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Upper limits on gravitational wave bursts in LIGO’s second science run
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We perform a search for gravitational wave bursts using data from the second science run of the LIGO
detectors, using a method based on a wavelet time-frequency decomposition. This search is sensitive to
bursts of duration much less than a second and with frequency content in the 100–1100 Hz range. It
features significant improvements in the instrument sensitivity and in the analysis pipeline with respect to
the burst search previously reported by LIGO. Improvements in the search method allow exploring weaker
signals, relative to the detector noise floor, while maintaining a low false alarm rate, O�0:1� �Hz. The
sensitivity in terms of the root-sum-square (rss) strain amplitude lies in the range of hrss � 10�20 �
10�19 Hz�1=2. No gravitational wave signals were detected in 9.98 days of analyzed data. We interpret the
search result in terms of a frequentist upper limit on the rate of detectable gravitational wave bursts at the
level of 0.26 events per day at 90% confidence level. We combine this limit with measurements of the
062001-2
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detection efficiency for selected waveform morphologies in order to yield rate versus strength exclusion
curves as well as to establish order-of-magnitude distance sensitivity to certain modeled astrophysical
sources. Both the rate upper limit and its applicability to signal strengths improve our previously reported
limits and reflect the most sensitive broad-band search for untriggered and unmodeled gravitational wave
bursts to date.
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I. INTRODUCTION

The Laser Interferometer Gravitational wave Ob-
servatory (LIGO) is a network of interferometric detectors
aiming to make direct observations of gravitational waves.
Construction of the LIGO detectors is essentially com-
plete, and much progress has been made in commissioning
them to (a) bring the three interferometers to their final
optical configuration, (b) reduce the interferometers’
noise floors and improve the stationarity of the noise, and
(c) pave the way toward long-term science observations.
Interleaved with commissioning, four ‘‘science runs’’ have
been carried out to collect data under stable operating
conditions for astrophysical gravitational wave searches,
albeit at reduced sensitivity and observation time relative
to the LIGO design goals. The first science run, called S1,
took place in the summer of 2002 over a period of 17 days.
S1 represented a major milestone as the longest and most
sensitive operation of broad-band interferometers in coin-
cidence up to that time. Using the S1 data from the LIGO
and GEO600 interferometers [1], astrophysical searches
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for four general categories of gravitational wave source
types—binary inspiral [2], burst[3], stochastic [4], and
continuous wave [5]—were pursued by the LIGO
Scientific Collaboration (LSC). These searches established
general methodologies to be followed and improved upon
for the analysis of data from future runs. In 2003 two
additional science runs of the LIGO instruments collected
data of improved sensitivity with respect to S1, but still less
sensitive than the instruments’ design goal. The second
science run (S2) collected data in early 2003 and the third
science run (S3) at the end of the same year. Several
searches have been completed or are underway using
data from the S2 and S3 runs [6–13]. A fourth science
run, S4, took place at the beginning of 2005.

In this paper we report the results of a search for gravi-
tational wave bursts using the LIGO S2 data. The astro-
physical motivation for burst events is strong; it embraces
catastrophic phenomena in the universe with or without
clear signatures in the electromagnetic spectrum, such as
supernova explosions [14–16], the merging of compact
binary stars as they form a single black hole [17–19], and
the astrophysical engines that power the gamma ray bursts
[20]. Perturbed or accreting black holes, neutron star os-
cillation modes and instabilities as well as cosmic string
cusps and kinks [21] are also potential burst sources. The
expected rate, strength and waveform morphology for such
events is not generally known. For this reason, our assump-
tions about the expected signals are minimal. The experi-
mental signatures on which this search focused can be
described as burst signals of short duration (� 1 s) [22]
and with enough signal strength in the LIGO sensitive band
(100–1100 Hz) to be detected in coincidence in all three
LIGO instruments. The triple-coincidence requirement is
used to reduce the false alarm rate (background) to much
less than one event over the course of the run, so that even a
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single event candidate would have high statistical
significance.

The general methodology in pursuing this search follows
the one we presented in the analysis of the S1 data [3] with
some significant improvements. In the S1 analysis the
ringing of the prefilters limited our ability to perform tight
time-coincidence between the triggers coming from the
three LIGO instruments. This is addressed by the use of
a new search method that does not require strong prefilter-
ing. This new method also provides improved event pa-
rameter estimation, including timing resolution. Finally, a
waveform consistency test is introduced for events that
pass the time and frequency coincidence requirements in
the three LIGO detectors.

This search examines 9.98 days of live time and yields
one candidate event in coincidence among the three LIGO
detectors during S2. Subsequent examination of this event
reveals an acoustic origin for the signal in the two Hanford
detectors, easily eliminated using a ‘‘veto’’ based on acous-
tic power in a microphone. Taking this into account, we set
an upper limit on the rate of burst events detectable by our
detectors at the level of 0.26 per day at an estimated 90%
confidence level. We have used ad hoc waveforms (sine-
Gaussians and Gaussians) to establish the sensitivity of the
S2 search pipeline and to interpret our upper limit as an
excluded region in the space of signal rate versus strength.
The burst search sensitivity in terms of the root-sum-square
(rss) strain amplitude incident on Earth lies in the range
hrss � 10�20 � 10�19 Hz�1=2. Both the upper limit (rate)
and its applicability to signal strengths (sensitivity) reflect
significant improvements with respect to our S1 result [3].
In addition, we evaluate the sensitivity of the search to
astrophysically motivated waveforms derived from models
of stellar core collapse [14–16] and from the merger of
binary black holes [17,18].

In the following sections we describe the LIGO instru-
ments and the S2 run in more detail (Sec. II) as well as an
overview of the search pipeline (Sec. III). The procedure
for selecting the data that we analyze is described in
Sec. IV. We then present the search algorithm and the
waveform consistency test used in the event selection
(Sec. V) and discuss the role of vetoes in this search
(Sec. VI). Section VII describes the final event analysis
and the assignment of an upper limit on the rate of detect-
able bursts. The efficiency of the search for various target
waveforms is presented in Sec. VIII. Our final results and
discussion are presented in Secs. IX and X.
II. THE SECOND LIGO SCIENCE RUN

LIGO comprises three interferometers at two sites: an
interferometer with 4 km long arms at the LIGO
Livingston Observatory in Louisiana (denoted L1) and
interferometers with 4 km and 2 km long arms in a com-
mon vacuum system at the LIGO Hanford Observatory in
Washington (denoted H1 and H2). All are Michelson in-
062001
terferometers with power recycling and resonant cavities in
the two arms to increase the storage time (and conse-
quently the phase shift) for the light returning to the
beam splitter due to motions of the end mirrors [23]. The
mirrors are suspended as pendulums from vibration-
isolated platforms to protect them from external noise
sources. A detailed description of the LIGO detectors as
they were configured for the S1 run may be found in
Ref. [1].

A. Improvements to the LIGO detectors for S2

The LIGO interferometers [1,24] are still undergoing
commissioning and have not yet reached their final oper-
ating configuration and sensitivity. Between S1 and S2 a
number of changes were made which resulted in improved
sensitivity as well as overall instrument stability and sta-
tionarity. The most important of these are summarized
below.

The mirrors’ analog suspension controller electronics on
the H2 and L1 interferometers were replaced with digital
controllers of the type installed on H1 before the S1 run.
The addition of a separate DC bias supply for alignment
relieved the range requirement of the suspensions’ coil
drivers. This, combined with flexibility of a digital system
capable of coordinated switching of analog and digital
filters, enabled the new coil drivers to operate with much
lower electronics output noise. In particular, the system
had two separate modes of operation: acquisition mode
with larger range and noise, and run mode with reduced
range and noise. A matched pair of filters was used to
minimize noise in the coil current due to the discrete steps
in the digital to analog converter (DAC) at the output of the
digital suspension controller: a digital filter before the
DAC boosted the high-frequency component relative to
the low frequency component, and an analog filter after
the DAC restored their relative amplitudes. Better filtering,
better diagonalization of the drive to the coils to eliminate
length-to-angle couplings and more flexible control/se-
quencing features also contributed to an overall perform-
ance improvement.

The noise from the optical lever servos that damp the
angular excitations of the interferometer optics was re-
duced. The mechanical support elements for the optical
transmitter and receiver were stiffened to reduce low fre-
quency vibrational excitations. Taking advantage of the
low frequency improvements, input noise to the servo
due to the discrete steps in the analog to digital converter
(ADC) was reduced by a filter pair surrounding the ADC:
an analog filter to whiten the data going into the ADC and a
digital filter to restore it to its full dynamic range.

Further progress was made on commissioning the wave-
front sensing (WFS) system for alignment control of the
H1 interferometer. This system uses the main laser beam to
sense the proper alignment for the suspended optics.
During S1, all interferometers had 2 degrees of freedom
-4
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for the main interferometer (plus 4 degrees of freedom for
the mode cleaner) controlled by their WFS. For S2, the H1
interferometer had 8 out of 16 alignment degrees of free-
dom for the main interferometer under WFS control. As a
result, it maintained a much more uniform operating point
over the run than the other two interferometers, which
continued to have only 2 degrees of freedom under WFS
control.

The high frequency sensitivity was increased by operat-
ing the interferometers with higher effective power. Two
main factors enabled this power increase. Improved align-
ment techniques and better alignment stability (due to the
optical lever and wavefront sensor improvements de-
scribed above) reduced the amount of spurious light at
the antisymmetric port, which would have saturated the
photodiode if the laser power had been increased in S1.
Also, a new servo system to cancel the out-of-phase (non-
signal) photocurrent in the antisymmetric photodiode was
added. This amplitude of the out-of-phase photocurrent is
nominally zero for a perfectly aligned and matched inter-
ferometer, but various imperfections in the interferometer
can lead to large low frequency signals. The new servo
prevents these signals from causing saturations in the
photodiode and its RF preamplifier. During S2, the inter-
ferometers operated with about 1.5 W incident on the mode
cleaner and about 40 W incident on the beam splitter.

These changes led to a significant improvement in de-
tector sensitivity. Figure 1 shows typical spectra achieved
by the LIGO interferometers during the S2 run compared
with LIGO’s S1 and design sensitivity. The differences
among the three LIGO S2 spectra reflect differences in
the operating parameters and hardware implementations of
10
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S1: L1 (9 Sept ’02)
S2: L1 (1 March ’03)
S2: H1 (8 April ’03)
S2: H2 (11 April ’03)

FIG. 1 (color online). Typical LIGO strain sensitivities in units
of Hz�1=2 during the second science run (S2), compared to the
most sensitive detector (L1) during the S1 science run. The solid
line denotes the design goal for the 4 km instruments.
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the three instruments, which were in various stages of
reaching the final design configuration.

B. Data from the S2 run

The data analyzed in this paper were taken during
LIGO’s second science run (S2), which spanned 59 days
from February 14 to April 14, 2003. During this time,
operators and scientific monitors attempted to maintain
continuous low noise operation of the LIGO instruments.
The duty cycles for the individual interferometers, defined
as the fraction of the total run time when the interferometer
was locked (i.e., all interferometer control servos operating
in their linear regime) and in its low noise configuration,
were 74% for H1, 58% for H2, and 38% for L1; the triple-
coincidence duty cycle (i.e., the time during which all three
interferometers were simultaneously in lock and in low
noise configuration) was 22%. The longest continuous
locked stretch for any interferometer during S2 was 66
hours for H1. The main sources of lost time were high
microseismic motion at both sites due to storms, and
anthropogenic noise in the vicinity of the Livingston
Observatory.

Improved monitoring and automated alarms instituted
after S1 gave the operators and scientific monitors better
warnings of out-of-nominal operating conditions for the
interferometers. As a result, the fraction of time lost to high
noise or to missing calibration lines (both major sources of
unanalyzable data during the S1 run) was greatly reduced.
Thus, even though the S2 run was less than a factor of 4
longer than the S1 run and the duty cycle for triple inter-
ferometer coincidence was in fact marginally lower (23%
for S1 vs 22% for S2), the total amount of analyzable
triple-coincidence data was 305 hours compared to 34
hours for S1.

The signature of a gravitational wave is a differential
change in the lengths of the two interferometer arms
relative to the nominal lengths established by the control
system, s�t� � ��Lx�t� ��Ly�t��=L , where L is the av-
erage length of the x and y arms. As in S1, this time series
was derived from the error signal of the feedback loop used
to differentially control the lengths of the interferometer
arms in order to keep the optical cavities on resonance. To
calibrate the error signal, the effect of the feedback loop
gain was measured and divided out. Although more stable
than during S1, the response functions varied over the
course of the S2 run due to drifts in the alignment of the
optical elements. These were tracked by injecting fixed-
amplitude sinusoidal signals (calibration lines) into the
differential arm control loop, and monitoring the ampli-
tudes of these signals at the measurement (error) point
[25].

The S2 run also involved coincident running with the
TAMA interferometer [26]. TAMA achieved a duty cycle
of 82% and had a sensitivity comparable to LIGO’s above
�1 kHz, but had poorer sensitivity at lower frequencies
-5
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where the LIGO detectors had their best sensitivity. In
addition, the location and orientation of the TAMA detec-
tor differs substantially from the LIGO detectors, which
further reduced the chance of a coincident detection at low
frequencies. For these reasons, the joint analysis of LIGO
and TAMA data focused on gravitational wave frequencies
from 700–2000 Hz and will be described in a separate
paper [10]. In this paper, we report the result of a LIGO-
only search for signals in the range 100–1100 Hz. The
overlap between these two searches (700–1100 Hz) serves
to ensure that possible sources with frequency content
spanning the two searches will not be missed. The
GEO600 interferometer [27], which collected data simul-
taneously with LIGO during the S1 run, was undergoing
commissioning at the time of the S2 run.
III. SEARCH PIPELINE OVERVIEW

The overall burst search pipeline used in the S2 analysis
follows the one we introduced in our S1 search [3]. First,
data selection criteria are applied in order to define periods
when the instruments are well behaved and the recorded
data can be used for science searches (Sec. IV).

A wavelet-based algorithm called WaveBurst [28,29]
(Sec. VA) is then used to identify candidate burst events.
Rather than operating on the data from a single interfer-
ometer, WaveBurst analyzes simultaneously the time series
coming from a pair of interferometers and incorporates
strength thresholding as well as time and frequency coin-
cidence to identify transients with consistent features in the
two data streams. To reduce the false alarm rate, we further
require that candidate gravitational wave events occur
effectively simultaneously in all three LIGO detectors
(Sec. V B). Besides requiring compatible WaveBurst event
parameters, this involves a waveform consistency test, the
r statistic [30] (Sec. V C), which is based on forming the
normalized linear correlation of the raw time series coming
from the LIGO instruments. This test takes advantage of
the fact that the arms of the interferometers at the two
LIGO sites are nearly coaligned, and therefore a gravita-
tional wave generally will produce correlated time series.
The use of WaveBurst and the r statistic are the major
changes in the S2 pipeline with respect to the pipeline used
for S1 [3].

When candidate burst events are identified, they can be
checked against veto conditions based on the many auxil-
iary readback channels of the servo control systems and
physical environment monitoring channels that are re-
corded in the LIGO data stream (Sec. VI).

The background in this search is measured by artificially
shifting in time the raw time series of one of the LIGO
instruments, L1, and repeating the analysis as for the
unshifted data. The time-shifted case will often be referred
to as ‘‘time-lag’’ data and the unshifted case as ‘‘zero-lag’’
data. We will describe the background estimation in more
detail in Sec. VII.
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We have relied on hardware and software signal ‘‘in-
jections’’ in order to establish the efficiency of the pipeline.
Simulated signals with various morphologies [31] were
added to the digitized raw data time series at the beginning
of our analysis pipeline and were used to establish the
fraction of detected events as a function of their strength
(Sec. VIII). The same analysis pipeline was used to analyze
raw (zero-lag), time-lag, and injection data samples.

We maintain a detailed list with a number of checks to
perform for any zero-lag event(s) surviving the analysis
pipeline to evaluate whether they could plausibly be gravi-
tational wave bursts. This ‘‘detection checklist’’ is updated
as we learn more about the instruments and refine our
methodology. A major aspect is the examination of envi-
ronmental and auxiliary interferometric channels in order
to identify terrestrial disturbances that might produce a
candidate event through some coupling mechanism. Any
remaining events are compared with the background and
the experiment’s live time in order to establish a detection
or an upper limit on the rate of burst events.
IV. DATA SELECTION

The selection of data to be analyzed was a key first step
in this search. We expect a gravitational wave to appear in
all three LIGO instruments, although in some cases it may
be at or below the level of the noise. For this search, we
require a signal above the noise baseline in all three instru-
ments in order to suppress the rate of noise fluctuations that
may fake astrophysical burst events. In the case of a
genuine astrophysical event this requirement will not
only increase our detection confidence but it will also allow
us to extract in the best possible way the signal and source
parameters. Therefore, for this search we have confined
ourselves to periods of time when all three LIGO interfer-
ometers were simultaneously locked in low noise mode
with nominal operating parameters (servo loop gains, filter
settings, etc.), marked by a manually set bit (‘‘science
mode’’) in the data stream. This produced a total of 318
hours of potential data for analysis. This total was reduced
by the following data selection cuts:
(i) A
-6
minimum duration of 300 seconds was required
for a triple-coincidence segment to be analyzed for
this search. This cut eliminated 0.9% of the initial
data set.
(ii) P
ost-run re-examination of the interferometer con-
figuration and status channels included in the data
stream identified a small amount of time when the
interferometer configuration deviated from nomi-
nal. In addition we identified short periods of time
when the timing system for the data acquisition had
lost synchronization. These cuts reduced the data
set by 0.2%.
(iii) I
t was discovered that large low frequency excita-
tions of the interferometer could cause the photo-
diode at the antisymmetric port to saturate. This
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caused bursts of excess noise due to nonlinear up-
conversion. These periods of time were identified
and eliminated, reducing the data set by 0.3%.
(iv) T
here were occasional periods of time when the
calibration lines either were absent or were signifi-
cantly weaker than normal. Eliminating these peri-
ods reduced the data set by approximately 2%.
(v) T
he H1 interferometer had a known problem with a
marginally stable servo loop, which occasionally
led to higher than normal noise in the error signal
for the differential arm length (the channel used in
this search for gravitational waves). A data cut was
imposed to eliminate periods of time when the root-
mean-square (rms) noise in the 200–400 Hz band
of this channel exceeded a threshold value for 5
consecutive minutes. The requirement for 5 con-
secutive minutes was imposed to prevent a short
burst of gravitational waves (the object of this
search) from triggering this cut. This cut reduced
the data set by 0.4%.
These data quality cuts eliminated a total of 13 hours
from the original 318 hours of triple-coincidence data,
leaving a ‘‘live-time’’ of 305 hours. The fraction of data
surviving these quality cuts (96%) is a significant improve-
ment over the experience in S1 when only 37% of the data
passed all the quality cuts.

The trigger generation software used in this search (to be
described in the next section) processed data in fixed 2-
minute time intervals, requiring good data quality for the
entire interval. This constraint, along with other constraints
imposed by other trigger generation methods which were
initially used to define a common data set, led to a net loss
of 41 hours, leaving 264 hours of triple-coincidence data
actually searched.

The search for bursts in the LIGO S2 data used roughly
10% of the triple-coincidence data set in order to tune the
pipeline (as described below) and establish event selection
criteria. This data set was chosen uniformly across the
acquisition time and constituted the so-called ‘‘play-
ground’’ for the search. The rate bound calculated in
Sec. VII reflects only the remaining �90% of the data, in
order to avoid bias from the tuning procedures.
V. METHODS FOR EVENT TRIGGER SELECTION

An accurate knowledge of gravitational wave burst
waveforms would allow the use of matched filtering [32]
along the lines of the search for binary inspirals [2,8].
However, many different astrophysical systems may give
rise to gravitational wave bursts, and the physics of these
systems is often very complicated. Even when numerical
relativistic calculations have been carried out, as in the
case of core collapse supernovae, they generally yield
roughly representative waveforms rather than exact pre-
dictions. Therefore, our present searches for gravitational
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wave bursts use general algorithms which are sensitive to a
wide range of potential signals.

The first LIGO burst search [3] used two Event Trigger
Generator (ETG) algorithms: a time-domain method de-
signed to detect a large ‘‘slope’’ (time derivative) in the
data stream after suitable filtering [33,34], and a method
called TFCLUSTERS [35] which is based on identifying
clusters of excess power in time-frequency spectrograms.
Several other burst search methods have been developed by
members of the LIGO Scientific Collaboration. For this
paper, we have chosen to focus on a single ETG called
WaveBurst which identifies clusters of excess power once
the signal is decomposed in the wavelet domain, as de-
scribed below. Other methods which were applied to the
S2 data include TFCLUSTERS; the excess power statistic
of Anderson et al. [36]; and the ‘‘Block-Normal’’ time-
domain change-point detection algorithm [37]. In prelimi-
nary studies using S2 playground data, these other methods
had sensitivities comparable to WaveBurst for the target
waveforms described in Sec. VIII, but their implementa-
tions were less mature at the time of this analysis.

An integral part of our S2 search and the final event
trigger selection is to perform a consistency test among the
data streams recorded by the different interferometers at
each trigger time identified by the ETG. This is done using
the r statistic [30], a time-domain cross-correlation method
sensitive to the coherent part of the candidate signals,
described in subsection C below.

The software used in this analysis is available in the
LIGO Scientific Collaboration’s CVS archives at
http://www.lsc-group.phys.uwm.edu/cgi-bin/cvs/viewcvs.
cgi/?cvsroot=lscsoft under the S2_072704 tag for
WaveBurst in LAL and LALWRAPPER and rStat-1-2 tag for
r statistic in MATAPPS.

A. WaveBurst

WaveBurst is an ETG that searches for gravitational
wave bursts in the wavelet time-frequency domain. It is
described in greater detail in [28,29]. The method uses
wavelet transformations in order to obtain the time-
frequency representation of the data. Bursts are identified
by searching for regions in the wavelet time-frequency
domain with an excess of power, coincident between two
or more interferometers, that is inconsistent with stationary
detector noise.

WaveBurst processes gravitational wave data from two
interferometers at a time. As shown in Fig. 2 the analysis is
performed over three LIGO detectors resulting in the pro-
duction of triggers for three detector pairs. The three sets of
triggers are then compared in a ‘‘triple-coincidence’’ step
which checks for consistent trigger times and frequency
components, as will be described in Section V B.

For each detector pair, the WaveBurst ETG performs the
following steps: (a) wavelet transformation applied to the
gravitational wave channel from each detector, (b) selec-
-7



FIG. 2. Block diagram of the WaveBurst analysis pipeline for
the three LIGO detectors, H1, H2 and L1 as applied in the S2
data.
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tion of wavelet amplitudes exceeding a threshold, (c) iden-
tification of common wavelet components in the two chan-
nels, (d) clustering of nearby wavelet components, and (e)
selection of burst triggers. During steps (a), (b) and (d) the
data processing is independent for each channel. During
steps (c) and (e) data from both channels are used.

The input data to the WaveBurst ETG are time series
from the gravitational wave channel with duration of
120 seconds and sampling rate of 16 384 Hz. The data
are first down-sampled to 8192 Hz. Using an orthogonal
wavelet transformation (based on a symlet wavelet with
filter length of 60 samples) the time series are converted
into wavelet series Wij, where i is the time index and j is
the wavelet layer index. Each wavelet layer can be asso-
ciated with a certain frequency band of the initial time
series. The time-frequency resolution of the WaveBurst
scalograms is the same for all the wavelet layers
(1=128 sec	64 Hz). Therefore, the wavelet series Wij

can be displayed as a time-frequency scalogram consisting
of 64 wavelet layers with n � 15 360 pixels (data samples)
each. This tiling is different from the one in the conven-
tional dyadic wavelet decomposition where the time reso-
lution adjusts to the scale (frequency) [29,38,39]. The
constant time-frequency resolution makes the WaveBurst
scalograms similar to spectrograms produced with win-
dowed Fourier transformations.

For each layer we first select a fixed fraction P of pixels
with the largest absolute amplitudes. These are called black
pixels. The number of selected black pixels is nP. All other
wavelet pixels are called white pixels. Then we calculate
rank statistics for the black pixels within each layer. The
rank Rij is an integer number from 1 to nP, with the rank 1
assigned to the pixel with the largest absolute amplitude in
the layer. Given the rank of wavelet amplitudes Rij, the
following nonparametric pixel statistic is computed

yij � � ln
�Rij
nP

�
: (5.1)

For white pixels the value of yij is set to zero. The statistic
yij can be interpreted as the pixel’s logarithmic signifi-
cance. Assuming Gaussian detector noise, the logarithmic
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significance can be also calculated as

~y ij � gP� ~wij� 
 ln�P� � ln

 ���������
2=�

p Z 1
~wij
e�x

2=2dx

!
;

(5.2)

where ~wij is the absolute value of the pixel amplitude in
units of the noise standard deviation. In practice, the LIGO
detector noise is not Gaussian and its probability distribu-
tion function is not determined a priori. Therefore, we use
the nonparametric statistic yij, which is a more robust
measure of the pixel significance than ~yij. Using the in-
verse function of gP with yij as an argument, we introduce
the nonparametric amplitude

wij � g�1
P �yij�; (5.3)

and the excess power ratio

�ij � w2
ij � 1; (5.4)

which characterizes the pixel excess power above the
average detector noise.

After the black pixels are selected, we require their time-
coincidence in the two channels. Given a black pixel of
significance yij in the first channel, this is accepted if the
significance of neighboring (in time) pixels in the second
channel (y0ij) satisfies

y0
�i�1�j � y

0
ij � y

0
�i�1�j > �; (5.5)

where � is the coincidence threshold. Otherwise, the pixel
is rejected. This procedure is repeated for all the black
pixels in the first channel. The same coincidence algorithm
is applied to pixels in the second channel. As a result, a
considerable number of black pixels in both channels
produced by fluctuations of the detector noise are rejected.
At the same time, black pixels produced by gravitational
wave bursts have a high acceptance probability because of
the coherent excess of power in two detectors.

After the coincidence procedure is applied to both chan-
nels a clustering algorithm is applied jointly to the two
channel pixel maps. As a first step, we merge (OR) the
black pixels from both channels into one time-frequency
plane. For each black pixel we define neighbors (either
black or white), which share a side or a vertex with the
black pixel. The white neighbors are called halo pixels. We
define a cluster as a group of black and halo pixels which
are connected either by a side or a vertex. After the cluster
reconstruction, we go back to the original time-frequency
planes and calculate the cluster parameters separately for
each channel. Therefore, there are always two clusters, one
per channel, which form a WaveBurst trigger.

The cluster parameters are calculated using black pixels
only. For example, the cluster size k is defined as the
number of black pixels. Other parameters which character-
ize the cluster strength are the cluster excess power ratio �
and the cluster logarithmic likelihood Y. Given a cluster C,
-8
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these are estimated by summing over the black pixels in the
cluster:

� �
X
ij2C

�ij; Y �
X
ij2C

yij: (5.6)

Given the times ti of individual pixels, the cluster center
time is calculated as

T �
X
ij2C

tiw2
ij

,X
ij2C

w2
ij: (5.7)

As configured for this analysis, WaveBurst initially gen-
erated triggers with frequency content between 64 Hz and
4096 Hz. As we will see below, the cluster size, likelihood,
and excess power ratio can be used for the further selection
of triggers, while the cluster time and frequency span are
used in a coincidence requirement. The frequency band of
interest for this analysis, 100–1100 Hz, is selected during
the later stages of the analysis.

There are two main WaveBurst tunable input parame-
ters: the black pixel fraction P which is applied to each
frequency layer, and the coincidence threshold �. The
purpose of these parameters is to control the average black
pixel occupancy O�P;��, the fraction of black pixels over
the entire time-frequency scalogram. To ensure robust
cluster reconstruction, the occupancy should not be greater
than 1%. For white Gaussian detector noise the functional
form ofO�P;�� can be calculated analytically. This can be
used to set a constraint on P and � for a given target
O�P;��. If P is set too small (less then a few percent),
noise outliers due to instrumental glitches may monopolize
the limited number of available black pixels and thus allow
gravitational wave signals to remain hidden. To avoid this
domination of instrumental glitches, we run the analysis
with P equal to 10%. This value of P together with the
occupancy target O�P;�� of 0.7% defines the coincidence
threshold � at 1.5.

All the tuning of the WaveBurst method was performed
on the S2 playground data set (Sec. IV). For the selected
values of P and �, the average trigger rate per LIGO
instrument pair was approximately 6 Hz, about twice the
false alarm rate expected for white Gaussian detector
noise. The trigger rate was further reduced by imposing
cuts on the excess power ratio �. For clusters of size k
greater than 1 we required � to be greater than 6.25 while
for single pixel clusters (k � 1) we used a more restrictive
cut of � greater than 9. These criteria yielded mean trigger
rates of 1.6 Hz for the (L1,H1) and (L1,H2) pairs and
1.2 Hz for the (H1,H2) pair. These rates varied by �40%
over the course of the S2 run. The times and reconstructed
parameters of WaveBurst events passing these criteria were
written onto disk. This allowed the further processing and
selection of these events without the need to reanalyze the
full data stream, a process which is generally time and CPU
intensive.
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B. Triple coincidence

Further selection of WaveBurst events proceeds by iden-
tifying triple coincidences. The output of the WaveBurst
ETG is a set of coincident triggers for a selected interfer-
ometer pair A;B. Each WaveBurst trigger consists of two
clusters, one in A and one in B. For the three LIGO
interferometers there are three possible pairs: (L1,H1),
(H1,H2) and (H2,L1). In order to establish triple-
coincidence events, we require a time-frequency coinci-
dence of the WaveBurst triggers generated for these three
pairs. To evaluate the time coincidence we first construct
TAB � �TA � TB�=2, i.e., the average central time of the A
and B clusters for the trigger. Three such combined central
times are thus constructed: TL1H1, TH1H2, and TH2L1. We
then require that all possible differences of these combined
central times fall within a time window Tw � 20 ms. This
window is large enough to accommodate the maximum
difference in gravitational wave arrival times at the two
detector sites (10 ms) and the intrinsic time resolution of
the WaveBurst algorithm which has a standard deviation
on the order of 3 ms as discussed in Sec. VIII.

We apply a loose requirement on the frequency consis-
tency of the WaveBurst triggers. First, we calculate the
minimum (fmin) and maximum (fmax) frequency for each
interferometer pair �A;B�

fmin � min�fAlow; f
B
low�; fmax � max�fAhigh; f

B
high�;

(5.8)

where flow and fhigh are the low and high frequency
boundaries of the A and B clusters. Then, the trigger
frequency bands are calculated as fmax � fmin for all pairs.
For the frequency coincidence, the bands of all three
WaveBurst triggers are required to overlap. An average
frequency is then calculated from the clusters, weighted by
signal-to-noise ratio, and the coincident event candidate is
kept for this analysis if this average frequency is above
64 Hz and below 1100 Hz.

The final step in the coincidence analysis of the
WaveBurst events involves the construction of a single
measure of their combined significance. As we described
already, triple-coincidence events consist of three
WaveBurst triggers involving a total of six clusters. Each
cluster has its parameters calculated on a per-
interferometer basis. Assuming white detector noise, the
variable Y for a cluster of size k follows a Gamma proba-
bility distribution. This motivates the use of the following
measure of the cluster significance:

Z � Y � ln

 Xk�1

m�0

Ym

m!

!
; (5.9)

which is derived from the logarithmic likelihood Y of a
cluster C and from the number k of black pixels in that
cluster [28,29]. Given the significance of the six clusters,
we compute the combined significance of the triple-
-9
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coincidence event as

ZG � �ZL1
L1H1Z

H1
L1H1Z

H2
H2L1Z

L1
H2L1Z

H1
H1H2Z

H2
H1H2�

1=6; (5.10)

where ZAAB (ZBAB) is the significance of the A (B) cluster for
the �A;B� interferometer pair.

In order to evaluate the rate of accidental coincidences,
we have repeated the above analysis on the data after
introducing an unphysical time-shift (‘‘lag’’) in the
Livingston data stream relative to the Hanford data
streams. The Hanford data streams are not shifted relative
to one another, so any noise correlations from the local
environment are preserved. Figure 3 shows the distribution
of cluster significance (Eq. (5.9)) from the three individual
detectors, and the combined significance (Eq. (5.10)), over
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FIG. 3. The significance distribution of the triple coincident
WaveBurst events for individual detectors (L1, H1, H2) and the
combined significance of their triple coincidences (L1xH1xH2)
for the S2 data set. Solid histograms reflect the zero-lag events,
while the points represent background (time-lag) events as
produced with unphysical time shifts between the Livingston
and Hanford detectors (and normalized to the S2 live-time). The
change in the significance distribution for the individual detec-
tors around significance equal to four is attributed to the onset of
single pixel clusters (for which a higher threshold was applied).
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the entire S2 data set, for both zero-lag and time-lag
coincidences. Using 46 such time-lag instances of the S2
playground data we have set the threshold on ZG for this
search in order to yield a targeted false alarm rate of
10 �Hz. Without significantly compromising the pipeline
sensitivity, this threshold was selected to be ln�ZG�> 1:7.
In the 64–1100 Hz frequency band, the resulting false
alarm rate in the S2 playground analysis was approxi-
mately 15 �Hz. The coincident events selected by
WaveBurst in this way are then checked for their waveform
consistency using the r-statistic.

C. r-statistic test

The r-statistic test [30] is applied as the final step of
searching for gravitational wave event candidates. This test
reanalyzes the raw (unprocessed) interferometer data
around the times of coincident events identified by the
WaveBurst ETG.

The fundamental building block in performing this
waveform consistency test is the r statistic, or the normal-
ized linear correlation coefficient of two sequences, fxig
and fyig (in this case, the two gravitational wave signal
time series):

r �

P
i
�xi � �x��yi � �y������������������������P

i
�xi � �x�2

r �����������������������P
i
�yi � �y�2

r ; (5.11)

where �x and �y are their respective mean values. This
quantity assumes values between �1 for fully anticorre-
lated sequences and�1 for fully correlated sequences. For
uncorrelated white noise, we expect the r-statistic values
obtained for arbitrary sets of points of length N to follow a
normal distribution with zero mean and � � 1=

����
N
p

. Any
coherent component in the two sequences will cause r to
deviate from the above normal distribution. As a normal-
ized quantity, the r statistic does not attempt to measure the
consistency between the relative amplitudes of the two
sequences. Consequently, it offers the advantage of being
robust against fluctuations of detector amplitude response
and noise floor. A similar method based on this type of
time-domain cross-correlation has been implemented in a
LIGO search for gravitational waves associated with a
GRB [7,40] and elsewhere [41].

As will be described below, the final output of the
r-statistic test is a combined confidence statistic which is
constructed from r-statistic values calculated for all three
pairs of interferometers. For each pair, we use only the
absolute value of the statistic, jrj, rather than the signed
value. This is because an astrophysical signal can produce
either a correlation or an anticorrelation in the interfer-
ometers at the two LIGO sites, depending on its sky
position and polarization. In fact, the r-statistic analysis
was done using whitened (see below) but otherwise un-
-10



TABLE I. Percentage of S2 background triggers rejected by
the r statistic for two different thresholds on �.

Event Production �> 3:0 �> 4:0

200 ms white Gaussian noise 99:9992% 99:999 996%
20 ms real noise (random) 99:89% 99:996%
WaveBurst background triggers 98:6� 0:5% 99:6� 0:3%
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calibrated data, with an arbitrary sign convention. A signed
correlation test using calibrated data would be appropriate
for the H1-H2 pair, but all three pairs were treated equiv-
alently in the present analysis.

The number of points N considered in calculating the
statistic in Eq. (5.11), or equivalently the integration time
�, is the most important parameter in the construction of
the r statistic. Its optimal value depends in general on the
duration of the signal being considered for detection. If � is
too long, the candidate signal is ‘‘washed out’’ by the noise
when computing r. On the other hand, if it is too short, then
only part of the coherent signal is included in the integra-
tion. Simulation studies have shown that most of the short-
lived signals of interest to the LIGO burst search can be
identified successfully using a set of three discrete integra-
tion times with lengths of 20 ms, 50 ms, and 100 ms.

Within its LIGO implementation, the r-statistic analysis
first performs data ‘‘conditioning’’ to restrict the frequency
content of the data to LIGO’s most sensitive band and to
suppress any coherent lines and instrumental artifacts.
Each data stream is first band-pass filtered with an 8th-
order Butterworth filter with corner frequencies of 100 Hz
and 1572 Hz, then down-sampled to a 4096 Hz sampling
rate. The upper frequency of 1572 Hz was chosen in order
to have 20 dB suppression at 2048 Hz and thus avoid
aliasing. The lower frequency of 100 Hz was chosen to
suppress the contribution of seismic noise; it also defines
the lower edge of the frequency band for this gravitational
wave burst search, since it is above the lower frequency
limit of 64 Hz for WaveBurst triggers. The band-passed
data are then whitened with a linear predictor error filter
with a 10 Hz resolution trained on a 10 s period before the
event start time. The filter removes predictable content,
including lines that were stationary over a 10 s time scale.
It also has the effect of suppressing frequency bands with
large stationary noise, thus emphasizing transients [39].

The next step in the r-statistic analysis involves the
construction of all the possible r coefficients given the
number of interferometer pairs involved in the trigger, their
possible relative time-delays due to their geographic sepa-
ration, and the various integration times being considered.
Relative time delays up to�10 ms are considered for each
detector pair, corresponding to the light travel time be-
tween the Hanford and Livingston sites. Future analyses
will restrict the time delay to a much smaller value when
correlating data from the two Hanford interferometers, to
allow only for time calibration uncertainties. Furthermore,
in the case of WaveBurst triggers with reported durations
greater than the integration time �, multiple integration
windows of that length are considered, offset from the
reported start time of the trigger by multiples of �=2. For
a given integration window indexed by p (containing Np
data samples), ordered pair of instruments indexed by l;m
�l � m�, and relative time delay indexed by k, the
r-statistic value jrkplmj is calculated. For each plm combi-
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nation, the distribution of jrkplmj for all values of k is
compared to the null hypothesis expectation of a normal
distribution with zero mean and � � 1=

�������
Np

p
using the

Kolmogorov-Smirnov test. If these are statistically consis-
tent at the 95% level, then the algorithm assigns no sig-
nificance to any apparent correlation in this detector pair.
Otherwise, a one-sided significance and its associated
logarithmic confidence are calculated from the maximum
value of jrkplmj for any time delay, compared to what would
be expected if there were no correlation. Confidence values
for all ordered detector pairs are then averaged to define the
combined correlation confidence for a given integration
window. The final result of the r-statistic test, �, is the
maximum of the combined correlation confidence over all
of the integration windows being considered. Events with a
value of � above a given threshold are finally selected.

The r-statistic implementation, filter parameters, and set
of integration times were chosen based on their perform-
ance for various simulated signals. The single remaining
parameter, the threshold on �, was tuned primarily in order
to ensure that much less than one background event was
expected in the whole S2 run, corresponding to a rate of
O�0:1��Hz. Since the rate of WaveBurst triggers was
approximately 15 �Hz, as mentioned in Sec. V B, a rejec-
tion factor of around 150 was required.

Table I shows the rejection efficiency of the r-statistic
test for two thresholds on � when the test is applied to
white Gaussian noise (200 ms segments), to real S2 inter-
ferometer noise at randomly selected times (200 ms seg-
ments), and to the data at the times of time-lag (i.e.,
background) WaveBurst triggers in the S2 playground. In
the first two cases, 200 ms of data was processed by the
r-statistic algorithm, whereas in the latter case, the amount
of data processed was determined by the trigger duration
reported by WaveBurst. The table shows that random
detector noise rarely produced a � value above 3.0, but
the rejection factor for WaveBurst triggers was not high
enough. A � threshold of 4.0 was ultimately chosen for this
analysis, yielding an estimated rejection factor of�250 for
WaveBurst triggers. For all of the simulated waveforms
considered in Sec. VIII, the r-statistic waveform consis-
tency test with � > 4:0 represents a sensitivity that is equal
to or better than that of the WaveBurst ETG. As a result of
this, the false dismissal probability of the r-statistic test
does not impair the efficiency of the whole pipeline.
-11
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VI. VETOES

We performed several studies in order to establish any
correlation of the triggers produced by the WaveBurst
search algorithm with environmental and instrumental
glitches. LIGO records hundreds of auxiliary readback
channels of the servo control systems employed in the
instruments’ interferometric operation as well as auxiliary
channels monitoring the instruments’ physical environ-
ment. These channels can provide ways for establishing
evidence that a transient is not of astrophysical origin, i.e.,
a glitch attributed to the instruments themselves and/or to
their environment. Assuming that the coupling of these
channels to a genuine gravitational wave burst is null (or
below threshold within the context of a given analysis),
such glitches appearing in these auxiliary channels may be
used to veto the events that appear simultaneously in the
gravitational wave channel. The WaveBurst pipeline used
in this S2 search was a multi-interferometer search method
which did not produce any single-interferometer triggers.
Thus, although environmental and instrumental disturban-
ces would be expected to affect only one site or the other,
for this analysis it was most practical and direct to use
WaveBurst triple-coincidence triggers to evaluate potential
vetoes. Any trigger coincident with a vetoed time interval
was simply removed. An option existed of rerunning
WaveBurst with the vetoed time intervals excluded, but
this would have fragmented the data set and introduced
edge effects and was thus not pursued.

Given the number of auxiliary channels and the parame-
ter space that we need to explore for their analysis, an
exhaustive a priori examination of all of them is a formi-
dable task. The veto study was limited to the S2 play-
ground data set and to a few tens of channels thought to
be most relevant. Several different choices of filter and
threshold parameters were tested in running the glitch
finding algorithms. For each of these configurations, the
efficiency of the auxiliary channel in vetoing the event
triggers (presumed to be glitches), as well as the dead-
time introduced by using that auxiliary channel as a veto,
were computed and compared to judge the effectiveness of
the veto condition.

Another important consideration in a veto analysis is to
verify the absence of coupling between a real gravitational
wave burst and the auxiliary channel, such that the real
burst could cause itself to be vetoed. The ‘‘safety’’ (ab-
sence of such a coupling) of veto conditions was evaluated
using hardware signal injections (described in Sec. VIII),
by checking whether the simulated burst signal imposed on
the arm length appeared in the auxiliary channel. Only one
channel, referred to as AS_I, in the L1 instrument derived
from the antisymmetric port photodiode with a demodu-
lation phase orthogonal to that of the gravitational wave
channel, was found to be ‘‘unsafe’’ in this respect, con-
taining a small amount of the injected signal.
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None of the channels and parameters we examined
yielded an obviously good veto (e.g., one with an effi-
ciency of 20% or greater and a dead-time of no more
than a few percent) to be used in this search. Among the
most interesting channels was the one in the L1 instrument
that recorded the DC level of the light coming out of the
antisymmetric port of the interferometer, referred to as
AS_DC. That channel was seen to correlate with the gravi-
tational wave channel through a nonlinear coupling with
interferometer alignment fluctuations. A candidate veto
based on this channel was shown to be able to reject
�15% of the triggers, but with a non-negligible dead-
time of 5%. Finding no better option, we decided not to
apply any a priori vetoes in this search, judging that the
effect on the results would be insignificant.

Although none of the auxiliary channels studied in the
playground data yielded a compelling veto, these studies
provided experience applicable to examining any candi-
date gravitational wave event(s) found in the full data set.
A basic principle established for the search was that a
statistical excess of zero-lag event candidates (over the
expected background) would not, by itself, constitute a
detection; the candidate(s) would be subjected to further
scrutiny to rule out any environmental or instrumental
explanation that might not have been apparent in the initial
veto studies. As will be described in the next section, one
event did survive all the predetermined cuts of the analysis
but subsequent examination of auxiliary channels identi-
fied an environmental origin for the signal in the two
Hanford detectors.

VII. SIGNAL AND BACKGROUND RATES

In the preceding section we described the methods that
we used for the selection of burst events. These were
applied to the S2 triple-coincidence data set excluding
the playground for a total of 239.5 hours (9.98 days) of
observation time. Every aspect of the analysis discussed
from this point on will refer only to this data set.

A. Event analysis

The WaveBurst analysis applied to the S2 data yielded
16 coincidence events (at zero-lag). The application of the
r statistic cut rejected 15 of them, leaving us with a single
event that passed all the analysis criteria.

The background in this search is assumed to be due to
random coincidences between unrelated triggers at the two
LIGO sites. We have measured this background by artifi-
cially shifting the raw time series of the L1 instrument. As
in our S1 search, we have chosen not to time-shift relative
to each other the two Hanford instruments (H1, H2).
Although we had no evidence of H1-H2 correlations in
the S1 burst search, indications exist for such correlations
in other LIGO searches [4]. A total of 46 artificial lags of
the raw time series of the L1 instrument, at 5-second steps
in the range ��115; 115� seconds, were used in order to
-12
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FIG. 5. WaveBurst event count (prior to the r-statistic test)
versus lag time (in seconds) of the L1 interferometer with respect
to H1 and H2. The zero-lag measurement, i.e., the only coinci-
dence measurement that is physical, is also shown. Because of
the fragmentation of the data set, each time-lag has a slightly
different live-time; for this reason, the event count is corrected so
that they all correspond to the zero-lag live-time. A projection of
the event counts to a one-dimensional histogram with a Poisson
fit is also shown in the adjacent panel.
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make a measurement of the accidental rate of coinci-
dences, i.e., the background. This step size was much
larger than the duration of any signal that we searched
for and was also larger than the autocorrelation time-scale
for the trigger generation algorithm applied to S2 data.
This can be seen in Fig. 4 where a histogram of the time
between consecutive events is shown for the double and
their resulting triple-coincidence WaveBurst zero-lag
events before any combined significance or r-statistic cut
is applied. These distributions follow the expected expo-
nential form, indicating a quasistationary Poisson process.
The background events generated in this way were also
subjected to the r-statistic test in an identical way with the
one used for the zero-lag events. Each time-shift experi-
ment had a different live-time according to the overlap,
when shifted, of the many noncontiguous data segments
that were analyzed for each interferometer. Taking this into
account, the total effective live-time for the purpose of
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FIG. 4. Time between consecutive WaveBurst events (prior to
the application of the r-statistic test). The top two panels show
the distributions for double-coincidence H1-H2 and H1-L1
triggers, respectively. The triple-coincidence events, shown in
the bottom panel, are reasonably well described by a Poisson
process of constant mean. The exponential fits are performed for
time delays greater than 4 s.
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measuring the background in this search was 391 days,
equal to 39.2 times the zero-lag observation time.

A plot of the measured background events found in each
of the 46 time-lag experiments, before the application of
the r-statistic, is shown in Fig. 5 as a function of the lag
time. These numbers of events are corrected so that they all
correspond to the zero-lag live time. A Poisson fit can be
seen in the adjacent panel; the fit describes the distribution
of event counts reasonably well.

Figure 6 shows a histogram of the � values, i.e., the
multi-interferometer combined correlation confidence, for
the zero-lag events. The normalized background distribu-
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FIG. 6. Circles: histogram of r-statistic confidence value (�)
for zero-lag events passing the WaveBurst analysis. Stair-step
curve: mean background per bin, estimated from time lags, for
an observation time equal to that of the zero-lag analysis. The
black error bars indicate the statistical uncertainty on the mean
background. The shaded bars represent the expected root-mean-
square statistical fluctuations on the number of background
events in each bin.
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TABLE II. Event statistics for the S2 burst search. The ex-
pected numbers of background events are normalized to the live-
time of the zero-lag analysis.

WaveBurst Events in 239.5 hours (9.98 days) Rate

Before r-statistic test
Coincidences 16 18:6� 4:6 �Hz
Background 12.3 14:3� 0:7 �Hz

After r-statistic test
Coincidences 1 �1:2 �Hz
Background 0.05 0:06� 0:04 �Hz
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tion, estimated from time-lag coincidences, is shown for
comparison. One zero-lag event passed the requirement
� > 4 that we had chosen based on the playground data;
this event will be discussed in the following subsection.
Only two time-lag coincidences above this � threshold
were found among all 46 time lags. With such low statis-
tics, the rate and distribution of the background for large �
is poorly known, but we can get an approximate measure of
the significance of the zero-lag event by comparing it to the
cumulative mean background rate with �> 4, which is
roughly 0.05 events for the same observation time. Thus,
the chance of having found such a background event in the
zero-lag sample is roughly 5%. Table II summarizes the
number of events and corresponding rates before and after
the application of the r statistic. The background estimates
reported in the table are normalized to the same live-time
as for the zero-lag coincidence measurement.

Sources of systematic errors may arise in the choices we
have made on how to perform the time-lag experiments,
namely, the choice of step and window size as well as the
time-lag method by itself. We have performed time-lag
experiments using different time steps, all of which yielded
statistically consistent results. The one-sigma systematic
uncertainty from the choice of step size is estimated to be
less than 0.04 events with � > 4.

B. Examination of the surviving event candidate

The single event in the triple-coincidence data set that
survived all previously described analysis cuts barely
passed the WaveBurst combined significance and
r-statistic thresholds. An examination of the event parame-
ters estimated by WaveBurst revealed that the three instru-
ments recorded low frequency signals in the �135 Hz
range and with comparable bandwidths, although
WaveBurst provides only a rough estimate of the dominant
frequency of an event candidate. The root-sum-square (rss)
strain amplitude hrss in the two Hanford detectors were in
the 6	 10�20 � 10�19 Hz�1=2 range, well above the in-
struments’ typical noise in this band, while for the
Livingston detector, hrss was at the 2:7	 10�21 Hz�1=2

level, much closer to the noise floor of the instrument.
Given the low estimated probability of this event being

due to a random triple coincidence, it was treated as a
062001
candidate gravitational wave detection and was therefore
subjected to additional scrutiny. In particular, the auxiliary
interferometric and environmental monitoring channels
were examined around the time of the event to check for
an interferometer malfunction or an environmental cause.
The investigation revealed that the event occurred during a
period of strongly elevated acoustic noise at Hanford last-
ing tens of seconds, as measured by microphones placed
near the interferometers. The effects of environmental
influences on the interferometers were measured in a spe-
cial study during the S2 run by intentionally generating
acoustic and other environmental disturbances and com-
paring the resulting signals in the gravitational wave and
environmental monitoring channels. These coupling mea-
surements indicated that the acoustic event recorded on the
microphones could account for the amplitude and fre-
quency of the signal in the H1 and H2 gravitational wave
channels at the time of the candidate event. On this basis, it
was clear that the candidate event should be attributed to
the acoustic disturbance and not to a gravitational wave.

The source of the acoustic noise appears to have been an
aircraft. Microphone signals from the five Hanford build-
ings exhibited Doppler frequency shifts in a sequence
consistent with the overflight of an airplane roughly paral-
leling the X arm of the interferometers, on a typical ap-
proach to the nearby Pasco, Washington airport. Similar
signals in the microphone and gravitational wave channels
at other times have been visually confirmed as over-flying
airplanes.

No instrumental or environmental cause was identified
for the signal in the Livingston interferometer at the time of
the candidate event, but that signal was much smaller in
amplitude and was consistent with being a typical fluctua-
tion in the Livingston detector noise, accidentally coinci-
dent with the stronger signals in the two Hanford detectors.

Because of the sensitivity of the interferometers to the
acoustic environment during S2, a program to reduce
acoustic coupling was undertaken prior to S3. The acoustic
sensitivities of the interferometers were reduced by 2 to 3
orders of magnitude by addressing the coupling mecha-
nisms on optics tables located outside of the vacuum
system, and by acoustically isolating the main coupling
sites.

C. Propeller-airplane acoustic veto

Given the clear association of the surviving event with
an acoustic disturbance, we tracked the power in a particu-
lar microphone channel, located in the LIGO Hanford
corner station, over the entire S2 run. We defined a set of
time intervals with significantly elevated acoustic noise by
setting a threshold on the power in the 62–100 Hz band—
where propeller airplanes are observed to show up most
clearly—averaged over one-minute intervals. The thresh-
old was chosen by looking at the distribution over the
entire S2 run, and was far below the power at the time of
-14
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the ‘‘airplane’’ outlier event discussed above. Over the
span of the run, 0.7% of the data was collected during
times of elevated acoustic noise as defined in this way.
Eliminating these time intervals removes the zero-lag out-
lier as well as the time-lag event with the largest value of �,
while having only a slight effect on the rest of the back-
ground distribution, as shown in Fig. 7. We conclude that
acoustic disturbances from propeller airplanes contribute a
small but non-negligible background if this veto is not
applied.

For future analyses, we expect to increase the use of
environmental channels, including the ones recording
acoustic disturbances, in order to veto a priori, either on
an event-by-event basis or as part of the data selection
procedure, the rare environmental events that are strong
enough to couple into the interferometer.

D. Rate limit

We now use the results of this analysis to place a limit on
the average rate (assuming a uniform distribution over
time) of gravitational wave bursts that are strong enough
to be detected reliably by our analysis pipeline. The case of
somewhat weaker signals, which are detectable with effi-
ciency less than unity, will be considered in the next
section.

Our intention at the outset of this analysis was to calcu-
late a frequentist 90% confidence interval from the obser-
vation time, number of observed candidate events, and
estimated background using the Feldman-Cousins [42]
approach. Although this procedure could yield an interval
with a lower bound greater than zero, we would not claim
the detection of a gravitational wave signal based on that
criterion alone; we would require a higher level of statis-
tical significance, including additional consistency tests.
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Thus, in the absence of a detection, our focus is on the
upper bound of the calculated confidence interval; we take
this as an upper limit on the event rate.

The actual outcome of our analysis presented us with a
dilemma regarding the calculation of a rate limit. Our
pipeline was designed to perform a ‘‘blind’’ upper limit
analysis, with all choices about the analysis to be based on
playground data which was excluded from the final result;
following this principle, the ‘‘emergent’’ acoustic veto
described above should be disallowed (since it was devel-
oped in response to the candidate event which passed all of
the initial cuts), and the upper bound should be calculated
based on a sample of one candidate event. On the other
hand, it seemed unacceptable to ignore the clear associa-
tion of that event with a strong acoustic disturbance and to
continue to treat it as a candidate gravitational wave burst.
We decided to apply the acoustic veto, reducing the ob-
servation time by 0.7% and calculating an upper limit
based on a final sample containing no events. However,
any decision to alter the analysis procedure based on
information from the analysis must be approached with
great caution and an awareness of the impact on the
statistics of the result. In particular, a frequentist confi-
dence interval construction which has been designed to
give 90% minimum coverage for an ordinary (uncondi-
tional) analysis procedure can yield less than 90% cover-
age if it is blindly used in a conditional analysis involving
an emergent veto, due to the chance that a real gravitational
wave burst could be vetoed, and due to the fact that the
background would be misestimated. In the present analy-
sis, we know that the chance of a gravitational wave burst
being eliminated by the acoustic veto described above is
only 0.7%; however, we must consider the possibility that
there are other, ‘‘latent’’ veto conditions which are not
associated with any events in this experimental instance
but which might be adopted to veto a gravitational wave
burst in case of a chance coincidence.

It is impossible to enumerate all possible latent veto
conditions without an exhaustive examination of auxiliary
channels in the full data set. Judging from our experience
with examining individual event candidates and potential
veto conditions in the playground data set, we believe that
there are few possible veto conditions with sufficiently low
dead-time and a plausible coupling mechanism (like the
acoustic veto) to be considered. Nevertheless, we have
performed Monte Carlo simulations to calculate frequent-
ist coverage for various conditional limit-setting proce-
dures under the assumption that there are many latent
vetoes, with a variety of individual dead-times and with a
net combined dead-time of 35%. A subset of eight latent
vetoes with individual dead-times less than 5%, suffi-
ciently low that we might adopt the veto if it appeared to
correlate with a single gravitational wave event, had a
combined dead-time of 12%. Veto conditions with larger
dead-times would be considered only if they seemed to
-15



TABLE III. Upper limits on the rate of strong gravitational
wave bursts for two different frequentist confidence levels. The
method used to calculate these limits is described in the text.

Confidence level Upper limit

90% 0.26 events/day
95% 0.33 events/day

B. ABBOTT et al. PHYSICAL REVIEW D 72, 062001 (2005)
explain multiple event candidates to a degree unlikely to
occur by chance.

The simulations led us to understand that we can pre-
serve the desired minimum coverage (e.g., 90%) by assign-
ing a somewhat larger interval when an emergent veto has
been applied. This is a means of incorporating the infor-
mation that an observed event is probably due to the
environmental disturbance identified by the veto, without
assuming that it is certainly due to the environmental
disturbance and simply applying the veto. The resulting
upper limit is looser than what would be obtained by
simply applying the veto. Among a number of possible
ways to assign such an interval, we choose to use the
Feldman-Cousins interval calculation with an input con-
fidence level somewhat greater than our target coverage
and with the background taken to be zero. Taking the
background to be zero provides some necessary conserva-
tism since we have not sought vetoes for the time-lag
coincidences from which the background was originally
estimated, but this has little effect on the result since the
background rate is low.

According to the simulations, using a confidence level of
92% in the Feldman-Cousins upper limit calculation after
adopting an emergent veto is sufficient to ensure an actual
minimum coverage of greater than 90%, and using a con-
fidence level of 96% is sufficient to ensure an actual
minimum coverage of greater than 95%. The resulting
rate limits for strong gravitational wave bursts are pre-
sented in Table III. The upper limit at 90% confidence,
R90% � 0:26 events per day, represents an improvement
over the rate limit from our S1 result [3] by a factor of 6. As
will be described in the following section, the present
analysis also is sensitive to much weaker bursts than the
S1 analysis was.

VIII. EFFICIENCY OF THE SEARCH

A. Target waveforms and signal generation

In order to estimate the sensitivity of the burst analysis
pipeline, we studied its response to simulated signals of
various waveform morphologies and strengths. The simu-
lated signals were prepared in advance, then ‘‘injected’’
into the S2 triple-coincidence data set by using software to
add them to the digitized time series that had been recorded
by the detectors [31]. The times of the simulated signals
were chosen pseudorandomly, uniformly covering the S2
triple-coincidence data set with an average separation of
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1 min and a minimum separation of 10 seconds. The
modified data streams were then reanalyzed using the
same analysis pipeline.

Several ad hoc and astrophysically motivated wave-
forms were selected for injections:
(i) s
-16
ine-Gaussian waveforms of the form h�t� t0� �
h0 sin�2�f0t� exp��t2=�2�, where � was chosen
according to � � Q=�

���
2
p
�f0� with Q � 8:9, and

f0 assumed values of 100, 153, 235, 361, 554, and
849 Hz;
(ii) G
aussian waveforms of the form h�t� t0� �
h0 exp��t2=�2�, with � equal to 0.1, 0.5, 1.0, 2.5,
4.0 and 6.0 ms;
(iii) w
aveforms resulting from numerical simulations of
core collapse supernovae that are available in the
literature [14–16];
(iv) b
inary black hole merger waveforms as described
in [18,43], for total system masses of 10, 30, 50, 70
and 90 solar masses.
The sine-Gaussian and Gaussian waveforms were chosen
to represent the two general classes of short-lived gravita-
tional wave bursts of narrow-band and broad-band charac-
ter, respectively. The supernovae and binary black hole
merger waveforms were adopted as a more realistic model
for gravitational wave bursts.

In order to ensure self-consistent injections which would
accurately test the coincidence criteria in the pipeline, we
took into account the exact geometry of the individual
LIGO detectors with respect to the impinging gravitational
burst wavefront. A gravitational wave burst is expected to
be comprised of two waveforms h��t� and h	�t� which
represent its two polarizations, conventionally defined with
respect to the polarization of the source. The signal pro-
duced on the output of a LIGO detector hdet�t� is a linear
combination of these two waveforms,

hdet�t� � F�h��t� � F	h	�t�; (8.1)

where F� and F	 are the antenna pattern functions
[23,44]. The antenna pattern functions depend on the
source location on the sky (spherical polar angles � and
�) and the wave’s polarization angle  . The source coor-
dinates � and � were chosen randomly so that they would
appear uniformly distributed on the sky. For every source
direction, the simulated signals were injected with the
appropriate relative time delay corresponding to the geo-
metric separation of the two LIGO sites. For the two ad hoc
waveform families (sine-Gaussian, Gaussian) as well as for
the supernova waveforms, a linearly polarized wave was
assumed with a random polarization angle. The binary
black hole merger waveforms come with two polarizations
[18] and both were taken into account.

For the supernovae waveforms the inclination of the
source with respect to the line of sight was taken to be
optimal (ninety degrees), so that the maximum gravita-
tional wave emission is in the direction of the Earth. For the
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binary black hole merger case we used the same root-sum-
square (rss) strain amplitude in the two polarizations thus
corresponding to an inclination of 59.5 degrees. Of course,
a real population of astrophysical sources would have
random inclinations, and the wave amplitude at the Earth
would depend on the inclination as well as the intrinsic
source strength and distance. Our injection approach is in
keeping with our intent to express the detection efficiency
in terms of the gravitational wave amplitude reaching the
Earth, not in terms of the intrinsic emission by any par-
ticular class of sources (even though some of the wave-
forms we consider are derived from astrophysical models).
For a source producing radiation in only one polarization
state, a change in the inclination simply reduces the am-
plitude at the Earth by a multiplicative factor. However, a
source which emits two distinct polarization components
produces a net waveform at the Earth which depends non-
trivially on inclination angle; thus, our fixed-inclination
injections of black hole merger waveforms can only be
considered as discrete examples of such signals, not as
representative of a population. In any case, the waveforms
we use are only approximations to those expected from real
supernovae and black hole mergers.

B. Software injection results

In order to add the aforementioned waveforms to the raw
detector data, their signals were first digitized at the LIGO
sampling frequency of 16 384 Hz. Their amplitudes de-
fined in strain dimensionless units were converted to units
of ADC counts using the response functions of the detec-
tors determined from calibration [25]. The resulting time
series of ADC(t) were then added to the raw detector data
and were made available to the analysis pipeline. In ana-
lyzing the injection data, every aspect of the analysis
pipeline that starts with single-interferometer time series
ADC(t) and ends with a collection of event triggers was
kept identical to the one that was used in the analysis of the
real, interferometric data, including the acoustic veto. For
each of the four waveform families we introduced earlier in
this section, a total of approximately 3000 signals were
injected into the three LIGO detectors, uniformly distrib-
uted in time over the entire S2 data set that was used for
setting the rate bound. As in our S1 signal injection analy-
sis, we quantify the strength of the injected signals using
the root-sum-square (rss) amplitude at the Earth (i.e.,
without folding in the antenna pattern of a detector) defined
by

hrss 


���������������������������������������������������Z
�jh��t�j2 � jh	�t�j2�dt

s
: (8.2)

This is a measure of the square root of the signal ‘‘energy’’
and it can be shown that, when divided by the detector
spectral noise, it approximates the signal-to-noise ratio that
is used to quantify the detectability of a signal in optimal
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filtering. The quantity hrss has units of Hz�1=2 and can thus
be directly compared to the detector sensitivity curves, as
measured by power spectral densities over long time
scales. The pixel and cluster strength quantities calculated
by the WaveBurst ETG are monotonic functions of the hrss

of a given signal. The hrss amplitudes of the injected signals
were chosen randomly from 20 discrete logarithmically-
spaced values in order to map out the detection efficiency
as a function of signal strength.

The efficiency of the analysis pipeline is defined as the
fraction of injected events which are successfully detected.
The software injections exercised a range of signal
strengths that allowed us to measure (in most cases) the
onset of efficiency up to nearly unity. Efficiency measure-
ments between 0.01 and 0.99 were fitted with an asymmet-
ric sigmoid of the form

	�hrss� �
1

1� � hrss

h50%
rss
�
�1�� tanh�hrss=h

50%
rss ��

; (8.3)

where h50%
rss is the hrss value corresponding to an efficiency

of 50%, � is the parameter that describes the asymmetry of
the sigmoid (with range �1 to �1), and 
 describes the
slope. The analytic expressions of the fits were then used to
determine the signal strength hrss for which an efficiency of
50%, 90% and 95% was reached.

In Fig. 8 we show the efficiency curves, i.e., the effi-
ciency versus signal strength (at the Earth) of our end-to-
end burst search pipeline for the case of the six different
sine-Gaussian waveforms we have introduced earlier in
this section. As described in the previous subsection, these
efficiency curves reflect averaging over random sky posi-
tions and polarization angles. As expected given the instru-
ments’ noise floor (see Fig. 1), the best sensitivity is
attained for sine-Gaussians with a central frequency of
235 Hz; for this signal type, the required strength in order
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FIG. 9. Same plot as in Fig. 8 but for Gaussian injections of
� � 0:1, 0.5, 1.0, 2.5, 4.0 and 6.0 ms.

TABLE IV. Summary of the S2 pipeline hrss (from Eq. (8.2))
sensitivity to ad hoc waveforms in units of 10�20 Hz�1=2. These
values are averages over random sky positions and signal polar-
izations. The injections did not span a wide enough range of
amplitudes to accurately determine the 95% efficiency value for
the � � 4:0 ms Gaussian, nor the 90% and 95% efficiency
values for the � � 6:0 ms Gaussian.

50% 90% 95%

sine-Gaussian f0 � 100 Hz 8.2 33 53
sine-Gaussian f0 � 153 Hz 5.5 24 40
sine-Gaussian f0 � 235 Hz 1.5 7.6 13
sine-Gaussian f0 � 361 Hz 1.7 8.2 14
sine-Gaussian f0 � 554 Hz 2.3 10 17
sine-Gaussian f0 � 849 Hz 3.9 20 34

Gaussian � � 0:1 ms 4.3 21 37
Gaussian � � 0:5 ms 2.6 13 22
Gaussian � � 1:0 ms 3.3 16 26
Gaussian � � 2:5 ms 14 75 130
Gaussian � � 4:0 ms 34 154   

Gaussian � � 6:0 ms 121      
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FIG. 10. Timing error of the WaveBurst algorithm in the three
LIGO instruments during S2 when sine-Gaussian injections of
varying frequency and strength were injected. For comparison,
the time separation between the two LIGO sites is 10 ms and the
coincidence time window used in this analysis is 20 ms.
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to reach 50% efficiency is hrss � 1:5	 10�20 Hz�1=2,
which is roughly a factor of 20 above the noise floor of
the least sensitive LIGO instrument at 235 Hz during S2. In
Fig. 9 we show the same curves for the Gaussian family of
waveforms we considered. The 6 ms Gaussian presents the
worst sensitivity because most of its signal power is below
100 Hz. The maximum hrss used for the Gaussian injec-
tions was 1:32	 10�18 Hz�1=2; we cannot rely on the
fitted curves to accurately extrapolate the efficiencies
much beyond that hrss. The sensitivity of this search to
hrss for these two families of waveforms is summarized in
Table IV.

C. Signal parameter estimation

The software signal injections we just described provide
a good way of not only measuring the efficiency of the
search but also benchmarking WaveBurst’s ability to ex-
062001
tract the signal parameters. An accurate estimation of the
signal parameters by a detection algorithm is essential for
the successful use of time and frequency coincidence
among candidate triggers coming from the three LIGO
detectors.

We compare the central time of a WaveBurst event
(Sec. V) with the known central time of the signal injec-
tion. For each of the two ad hoc waveform families con-
sidered so far, as well as for each of the astrophysical
waveforms we will discuss in Sec. IX, WaveBurst is able
to resolve the time of the event with a systematic shift of no
more than 5 ms and with a standard deviation of 3 ms or
better. In Fig. 10 we show a typical plot of the timing error
for the case of all the sine-Gaussian injections we injected
in the software simulations and for the three LIGO instru-
ments together. The systematic shift depends on frequency,
ranging from �2 ms to �5 ms for the waveforms consid-
ered, due to frequency-dependent errors in the phase of the
instrument calibration. Another contribution to the recon-
struction error comes from the fact that the detected central
time is based on a finite time-frequency volume of the
signal’s decomposition which is obtained after threshold-
ing wavelet pixels in the presence of instrument noise. It
remains however well within our needs for a tight time
coincidence between interferometers. For the same type of
signals, we list in Table V the reconstructed versus injected
central frequency. The measurements are consistent within
the signal bandwidth.

The WaveBurst algorithm estimates the signal strength
from the measured excess power in the cluster pixels,
expressed as hrss as in Eq. (8.2) but with the integrand
being the antenna-pattern-corrected hdet�t� given by
-18



TABLE V. Central frequency reconstruction for Q � 8:9 sine-
Gaussian injections.

Injected
frequency (Hz)

Mean of detected
frequency (Hz)

Standard deviation of
detected frequency (Hz)

100 98.4 3.9
153 159.5 4.4
235 242.7 14.2
361 363.7 14.0
554 544.3 17.0
849 844.9 21.4
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Eq. (8.1) rather than the intrinsic h�t� of the gravitational
wave. Figure 11 shows that this quantity is slightly over-
estimated on average, particularly for weak signals.
Several factors contribute to misestimation of the signal
strength. WaveBurst limits the signal hrss integration to
within the detected time-frequency volume of an event
and not over the entire theoretical support of a signal.
Errors in the determination of the signal’s time-frequency
volume due to thresholding may lead to systematic uncer-
tainties in the determination of its strength. The hrss shown
in Fig. 11 also reflects the folding of the measurements
from all three LIGO instruments and thus it is affected by
calibration errors and noise fluctuations in any instrument.
Our simulation analysis has shown that the detected sig-
nal’s hrss is the quantity most sensitive to detector noise and
its variability; for this reason, it is not used in any step of
the analysis either as part of the coincidence analysis or for
the final event selection.
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FIG. 11. Detected versus injected root-sum-square (rss) signal
strength for Q � 8:9 sine-Gaussian injections. The vertical bars
indicate one-sigma spread of the reconstructed values.
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D. Hardware injection results

During the S2 data taking, as well as shortly before and
after it, several run intervals were designated for hardware
signal injections. These injections were intended to address
any instrumental issues, including calibrations, and pro-
vide a robust end-to-end test of LIGO’s data analysis pipe-
lines. They also provided an important tool for establishing
the safety of the veto analysis, i.e., the absence of any
couplings between a real gravitational wave burst and the
auxiliary channels we considered as potential vetoes
(Sec. VI). An arbitrary function generator connected to
the mirror position actuators provided the capability of
exciting the mirrors according to a simulated gravitational
wave pattern. The waveforms injected through this hard-
ware calibration included several of the ones described in
the target waveform section above. The signals were in-
jected into all three LIGO instruments at identical times,
without attempting to mock up the relative time delays and
amplitudes that would be produced by a source at a par-
ticular position in the sky. Thus the coincidence analysis,
using the end-to-end pipeline invoked in the analysis of the
real data alone as well as with software injections, was not
fully appropriate for the hardware injections. We have
restricted ourselves to examining the performance of the
LIGO instruments and of the WaveBurst ETG in detecting
these events and reconstructing their signal parameters
using each individual detector. Both the time and fre-
quency reconstruction by the WaveBurst algorithm on
these hardware-injected signals is consistent with our soft-
ware injections and within our expectations.

E. Error analysis

The largest source of systematic error in the efficiency of
this search is uncertainty in the absolute calibration of the
detectors. Several contributions to this uncertainty have
been considered [25]. Systematic uncertainties are less
than 12% for L1, 5% for H1, and 6% for H2 over the
frequency band used in this analysis. The calibration at any
given point in time is subject to an additional uncertainty
from detector noise affecting the measurement of the am-
plitude of the calibration lines. These random errors were
especially large near the beginning of the run, when the H1
and L1 calibration lines were rather weak. However, the
efficiency of the search, averaged over the run, is insensi-
tive to these random errors. The overall systematic uncer-
tainty on the triple-coincidence efficiency is a combination
of the individual systematic uncertainties which depends
on the relative sensitivities of the detectors, with the least
sensitive detector having the greatest influence. As shown
in Fig. 1, H2 was the least sensitive detector at low fre-
quencies while H1 was the least sensitive at high frequen-
cies. The net uncertainty in the efficiency is estimated to be
less than 8% at all frequencies.

No significant systematic error is attributed to the pro-
cedure we followed in order to perform the efficiency
-19
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B. ABBOTT et al. PHYSICAL REVIEW D 72, 062001 (2005)
measurement. The various signal morphologies were
superimposed over the entire S2 data sample and its full
range of detector behavior. The statistical error attributed
to the finite number of simulations used for the efficiency
measurement is reflected in the goodness of the sigmoid-
like fits and is estimated to be less than 5%. The efficiency
measurement was performed in multiple slightly-varying
ways all of which yielded results within 1 standard devia-
tion. These variations included different sampling of the S2
data set, different versions of the calibration constants, and
different number and placement of the signal injections.

Combining all uncertainties, we estimate our efficiency
to any given signal morphology to be accurate at the 10%
level or better.

IX. SEARCH RESULTS

A. Rate versus strength upper limit

As we have seen in Sec. VII, using the zero-lag and
background rate measurements we set an upper bound on
the rate of gravitational wave bursts at the instruments at
the level of 0.26 events per day at the 90% confidence level.
We will now use the measurement of the efficiency of the
search as described in the previous section in order to
associate the above rate bound with the strength of the
gravitational wave burst events. This is the rate versus
strength interpretation that we introduced in our previous
search for bursts in LIGO using the S1 data [3].

The rate bound of our search as a function of signal
strength hrss is given by

R�hrss� �
RC

	�hrss�
(9.1)

where the numerator RC is the upper bound on the rate of
detectable signal events at a given confidence level C
(Sec. VII D) and the denominator is the fractional effi-
ciency for signals of strength hrss (at the Earth). This rate
versus strength interpretation makes the same assumptions
on the signal morphology and origin as the ones that enter
in the determination of the efficiency. In Fig. 12 we show
the rate versus strength upper limit for the sine-Gaussian
and Gaussian waveform families. For a given signal
strength hrss these plots give the upper limit at the 90%
confidence level on the rate of burst events at the instru-
ments with strength equal to or greater than hrss. In that
sense, the part of the plot above and to the right of these
curves defines the region of signal strength-rate excluded
by this search at 90% confidence level. As one would
expect, for strong enough signals the efficiency of the
search is 1 for all the signal morphologies: this part of
the plot remains flat at a level that is set primarily by the
observation time of this search. For weaker signals the
efficiency decreases and the strength-rate plot curves up.
Eventually, as the efficiency vanishes the rate limit reaches
infinity asymptotically. These curves for the various wave-
forms are not identical, as the detailed trailing off of the
062001
efficiency is dependent on the waveform. The exclusion
rate-strength plots obtained from the S2 analysis represent
a significant improvement with respect to the S1 result [3].
As already noted in Sec. VII, the horizontal part of the plot
determined by the observation time is improved by a factor
of 6 while the sensitivity-limited curved part of it reflects
an improvement in the efficiency of a factor of 17 or better,
depending on the waveform morphology.

B. Astrophysical waveforms

As mentioned in the introduction, potential sources of
gravitational wave bursts targeted in this search include
core collapse supernovae, merging compact binaries (neu-
tron stars and/or black holes) and gamma ray bursts. In
recent years there has been much effort devoted to predict-
ing gravitational wave burst waveforms from astrophysical
sources, generally relying on detailed numerical and ap-
proximation methods. Our search is designed to be sensi-
tive to a broad range of short-duration bursts, so we wish to
evaluate how it performs for plausible astrophysical signals
suggested by certain models. As part of our signal simula-
tion analysis for this search, we focus, in particular, on the
case of the core collapse of rapidly spinning massive stars
[14–16], and of binary black hole mergers [17,18,43].
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models described in references [14–16]: the hydrodynamical
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during the S2 run is shown for comparison.
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The core collapse simulations employ detailed hydro-
dynamical models in two dimensions, enforcing axisym-
metry of the rotating star throughout its evolution. The core
collapse is initiated artificially (e.g., through a change in
the adiabatic index of the core material [14]). An accel-
erating quadrupole moment is calculated in 2D from the
distribution and flow of matter during the collapse, from
which the gravitational wave signal is derived. The rapid
spinning of the progenitor star may produce multiple
bounces of the dense core, which is reflected in the wave-
form of the emitted waves. Simple models of the differen-
tial rotation of material in the star also lead to significant
differences in the resulting waveforms. Relativistic effects
[15], if included, serve to effectively ‘‘stiffen’’ the core,
shifting the waves to higher frequencies and shorter dura-
tions. The simulation is followed through the core collapse
phase when most of the gravitational wave signal is pro-
duced; it need not be continued through to the explosion of
the outer layers (and indeed, these simulations may not
produce such explosions). The simulations attempt to sam-
ple the space of important parameters (progenitor star
angular momentum, differential angular momentum versus
radius, density versus radius, adiabatic index of the core,
etc.), resulting in collections of waveforms with widely
varying morphologies; but of course the actual distribu-
tions of such parameters are poorly known. In Ref. [16] the
authors employ updated progenitor models and nuclear
equation of state. For the studies described here, we
make use of 78 waveforms supplied in Ref. [14], 26 from
Ref. [15], and 72 from Ref. [16]. We emphasize that we are
studying these waveforms only as a guide for evaluating
our search algorithm; we do not rely on accurately model-
ling a realistic population of progenitor stars.

The binary black hole merger waveforms are taken from
the Lazarus project [17,18,43], which combines numerical
simulation of the vacuum Einstein equations for the most
significantly nonlinear part of the interaction with close-
limit perturbation theory for the late-time dynamics. The
authors in [17,18,43] generate waveforms from simula-
tions of equal mass binary black holes with no intrinsic
spin starting from near the innermost stable circular orbit
following a binary black hole inspiral. It should be kept in
mind that these waveforms include the ringdown phase of
the binary system and would naturally occur after an
inspiral waveform, which is searched for using matched
filtering techniques [2,8].

In all of these models, the simulations and calculations
predict gravitational wave bursts with time durations rang-
ing from a fraction of a millisecond to tens or hundreds of
milliseconds and with a significant fraction of their power
in LIGO’s most sensitive frequency band (100–1100 Hz).
This observation motivates the choice of parameters for the
sine-Gaussian and Gaussian waveforms used to optimize
and evaluate the efficiency for our search pipeline, as
discussed in Sec. VIII. After tuning our pipeline algorithms
062001
using these ad hoc waveforms, we evaluate the efficiency
for our search to detect the waveforms predicted from the
astrophysical simulations. The amplitudes of these wave-
forms are predicted by the simulations, so that in addition
to evaluating the efficiency as a function of hrss (at the
Earth), we can also present them as a function of distance
to the source (for a particular source inclination). We have
evaluated the efficiency versus actual distance, averaged
over source directions and polarizations, assuming an iso-
tropic distribution in source direction. This assumption
becomes invalid for supernova progenitors in the
Galactic disk, when the LIGO detectors become sensitive
to supernovae at distances greater than the disk thickness
(on the order of 150 pc). It is also invalid for extra-galactic
binary black hole mergers, since the distribution of nearby
galaxies is far from isotropic at the 1 Mpc scale. This
evaluation of the efficiency as a function of distance is
only to ‘‘set the scale’’ for the current and future astro-
physical searches.

For the case of core collapse supernovae we considered
the collections of waveforms from the three studies dis-
cussed above [14–16]. There are 176 such supernova
waveforms. They are generally broadband in frequency;
for 115 of them their central frequency is within the
sensitive band of this search (100–1100 Hz) and for them
we established strength and distance sensitivities. Sources
were uniformly distributed over the whole sky with random
polarization and fixed, optimal inclination. For detecting
these waveforms, hrss amplitudes of a few times
10�20 Hz�1=2 corresponding to source distances of the
order of 100 pc were required. Such close-by supernovae
are, of course, quite rare. In Fig. 13 we show the expected
hrss (at the detectors) and the central frequency for each of
the 176 supernova waveforms assuming they originate
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from a core collapse supernovae that is optimally oriented
and polarized and is located at 100 pc from the detectors.
Superimposed, we show the sensitivity of the LIGO instru-
ments during S2.

For the case of binary black hole mergers, we have
considered systems of black hole mass in the range of
10–90 M�. The characteristic frequency of the resulting
waveform is inversely proportional to the mass of the
system and thus five different masses of 10, 30, 50, 70
and 90 M� were chosen in order to span the nominal
frequency band of this search, i.e., the 100–1100 Hz
band. Moreover, the waveforms of these systems
[17,18,43] come with two polarizations and they thus
offered a check of the robustness of the waveform consis-
tency test, the r statistic, against complex morphologies.
The efficiency is calculated over the whole sky considering
the two polarization waveforms and a fixed-inclination
angle. The best performing mass system corresponds to
50 M�: the characteristic frequency of this system corre-
sponds to the best operating point of the LIGO instruments,
i.e., close to 250 Hz. On the contrary, the two worst
performing mass systems reflect frequencies at the two
ends of the LIGO instrument’s sensitivities relevant to
this search, i.e., 100 Hz and 1100 Hz. As with the super-
nova waveforms, the binary black hole simulations provide
us with order-of-magnitude estimates of the distance to
which our detectors were sensitive to such astrophysical
systems during the S2 run. For the Lazarus black hole
mergers our hrss amplitudes of a few times 10�20 Hz�1=2

correspond to distances of order 1 Mpc.
All four waveform families we have considered for our

simulations, either ad hoc or astrophysically motivated,
have frequency content that ranges over the entire band
of our search. Within each of these families, signal
strengths in order to reach fixed efficiency (e.g., 50%)
range over approximately an order-of-magnitude; this is
primarily a manifestation of the different frequency con-
tent of each waveform and the fact that the LIGO detec-
tors’ frequency response varies by an order-of-magnitude
or more over the 100–1100 Hz band, as shown in Fig. 1.
We are in the process of augmenting the waveform library
to be considered in future LIGO burst searches. This will
give us further opportunities to test the robustness of our
methods and the use of hrss as a measure of the signal
strength relevant to burst detection in LIGO.
X. SUMMARY AND DISCUSSION

We have presented a search for gravitational wave bursts
using the data the three LIGO detectors collected during
their second science run. Transients with sufficient energy
in LIGO’s most sensitive band during the S2 run, 100–
1100 Hz, were searched for. A search for gravitational
wave bursts with frequency content above the 1100 Hz
range is being pursued in coincidence with the TAMA [26]
detector and will be described in a separate publication
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[10]. Our analysis yielded a single candidate event which
was subsequently determined to be terrestrial in origin and
was vetoed retroactively. Incorporating this into a frequent-
ist statistical approach, we set an upper limit on the rate of
strong gravitational wave bursts of 0.26 events per day at
the 90% confidence level. This rate limit is a factor of 6
below our previously published value [3], due primarily to
the longer duration of the S2 run and to better data quality.

The efficiency of this search was measured using various
waveform morphologies. Besides the families of ad hoc
waveforms we introduced in our previous search, we also
measured the efficiency of our search to astrophysically
motivated waveforms resulting from numerical simula-
tions of the core collapse supernovae and binary black
hole mergers. For most of the waveforms considered, the
values of hrss at 50% efficiency lie in the 10�20 �

10�19 Hz�1=2 range. The sensitivity attained by this search
represents an improvement with respect to S1 by a factor of
17 or more for waveforms studied in both searches. This
difference is frequency-dependent and mainly reflects the
instruments’ noise floor improvement by a factor of �10.
The rest is attributed to improvements of the search algo-
rithm and the use of the waveform consistency test (r
statistic), allowing a lower effective threshold on signal
amplitude. The interpreted results of this search include the
rate versus strength exclusion curves on a per waveform
morphology basis. The improvements on the rate and
signal strength sensitivity are both reflected in significantly
more stringent regions now allowed in these rate versus
strength plots.

A. Comparison with previous searches

In our S1 paper, we made a comparison with results from
searches with broad-band interferometric detectors de-
scribed in [45,46]. The upper limit set by these detectors
is at the level of 0.94 events per day and with a signal
strength sensitivity of hrss � 5:9	 10�18 Hz�1=2, both of
which are now surpassed by our S2 search. In our S1 paper
we also compared with the results of the IGEC search for
gravitational wave bursts [47]. LIGO’s broadband response
allowed us to set better limits on bursts whose power was
mainly at frequencies away from the bars’ resonances. At
or near the bars’ resonant frequencies, however, the IGEC
search benefited from a much longer observing time and
somewhat better sensitivity at those frequencies, and thus
was able to set rate limits far below what we were able to
do in LIGO. With improved sensitivity in S2, it is interest-
ing to again compare LIGO’s performance at a frequency
near the bars’ resonance. In order to perform this compari-
son in our published S1 work [3] we chose the sine-
Gaussian simulations at 849 Hz frequency and with Q �
8:9. Although this waveform morphology has significant
signal power in the narrow frequency band (895–930 Hz)
of sensitivity for most of the IGEC detectors, it fails to
maintain an approximately flat Fourier spectrum over the
-22



FIG. 14. Rate versus hrss exclusion curves at the 95% confi-
dence level for optimally oriented Gaussians of � � 0:1 ms. The
solid curve displays the 95% confidence level measurement
obtained by LIGO with this search. The shaded area is the
IGEC exclusion region, adapted from Fig. 13 of [47]. If the
comparison were performed using Q � 8:9, 849 Hz sine-
Gaussians, the LIGO and IGEC curves would move to smaller
amplitudes by factors of 1.1 and �3, respectively.
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broader range (694–930 Hz) needed in order to encompass
all of them. For this reason, in order to perform the same
comparison in S2, we will use the Gaussian with � �
0:1 ms, which is the waveform with the flattest spectrum
in the 694–930 Hz range that we included in our S2
simulations.

The IGEC analysis [47] set an upper limit of�4	 10�3

events/day at the 95% confidence level on the rate of
gravitational wave bursts. The limit was derived assuming
optimal source direction and polarization and was also
given as a function of the burst Fourier amplitude in a
rate versus strength exclusion curve similar to LIGO’s. For
Gaussians with � � 0:1 ms in LIGO S2 data, the
WaveBurst ETG efficiency for sources with random linear
polarizations is 50% at a strength of 4:3	 10�20 Hz�1=2

(see Table IV). For the same sources all with optimal
polarizations, the 50% efficiency point improves by
roughly a factor of 3, to 1:6	 10�20 Hz�1=2. Thus the
optimally oriented rate versus strength curve looks similar
to Fig. 12, but shifted to the left. Substituting the 95%
confidence level (CL) event limit of 0.33 for the 90% CL
event limit of 0:26 shifts the curve up. Lastly, the IGEC
excluded region from Fig. 13 of [47] can be translated from
bars’ natural units (Hz�1) to units of hrss (Hz�1=2). Given
the Fourier transform h�f� for a Gaussian waveform h�t�,

h�t� � hrss

�
2

��2

�
1=4

exp��t2=�2� (10.1)

h�f� � hrss�2��
2�1=4 exp���2�2f2�; (10.2)

we convert the IGEC values of spectral amplitude h�f� into
hrss for a Gaussian of �=0.1 ms signal morphology (the
conversion is a function of the assumed frequency of the
IGEC result and may vary by a few percent over the 694–
930 Hz range.) The resulting comparison can be seen in
Fig. 14. We note that the rate measurements in the IGEC
curve are obtained by varying the actual threshold of the
analysis, i.e., they reflect counting background and fore-
ground events at each signal strength threshold. In the case
of LIGO, as described in Sec. IX, the rates as a function of
signal strength plotted in Fig. 14 are obtained via folding
the loss of efficiency to the upper limit obtained with a
fixed threshold.

With LIGO and S2 we are able to stretch the boundary of
the excluded region substantially to the left (i.e., to weaker
signals) in the rate versus strength curve of Fig. 13 in [47].
However, although S2’s increased observing time allows a
lower rate limit than could be set in S1, it is still the case
that the IGEC longer duration search allows substantially
better rate limits to be set, for signals strong enough for its
detectors to have seen them.

Furthermore, we are interested in a comparison with the
results reported from the analysis of the EXPLORER and
NAUTILUS 2001 data. In their 2002 paper [48] the Rome
group that analyzes the data of and operates these two
062001
resonant mass detectors reported a slight excess of events
seen in sidereal hours between 3 and 5. The events seen in
coincidence by the two detectors are of an average tem-
perature of approximately 120 mK which according to the
authors corresponds to an optimally oriented gravitational
wave burst Fourier amplitude of 2:7	 10�21 Hz�1 (equa-
tion 4 from Ref. [48]). The rate of such events is of order
200 events/year (or 0.55 events/day) [48,49]. Given the
amplitude of the observed events by the resonant mass
detectors, the corresponding hrss of the hypothetical events
in our LIGO instruments will generally depend on the
signal morphology. As with our aforementioned IGEC
analysis, we considered the case of a Gaussian with � �
0:1 ms, for which the Fourier amplitude of the observed
events at the detectors’ average resonance frequency im-
plies an hrss of 1:9	 10�19 Hz�1=2. Keeping in mind that
the suggested hrss values refer to optimal orientation, we
can see from Fig. 14 that for this event strength the LIGO
S2 search set an upper bound to their flux at roughly 0:4
events per day at the 95% CL. It should be noted, though,
that depending on the assumptions of signal waveform (for
example a single cycle of a 914 Hz sinusoid or a narrow-
band sine-Gaussian signal centered on the same frequency)
or considering the range of event strengths recorded by
EXPLORER and NAUTILUS (rather than their average
value only) the corresponding hrss at the LIGO detectors
may come nearer to the threshold of our sensitivity and
thus make our rate limits poorer. The signal strength and
rate of the 2001 Rome results come with enough uncer-
tainties that given the LIGO S2 sensitivity and exposure we
cannot make a definitive comparison. The significant im-
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provements in sensitivity and longer observation times that
we expect in new LIGO searches in the near future will
enable us to move in this direction.

B. Discussion and future directions

The search for gravitational wave bursts in LIGO’s S2
run has seen significant improvements introduced in the
search methodology and interpretation with respect to S1.
This included the introduction of the waveform consis-
tency cut and the use of astrophysically motivated wave-
forms as part of the search interpretation. Additional
improvements are currently under way. We expect them
to bring stronger suppression of the background via the use
of a burst amplitude consistency test between the LIGO
detectors as well as new ways of performing our event
analysis within the context of a distributional analysis of
their strength. Moreover, we plan to make use of data
taking periods corresponding to the double coincidence
of the instruments that are not part of the triple-coincidence
dataset. We will continue investigating the optimization of
search algorithms for specific types of waveforms and
adding stronger astrophysical context in our search by
invoking source population models or targeting plausible
point sources. Among the lessons learned in the S2 search
has been the importance of the follow-up investigations
dictated by coincident triggers revealed by the pipeline. As
expected, with the detector performance nearing design
sensitivity, potential couplings from the environment and
the instrument itself will become apparent and will need to
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be identified and vetoed out. Our ongoing veto investiga-
tions will become more prominent together with the need
to define rigorous criteria and procedures for following up
on such events. LIGO’s subsequent runs have already
collected data of comparable duration and improved sen-
sitivity with respect to S2 and they will present the next
milestone of the search for bursts where a good number of
these improvements will be exercised.
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