1Bb , �D1Bb , �C2Bb ,
and �D2Bb can only appear in the following way (in the
frequency domain):

 ~� � F ����~�C1Bb � ~�D1Bb � ~�C2Bb � ~�D2Bb�

� other channels; (6)

where F ��� is the frequency-dependent linear coefficient,
which indicates the way this particular section is included
in the total timing combination. Because of the symmetry
built into our geometry, all such combinations are auto-
matically free from timing and displacement noise at the
apex vertices (Aa, Ba, Ab, and Bb). We are only left to
check noise-free conditions involving the base vertices
(C1, D1, C2, and D2), and to evaluate GW sensitivity.

B. Shot noise in laser interferometry

When a scheme based on measuring light travel time is
implemented by interferometry, the shot-noise-limited sen-
sitivity not only depends on the laser power, but also on
exactly how the measurement is implemented. For ex-
ample, suppose that in a scheme, we demand that �AaC1

and �C1Ba are measured immediately following each other;
then there are two ways of realizing this using interferom-
etry: (i) sending a beam from Aa to C1, comparing its phase
with a local oscillator at C1, also sending a beam from C1

(phase-locked with the above-mentioned local oscillator at
the level of shot noise), comparing its phase with a local
oscillator at Ba, upon arrival; or (ii) putting a mirror at C1,
which reflects the light beam from Aa towards Ba, elimi-
nating the need for the local oscillator and the local laser at
C1. Obviously, in the ideal situation (e.g., in absence of
optical losses), scheme (ii) has less shot noise.

In fact, in all the schemes we shall consider in this paper,
we always implement them by sending light from the apex
vertices and receiving them at their antipodal apex verti-
ces—with base vertices only as relays. Beams propagating
in different sections or different octahedrons also have

independent shot noise. In this way, the equivalent shot
noise in �AaCBa , �BaCAa , �AbCBb , and �BbCAb are all indepen-
dent, with

 S�AaCBa � S�BaCAa �
@

2Ia!0
; (7)

 S�AbCBb � S�BbCAb �
@

2Ib!0
; (8)

where Ia;b are powers of light beams traveling along the
edges of the a- and b-octahedrons, and !0 is the light
angular frequency.

IV. DFI WITH TIME DELAY

A. Single octahedron

First, we attempt to make the simplest modification to
the single-octahedron configuration to introduce time de-
lays, namely, by assuming a time delay each time the light
reflects off mirror C1;2 and D1;2 —due to the existence of a
rigid ‘‘time-delay cell,’’ which imposes the same time
delay Td and delay noise on beams entering the cell at
the same time from opposite directions. A section of this
configuration is illustrated in the panel (i) of Fig. 4. It is
straightforward to deduce that

 �ACA�t� � �y�t� � z�t��=
���
2
p
; (9)

 �CACB�t� � 0; (10)

 �CBB�t� � �y�t� L� � z�t� L��=
���
2
p
: (11)

Note that the argument t in each of the �’s represent the
ending time of the link. We then have
 

�ACACBB�t� � �CBB�t� � �CACB�t� L� � �ACA�t� L� Td�

� �y�t� L� � z�t� L� � y�t� L� Td�

� z�t� L� Td��=
���
2
p
: (12)

Similar steps get
 

�BCBCAA�t� � �CAA�t� � �CBCA�t� L� � �BCB�t� L� Td�

� �y�t� L� � z�t� L� � y�t� L� Td�

� z�t� L� Td��=
���
2
p
: (13)

Making a subtraction, one obtains

 �ACACBB�t� � �BCBCAA�t� �
���
2
p
�z�t� L� � z�t� L� Td��:

(14)

When Td � 0, this displacement noise is not canceled.
In this scheme, we also see that fluctuations in the

difference of time delays imposed by the delay cell onto
the two counter-propagating beams also can cause noise.
This can be circumvented completely by replacing the
monolithic time-delay cell to a pair of cells shown in the
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panel (ii) of Fig. 4 [11]. After being split, two beams
coming from different directions experience the same
time delay, which is the average of two time delays.
However, the z motion of the device, which here corre-
sponds to the motion of the beam splitter, cannot be
removed. In Ref. [11], this z motion is not considered
appropriately in some cases; a black dotted curve in its
Fig. 7 and black curves in its Figs. 9 and 12 should be
modified. While the motion of the beam splitter between
the time-delay devices is taken into account, it is not in the
case a monolithic time-delay device is assumed.

B. Double-octahedron with delay-noise cancellation

It is possible to combine two of the above time-delayed
octahedron configurations, and cancel their sensitivities to
z motions. This can be realized by a double-octahedron
configuration [11] shown in Fig. 3. Time-delay cells are
implemented in the way shown in the panel either (iii) or
(iv) of Fig. 4. For each of the octahedrons, a and b, we
have, by generalizing Eqs. (9)–(14),

 

�a�t� � �AaCBa�t� � �BaCAa�t�

� 2 sin�a�z�t� L= cos�a�

� z�t� L= cos�a � Td��; (15)

 

�b�t� � �AbCBb�t� � �BbCAb�t�

� 2 sin�b�z�t� L= cos�b�

� z�t� L= cos�b � Td��: (16)

As a consequence, we demand the following combination
(within this section) in order to cancel displacement noise:
 

�section � sin�b�a�t� L= cos�b�

� sin�a�b�t� L= cos�a�: (17)

In Fig. 5, we plot
���������
Sshot
h

q
of this DFI configuration,

assuming L � 3 km, Td � 10 ms, �a � �=4, and �b �

�=6. We have set an input power of 100 MW, which can be
realized by a 100 W input laser with signal and power
recycling gains of 1000 each. Such optical parameters are,
although not at the same time, respectively realizable with
the current technology [14,15]. The resulting noise spec-
trum is consistent with � � 2 [cf. Eq. (1)], and thus does
not offer any improvement over existing DFI schemes. (In
calculating Sh, we have assumed the GW to propagate
along OA direction.) In the same figure, the design sensi-
tivity of LIGO-I has been plotted. Even though the DFI
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FIG. 5. DFI shot-noise spectrum compared with the total noise
spectrum of a conventional GW detector. The arm length of each
detector is set to 3 km. The spectrum of a single octahedron
without time delay (gray dashed line) follows a f�2 power law in
the observation band (�<�peak). The spectrum of a time-
delayed double octahedron with delay-noise cancellation (indi-
cated as diff. shown in a gray solid curve) cannot be better than
that of the single octahedron. The spectrum of a time-delayed
double octahedron without delay-noise cancellation (indicated as
com, shown in black solid curve) follows the three-part power
law (2), and thus has a better sensitivity than the single octahe-
dron. However, delay noise would limit the sensitivity at almost
all the frequencies. Here the time delay is set to 10 ms.

α
α

FIG. 4. (i), (ii): a section of the time-delayed single-octahedron scheme discussed in Sec. IVA. (iii), (iv): a section of the time-
delayed double-octahedron schemes discussed in Secs. IV B and V C.
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noise spectra are lower than LIGO-I for frequencies below
�10–20 Hz, they do not offer meaningful GW sensitivity.

V. INCOMPATIBILITY BETWEEN TIME-DELAY-
NOISE CANCELLATION AND IMPROVEMENT IN

SENSITIVITY

A. General discussion

In Sec. IV, we tried a few example configurations with
the octahedron structure to implement time delay into DFI
but could not find a successful noise-free solution to make
� � 1. In this section, we argue that this is a general fact,
by making a systematic discussion, treating the interfer-
ometer scheme as an array of test masses, or nodes, with

light traveling between these nodes, and light travel times
measured—as done in Ref. [7]. Suppose we focus on a
node C in the array with time-delay devices, and C relays
light from A1 to B1, A2 to B2, . . ., An to Bn, each with a time
delay of TAjCBj � �AjCBj�t�, j � 1; . . . ; n. We also suppose
C to relay light backwards from B1 to A1, etc., with time
delay TAjCBj � TBjCAj . Here TAjCBj is the nominal delay
time, �AjCBj�t� is the delay noise at time t. As in Refs. [6,7],
we use the TT gauge and with t we denote the coordinate
time (upon the light’s exit from the delay device), which
coincides with the proper time of the devices with error
O��v=c�2�. The timing signal �AjCBj�t� (with t time of
receipt) is then (up to linear order in GW and various types
of noise)

 

�AjCBj�t� � �GW�C! Bj; t� � �GW�Aj ! C; t� LCBj � TAjCBj� � �Bj�t� � �Aj�t� LCBj � TAjCBj � LAjC�

� �AjCBj�t� LCBj� � nCBj  �xBj�t� � xCj�t� LCBj�� � nAjC  �xCj�t� LCBj � TAjCBj�

� xAj�t� LCBj � TAjCBj � LAjC��: (18)

On the other hand, given for the same array, but without time-delay devices, we could construct the following timing
channels, to prepare for a ‘‘�’’ configuration:

 ��CBj�t� � �GW�C! Bj; t� � �Bj�t� � �C�t� LCBj� � nCBj  �xBj�t� � xCj�t� LCBj��; (19)

 

��AjC�t� LCBj � TAjCBj� � �GW�Aj ! C; t� LCBj � TAjCBj� � �C�t� LCBj � TAjCBj� � �Aj�t� LCBj � TAjCBj � LAjC�

� nCBj  �xBj�t� � xCj�t� LCBj�� � nAjC  �xCj�t� LCBj � TAjCBj�

� xAj�t� LCBj � TAjCBj � LAjC��: (20)

We therefore have

 �AjCBj�t� LCBj� � ��
�
CBj
�t� LCBj� � �

�
AjC
�t� TAjCBj�� � �AjCBj�t� � �C�t� TAjCBj� � �C�t�; (21)

 �BjCAj�t� LCAj� � ��
�
CAj
�t� LCAj� � �

�
BjC
�t� TBjCAj�� � �BjCAj�t� � �C�t� TBjCAj� � �C�t�: (22)

Equations (21) and (22) therefore establish a correspon-
dence between each time-delay configuration and a �
configuration; the corresponding configurations have the
same GW response, same amount of displacement noise,
while their timing noise only differ due to terms on the
right-hand side. At the same time, the � terms on the right-
hand sides of Eqs. (21) and (22) are exactly the time-delay-
noise contributions from our time-delay links, while the �C
terms are exactly the C-timing-noise contributions in the �
configuration.

Now, in order to cancel delay noise, we must assume
some of the delay-noise contributions �AjCBj and �BjCAj are
related—otherwise we cannot hope to have vanishing total
delay noise. In addition, assuming Aj’s and Bj’s to be
different from each other, it is only reasonable to assume
that �BjCAj�t� � �AjCBj�t�. It is then only possible to con-
struct time-delay-noise-free configurations by combining
Eqs. (21) and (22) with an opposite sign (plus some com-

mon time-delay manipulations). However, having assumed
TBjCAj � TAjCBj , we infer that the � configuration, realiz-
able without time delay, is also free from timing noise. As a
consequence, any DFI configuration with time-delay de-
vices and delay-noise cancellation can be realized by a DFI
configuration without time-delay devices at all.

However, since a DFI configuration without time-delay
devices satisfy Eq. (1) and have � � 2 at best (realized in
3-D configurations)—which implies that we cannot hope
to achieve the three-part power law (2), if we insist on the
cancellation of delay noise.

B. Discussions with 3-D space-time diagrams

The situation of the single octahedron with a single-path
time delay that we showed in Sec. IVA is illustrated in the
left panel of Fig. 6. As seen there, our combination senses
the positions ofC andC0 (i.e., the object C after a long time
delay) along the AB direction (shown in the figure by thick
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solid arrows), and makes a subtraction. However, since
these positions can be different, we do not cancel displace-
ment noise arising from motion of C along the AB direc-
tion. From the space-time diagram, it does not seem
possible to cancel displacement noise of both C and C0,
in both directions, with a single-octahedron configuration.

The right panel of Fig. 6 shows the space-time diagram
for the double-octahedron configuration that we showed in
Sec. IV B. On the one hand, it is easy to check that this
configuration can cancel delay noise because the links
leading to C from Aa and Ba are subtracted from each
other (so are links emerging fromC0 to A0a and B0a, etc.). On
the other hand, looking at the right panel of Fig. 6, it is easy
to convince oneself that the space-time diagram of this
double-octahedron scheme can be cut into two discon-
nected pieces separated by Td in time, each free from
displacement and timing noise. In other words, our scheme
can be simulated by running two time-delay-free DFI
devices successively, separated by Td in time. As a con-
sequence, we also expect � � 2 for this scheme.

C. Double-octahedron without delay-noise cancellation

In order to reach � � 1, we must modify our schemes
and make them sensitive to delay noise. The building block
of such schemes in a section of a single octahedron (i) in
Fig. 4 is

 �ACB�t� � �BCA�t�: (23)

We show the 3-D space-time diagram of this part of the

scheme in the left panel of Fig. 7. We note that delay noise,
as well as the y motion of C (i.e., normal to the reflective
surface) are not canceled (since we add up the two timing
signals, sensitivity to z cancels). We now go to the double-
octahedron configuration (iii) in Fig. 4, and denote by l the
distance between the center of gravity and the center of the
cell. The remaining y sensitivity is
 

�a�t� � �AaCBa�t� � �BaCAa�t�

� 2 cos�a�y�t� L= cos�a�

� y�t� L= cos�a � Td��; (24)

 

�b�t� � �AbCBb�t� � �BbCAb�t�

� 2 cos�b�y�t� L= cos�b�

� y�t� L= cos�b � Td��: (25)

So the required combination in this section to cancel y is
 

�section � cos�b�a�t� L= cos�b�

� cos�a�b�t� L= cos�a�: (26)

Note that cancellation of y is not compatible with cancel-
lation of delay noise [which requires Eq. (26) without
prefactors of cos�a and cos�b], and � is still sensitive to
delay noise.

In Fig. 5, we plot the shot-noise spectrum of this con-
figuration, compared with DFI without time delay, and
double octahedron with delay-noise cancellation. The pa-
rameters are the same as what we showed in Sec. IV B.
This configuration follows the three-part power law (2),

A
B

A’
B’

C

C’

+ −

+−

Aa
Ba

C

C’

Ab Bb

+ −

+−

Aa
Ba

Ab Bb

FIG. 6. Time-delay configurations that either fail to cancel
displacement noise or fail to improve sensitivity. Left panel: a
naive extension of the 3-D octahedron of Ref. [8]; motion of C
along reflective surface is not canceled, due to time delay. Right
panel: 3-D configuration with time-delay-noise cancellation, the
entire configuration can be cut in two, along the two shaded
triangles, each without time-delay devices, and free from dis-
placement noise and timing noise, and with � � 2.
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B

A’
B’

C

C’

+ +

++

Aa
Ba

C

C’

Ab Bb

+ +

++

Aa
Ba

Ab Bb

FIG. 7. Time-delay configurations that do not cancel delay
noise. Left panel: building block from a single octahedron.
Right panel: full double-octahedron DFI configuration with � �
1; unlike in the right panel of Fig. 6, cutting this scheme along
the shaded triangles does not give two DFI schemes (because
timing-noise contributions at C and C0 are not canceled).
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and thus has a much better shot-noise-limited sensitivity
than previous DFI configurations. However, we should
note that delay noise simply ignored here is not negligible
but instead very significant, as is shown in the appendix. In
addition, even if free from delay noise, this configuration
still does not provide a very interesting astrophysical sen-
sitivity, despite its complexity.

VI. CONCLUSION AND DISCUSSION

In this paper, we investigated the possibility of using
time-delay devices to improve the sensitivity of
displacement-noise-free GW detectors.

A three-dimensional DFI with time delays of T D can
provide a three-part power law (2), which has dramatically
better shot-noise-limited sensitivity compared to the two-
part power law (1) of DFI schemes without time-delay
devices. However, as we have argued in Sec. V, such
schemes must not cancel fluctuations in the artificial time
delays. In order for delay noise not to exceed shot noise, we
must put an extremely high requirement on our time-delay

device:
������
S�
p

<L
���������
Sshot
h

q
=c.

In the appendix, we consider time-delay fluctuations in a
particular type of time-delay devices based on EIT.
Although EIT time delay has a wide application in other
fields, our requirement in time-delay DFI schemes seems
extremely challenging for such devices.
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APPENDIX: THERMAL NOISE OF ATOMS IN AN
EIT MEDIUM

In this appendix, we estimate a noise level of an EIT
medium as a time-delay device. A time-delay device with
EIT is realized by a cell filled by vapor atoms and pump
field injected to the cell in addition to the probe light that
measures gravitational waves. While the cell does not
transmit the probe light without the pump field, a transition
of the atomic state due to the interaction with the pump
field makes the cell transparent to the light at a particular
frequency. The transition makes a refractive index of the
cell rapidly vary and slows group velocity of the light,
which results in the time-delay effect [13,14]. Fluctuation
of the time delay, or EIT noise, comes from thermal motion
of atoms. The probe light will see different numbers of
atoms at different times. The time delay is proportional to

the number of atoms that interact with the probe light, so
the number fluctuation makes the time-delay fluctuation.
Wiener-Khintchine’s theorem reads a power spectral den-
sity of fluctuation x�t� is

 Sx��� � lim
T!1

1

2�T

ZZ T=2

T=2
hx�t�x�t0�ie�i��t�t

0�dtdt0: (A1)

In the case where we have a single beam in an EIT
medium, the self-correlation function will be written as
 

C�t; t0� � h���t����t0�i

�
1

v2
g�2

ZZ Le

0
d‘d‘0

ZZZZ
dxdx0dydy0

� A�x; y�A0�x0; y0� � h���t; ‘����t0; ‘0�i: (A2)

Here, Le is a length of the medium, vg is the averaged
group velocity of the light, � is density of atoms, and A is
the beam profile.

In the case where we have two counter-propagating
beams to one EIT medium, where only a differential
mode of the fluctuations matters as we will subtract the
outputs to obtain the signal of DFI, it is not only the self-
correlation function but also the cross-correlation function
between two beams that should be taken into account. The
light starting the left side of the medium at t � t0 probes
the fluctuation in a sliced region �V�‘� at t � t0 � ‘=vg,
and the light starting the right side of the medium at t � t0
probes the fluctuation in the same sliced region �V�‘� at
t � t0 � �Le � ‘�=vg. The autocorrelation function will be
rewritten into
 

Cd�t; t0� � h��d�t���d�t0�i

�
1

v2
g�2

ZZ Le

0
d‘d‘0

ZZZZ
dxdx0dydy0

� A�x; y�A0�x0; y0�
��
��

�
‘
vg
� t; ‘

�

� ��
�
Le � ‘
vg

� t; ‘
���

��
�
‘0

vg
� t0; ‘0

�

� ��
�
Le � ‘

0

vg
� t0; ‘0

���
: (A3)

After some calculations, we have

 Sone
� ��� ’

�2
TD

N
�Me

���M (A4)

for the single beam, and

 Sdiff
� ��� ’

�2
TD

N
�Me���M

�
1�

vT
Le�

sin
�
Le�
vT

	�
(A5)

for the counter-propagating beams. Here �TD � Le=vg is
the time delay, N is the effective number of atoms in the
Gaussian beam, and �M �

���
2
p
w=vT is averaged time that

an atom stays in the beam according to the Maxwell
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distribution (w is a beam radius and vT is the averaged
speed of the atoms). Note that only the calculation with a
single beam is meaningful since subtraction of the outputs
of the counter-propagating beams results in the cancella-
tion of the time-delay effect. Equation (A5) rather repre-
sents the existence of differential delay noise even if we do
the subtraction with a monolithic cell.

Let us put the time delay of �TD � 0:01 s into Eq. (A4).
Typical parameters Le � 10 cm, w � 1 cm, vT �
300 m=s, and N � 1014, which correspond to the atom

density of 10�12 cm�3, give us the EIT-noise level at
50 Hz, for example, as

���������
Sone
�

p
� 7� 10�12 s=

������
Hz
p

. In dis-
placement, this is�2 mm=

������
Hz
p

, which is much larger than
other noise in gravitational wave detectors. The noise level
decreases exponentially from f� 1=�2��M� � 3 kHz.
One could make this decay start from frequencies as low
as 5 Hz, but it requires the temperature as low as 0.8 mK or
the beam radius as large as 6 m, which would be challeng-
ing in practice.
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