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Wafer Structure

JJ1 and JJ2 are fabricated on wafer W1
and wafer W2, respectively, which have nom-
inally identical structures aside from differ-
ences in the buffer layer and doping density.
Structures are grown via molecular beam epi-
taxy. On an InP substrate, a 50 nm thick
In0.52Al0.48As/In0.53Ga0.47As superlattice of ten
periods is grown followed by a 50 nm thick
In0.52Al0.48As layer. In both W1 and W2, an
InxAl1−xAs step graded buffer layer with 0.52 <
x < 0.81 where the composition is graded in
50 nm steps with ∆x = 0.02 is then grown at
350 - 360 ◦C. W2 employs a subsequent strain
relaxation layer, where the composition is in-
creased to x = 0.85 and decreased back to
x = 0.81 in four 50 nm steps. W1 does not have
this layer. On both W1 and W2 a 50 nm thick
In0.81Al0.19As virtual layer is then grown. The
structures are then modulation-doped with Si.
The Si cell temperatures are 1270 ◦C for W1,
and 1320 ◦C for W2 resulting in a slightly lower
measured 2D electron density for W1’s 2DEG.
The quantum well consists of a 4 nm bottom
barrier of In0.81Ga0.19As, a 4 nm InAs layer, and
a 10 nm top barrier for both W1 and W2. The
wafer is subsequently cooled to -20 ◦C for the
growth of smooth and thin Al films.

Carrier density in JJ1 and

JJ2

The carrier density n of W1 and W2’s 2DEG
is measured in a Van-der-Pauw geometry. For
W1 and W2, the density is shown to be n =
5.97 × 1011 cm−2 and n = 8.24 × 1011 cm−2,
respectively. JJ2 has an additional dielectric
Al2O3 layer deposited using atomic layer depo-
sition which is not present for JJ1. The pres-
ence of the Al2O3 layer is expected to further
increase n1 for JJ2. The higher intrinsic n in
W2 and the additional increase in n due to
the Al2O3 layer indicates that JJ2 is expected
to have significantly stronger SOC effects com-
pared to JJ1.

Additional Measurements

Device characterization
In Fig. S1 and Fig. S2, we present some ad-

ditional DC measurements on JJ1 and JJ2. For
JJ1, the VI characteristic in Fig. S1a shows
agreement between the forward and backward
sweeps at T = 30mK indicating the absence
of hysteresis. All the measurements presented
on JJ1 are performed at T = 30mK. On the
other hand, as seen in Fig. S2, JJ2 exhibits hys-
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Figure S1: Sample characterization of JJ1.
a Measured voltage drop as a function of cur-
rent bias in the forward (negative to positive
bias) and backward (positive to negative bias)
directions at T = 30mK. b Differential resis-
tance as a function of current bias and out-of-
plane magnetic field B⊥. The inset illustrates
the direction of the field with respect to the
junction.
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Figure S2: Sample characterization of JJ2.
VI characteristic in the forward and backward
directions at a T = 30mK where the junction is
hysteretic and b at T = 800mK where there is
no hysteresis observed. c Differential resistance
as a function of current bias and out-of-plane
magnetic field B⊥. The inset illustrates the di-
rection of the field with respect to the junction.
d Differential resistance as a function of current
bias and applied gate voltage Vg. For JJ2, the
measurements presented in c and d as well as all
the measurements presented in the manuscript
are performed at T = 800mK to avoid the ef-
fects of hysteresis.

teresis at T = 30mK but not at T = 800mK.
Thus, for JJ2, all the measurements presented
are performed at T = 800mK to avoid hystere-
sis effects.
As a function of out-of-plane magnetic field,

the critical current exhibits a conventional
Fraunhofer-like pattern as seen in the differ-
ential resistance map in Fig. S1b and Fig. S2c.
Due to flux-focusing caused by the Meissner
effect and London penetration,2,3 the effective
area of the junction as calculated from the pe-
riodicity of the pattern is expected to be larger
than the nominal geometry.

In-plane field dependence

Figure S3: Angle anisotropy of critical
field for JJ1. Differential resistance as a func-
tion of current bias and in-plane magnetic field
Bθ at different values of θ. The critical field Bθ

c ,
field at which supercurrent disappears, is seen
to decrease as the angle is swept from θ = 0◦ to
θ = 90◦.

Figure S4: Angle anisotropy of critical
field for JJ2. Differential resistance as a func-
tion of current bias and in-plane magnetic field
Bθ at different values of θ.

The in-plane field data presented in Fig. S3
and Fig. S4 show an angle anisotropy in the
critical field Bθ

c . This behavior has been re-
ported in other epitaxial Al-InAs Josephson
junctions and discussed in Ref.2 A possible ex-
planation is the induction of a flux dipole in
the junction due to the bending of field lines
around the contact edges.2 This adds an addi-
tional out-of-plane field component close to the
superconducting contacts affecting an electron
flowing in the in-plane direction. This effect
arises only when there is a component of the

2



in-plane field along the current, thus restricting
the critical field in the θ ̸= 0 direction and most
significantly at θ = 90 as evident from the data
presented.

Microwave measurements
Fig. S5 and Fig. S6 show a complete set of

the Shapiro measurements for JJ1 for different
in-plane field values and angles. In Fig. S7, we
show how Q12 evolves as a function of frequency
at zero and finite field. The data shows an de-
crease in f4π at B0◦ = 200mT while the ratio
f4π/fJ doubles.
Fig. S8 through Fig. S13 show a complete

data set of Shapiro measurements for JJ2 at
f = 3.5GHz for different in-plane field values
and angles at three different gate voltage val-
ues. A similar data set for f = 2GHz is shown
in Fig. S14 and Fig. S15.

Effect of microwave frequency range lim-
itations
To observe missing Shapiro steps in the pres-

ence of I4π, a microwave frequency below f4π
is required. For both devices, we perform mea-
surements at the lowest frequency possible to
maximize the effects of I4π. The RF signal is
applied through an antenna in the puck that is
close to the sample. Due to this coupling, the
effective power radiated on the device changes
from frequency to frequency. For the measure-
ments, we choose frequencies where the entire
Shapiro map is visible in our accessible power
range. The lower limit of this accessible fre-
quency range is primarily set by the weak cou-
pling of the microwave antenna to the device at
low frequencies.
The data presented in Fig. 2 of the

manuscript shows a decrease in f4π with the
application of an in-plane magnetic field con-
sistent with a suppression of I4π. In Fig. S8,
we present Shapiro maps at f = 3.4GHz for
JJ2 at Vg = 0V where the first step is seen
to fully reemerge around B0◦ ∼ 175 - 200mT.
Measurements performed at f = 2GHz shown
in Fig. S14 also show the full reemergence of
the first step around B0◦ ∼ 175- 200mT. A
similar agreement between f = 3.4GHz and
f = 2GHz is also seen for the θ = 90◦ case in

Fig. S9 and Fig. S15. This data shows that our
study is not limited by the accessible frequency
range of our setup. In the manuscript, we fo-
cus mainly on the f = 3.4GHz data because
it is difficult to extract accurate information
from the f = 2GHz data due to the size of the
Shairo steps and low coupling.

Extracting Q12 from the experimental
Data
To quantify how strong the first Shapiro step

is, we calculate a ratio between the first and sec-
ond Shapiro steps similar to the analysis done
in Ref.4 The strength of a Shapiro step can
be quantified by binning (in fractions of hf

2e
)

the voltage distribution of the V-I curve and
creating a histogram of bin counts as a func-
tion of power. Horizontal linecuts through the
colormap of the voltage distribution (i.e., Fig.
1d and 1e in the manuscript) present the am-
plitude of the Shapiro steps in terms of bin
counts. A high bin count corresponds to a well-
defined Shapiro step, while a low count corre-
sponds to a suppressed or missing step. As the
power is increased, Shapiro steps start to be-
come more visible while the amplitude of the
supercurrent (n = 0) decreases and eventually
vanishes. At higher power, an oscillatory pat-
tern corresponding to Bessel functions emerges.
The power range considered for this analysis is
always the low power regime which is the power
range below the vanishing of the supercurrent.
A ratio Qn,n+1 = sn

sn+1
, where sn is the max

step size (bin count) of step n with n ∈ Z can
be calculated. A ratio of first to second step,
Q12 < 1, corresponds to a suppression of the
first step while the reemergence of the first step
with Q12 ≳ 1. At low frequencies, the Shapiro
steps are not, well-defined and the Shapiro steps
can have sn that is not significantly greater than
the “background”. Thus, even when the first
step is missing, Q12 doesn’t reach a value close
to 0 at low in-plane fields.
For a specific range of B0◦ , Fig. S5 and

Fig. S8 show a slight asymmetry around the
current bias axis in terms of the position of
the Shapiro steps. This asymmetry is not seen
in the B90◦ case shown Fig. S6 and Fig. S9.
The current bias as a function of B0◦ plots pre-
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JJ1: f = 3.5GHz

Figure S5: Shapiro maps for f = 3.5GHz at different values of B0◦ for JJ1. The first Shapiro
step is seen to be missing at = 0mT. The first step starts to reappear around B0◦ ∼ 275mT and
gradually becomes more visible, completely reemerging (first step becoming equal to or larger in
size than second step) around B0◦

co = B0◦ = 400mT. Beyond B0◦ = 400mT, all integer steps are
visible.
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JJ1: f = 3.5GHz

Figure S6: Shapiro maps for f = 3.5GHz at
different values of B90◦ for JJ1. The first
Shapiro step is missing at low B90◦ and gradu-
ally reappears starting around B90◦ = 150mT
with complete reappearance occurring around
B90◦

co = B90◦ = 200mT.

sented in Fig. S3a and Fig. S4a also exhibits
slight asymmetries around the current bias be-
tween B0◦ ∼ 50mT and B0◦ ∼ 200mT which
could contribute to the asymmetry seen in the
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Figure S8: Shapiro maps for f = 3.4GHz at different values of B0◦ for JJ2 at Vg = 0V.
The first Shapiro step is seen to be missing at 0mT. The first step starts to reappear around
B0◦ ∼ 100mT and gradually becomes more visible, eventually completely reemerging with B90◦

co ∼
175-200mT. Beyond B0◦ = 200mT, all integer steps are visible in the Shapiro maps.

Figure S9: Shapiro maps for f = 3.4GHz at different values of B90◦ for JJ2 at Vg = 0V.
B90◦

co is seen to be 150mT.
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Figure S10: Shapiro maps for f = 3.4GHz at different values of B0◦ for JJ2 at Vg = −5V.
B0◦

co is seen to be ∼ 150mT.
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Figure S11: Shapiro maps for f = 3.4GHz at different values of B90◦ for JJ2 at Vg = −5V.
B90◦

co is seen to be ∼ 125mT.
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Figure S12: Shapiro maps for f = 3.4GHz at different values of B0◦ for JJ2 at Vg = +10V.
B0◦

co is seen to be ∼ 225mT.
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Figure S13: Shapiro maps for f = 3.4GHz at different values of B90◦ for JJ2 at Vg = +10V.
B0◦

co is seen to be ∼ 200mT.
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Figure S14: Shapiro maps for f = 2GHz at different values of B0◦ for JJ2 at Vg = 0V. B0◦
co

is seen to be 175-200mT.
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Figure S15: Shapiro maps for f = 2GHz at different values of B90◦ for JJ2 at Vg = 0V.
B90◦

co is seen to be ∼ 150mT.

Shapiro maps. We note that even in the pres-
ence of this asymmetry, the calculated values of
Q12 from the positive and negative sides of the
current bias are quantitatively similar.
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Theoretical Analysis

In this section, we qualitatively examine the
Andreev bound states (ABSs) spectrum of a
wide Josephson junction with an applied fi-
nite magnetic field. We discuss the primary
features that allow for a robust (topologically
trivial) 4π-periodic supercurrent to arise and
describe the mechanisms by which a magnetic
field can suppress the 4π-periodic supercurrent,
causing the reappearance of odd Shapiro steps.

Tight Binding Model

To characterize the ABS spectrum, we use
an effective tight-binding model that we im-
plement using the Kwant package .5 Con-
sider a square lattice in the x-y plane with
dimensions (2Lsc + 2Ln + 1) × (2w + 1) and
lattice constant a. Let Ωn, ΩsL, and ΩsR

be the set of lattice sites in the normal, left
superconducting, and right superconducting
regions, respectively; let Ω be the set of
all lattice sites in the system. The tight-
binding version of the Hamiltonian we use is

Htb = H0 +Hsoc +HZ +Hsc (1)

H0 =
∑
i∈Ω

ψ†
i (4t− µ) τzσ0ψi +

∑
⟨ij⟩∈Ω

ψ†
i (−t)τzσ0ψj + h.c. (2)

Hsoc =
iℓsoc,n
2

∑
⟨ij⟩∈Ωn

ψ†
i

(
δyi,yjτzσy − δxi,xj

τ0σx
)
ψj

+
iℓsoc,sc

2

∑
α=L,R

∑
⟨ij⟩∈Ωsα

ψ†
i

(
δyi,yjτzσy − δxi,xj

τ0σx
)
ψj + h.c. (3)

HZ =
∑
i∈Ωn

ψ†
i

∆Z,n

2
(sin(θ)τzσx + cos(θ)τ0σy)ψi +

∑
α=L,R

∑
i∈Ωsα

ψ†
i

∆Z,sc

2
(sin(θ)τzσx + cos(θ)τ0σy)ψi

(4)

Hsc = −∆eiϕ/2
∑
i∈ΩsL

ψ†
i τyσyψi −∆e−iϕ/2

∑
i∈ΩsR

ψ†
i τyσyψi (5)

where ψi =
(
ci,↑, ci,↓, c

†
i,↑, c

†
i,↓

)T

, c†i,s (ci,s) is

the creation (annihilation) operator for an elec-
tron at site i with coordinate (xi, yi) and spin s,
τi and σi are Pauli matrices in particle-hole and
spin space, respectively. Here, µ is the chemi-
cal potential, t = ℏ2/(2m∗a2), with m∗ as the
effective mass, is the hopping parameter (as-
sumed to be uniform throughout the system),
ℓsoc,n is the strength of SOC coupling in the
normal region, ℓsoc,sc is the strength of SOC
coupling in the superconducting region, ∆Z,n

(∆Z,sc) are the Zeeman splitting in the normal
region (superconducting region), ∆ is the su-
perconducting gap, and ϕ is the phase across
the junction. For all the results presented in

the main text and the following, we assume
ℓsoc,sc = ∆Z,sc = 0. We have verified that quali-
tatively the results do not change if we set ℓsoc,sc
and ∆Z,sc equal to a finite value less or equal to
the ones used for the normal region. The pa-
rameters used in the calculations are given in
Table 1.

Long junction modes and detachment gap
Consider a Josephson junction in the x-y

plane where the weak link is in the region
−Lx/2 < x < Lx/2 and −w/2 < y < w/2,
and the current in the junction flows in the x-
direction. Let the superconducting coherence
length associated with a subband of index ny

9



Table 1: Parameters used in simulations.

∆ t a ℓsoc,n Ln Lsc w n

300 µeV 59 meV 4 nm 7.5 meV·nm 100 nm 1 µm 500 nm 4× 1011cm−2

be ξny = ℏv(ny)
F /π∆ where,6

v
(ny)
F =

2at

ℏ

(
µ

t
− π2 a

2

w2
n2
y

)1/2

. (6)

We see that for some ny modes v
(ny)
F can be suffi-

ciently small so that Lx > ξny . We refer to these
modes as “long junction” modes.6 The ABSs
corresponding to these modes are “detached”
from the continuum of states associated with
the superconducting leads of the junction. We
denote this detachment gap from the contin-
uum by δ. The number of long junction modes
and their detachments gaps is generally sensi-
tive to the details of the system, e.g. doping n
and width w.
When the junction has high transparency, the

gap at ϕ = π is sufficiently small to allow
Landau-Zener transitions when the system is
diabatically driven.6–8 At the same time, the
relatively large value of δ strongly suppresses
Landau-Zener transition to the continuum. The
presence of ABSs with a large detachment gap
and a small gap at ϕ = π leads to the pres-
ence of a 4π-periodic supercurrent, I4π, when
the JJ is biased. This results in a topologi-
cally trivial junction to have both 2π- and 4π-
periodic supercurrent channels when driven dia-
batically.9,10 We expect that the suppression by
the magnetic field of the 4π-periodic supercur-
rent due to the long junction (non-topological)
modes is responsible for the reappearance of the
odds Shapiro steps for Bθ > Bco.

Effect of magnetic field
The presence of a magnetic field suppresses

the superconducting gap ∆ and spin-splits the
ABSs’ energy level. Both of these effects con-
tribute to a reduction of the detachment gap
δ of the long junction modes responsible for
the 4π behavior. When δ → 0 Andreev mid-
gap states which undergo a Landau-Zener tran-
sition from a ground to an excited state at
ϕ(mod2π) = π will be lost to the continuum

at ϕ(mod2π) = 0 before completing a 4π-
periodic cycle, restoring the supercurrent to a
2π-periodicity.11

So far, we have focused our attention on the
effect of the magnetic field on the detachment
gap. The experimental results, however, show
that the reappearance of the odd-Shapiro steps
cannot be explained simply by tracking the evo-
lution of δ with Bθ. To illustrate this point
more clearly, for I4π we can assume:

I4π(B
θ) = Ic(B

θ)Pπ(B
θ)
(
1− P2π(B

θ)
)
, (7)

where Ic is the critical current of the junction,
and Pϕ is the effective probability of a Landau-
Zener transition at phase ϕ. For isolated ABS
states, we can write

Pϕ(B
θ) = exp

(
−πΓ(B

θ, ϕ)

2e|Vϕ|

)
, (8)

where Γ is the energy gap at ϕ between the
ABSs involved in the Landau-Zener transition,
and |Vϕ| is the instantaneous voltage across the
junction when the phase is equal to ϕ. For ϕ =
π, Γ = 2∆(Bθ)(1 − τ),12 where τ is the junc-
tion’s transparency. For ϕ = 2π, Γ ≈ δ(Bθ).
The dependence of I4π on Bθ arises from the de-
pendence of Ic and the energy gaps Γ at ϕ = π
and ϕ = 2π. Using Eqs. (7), (8) we can write:

I4π(B
θ)

Ic(Bθ)
=

[
exp

(
−π2∆(Bθ)(1− τ)

2e|Vπ|

)]
[
1− exp

(
−π δ(B

θ)

2e|V2π|

)]
. (9)

From the experimental estimates of Bco, we can

conclude that in general the ratio I4π(Bθ)
Ic(Bθ)

can

grow with Bθ. On the other hand, theoret-
ically we have that δ is linearly suppressed
with Bθ, and that, in first approximation
∆(Bθ) = ∆(Bθ = 0)[1 − Bθ/Bc]

1/2. These

scalings imply that the ratio I4π(Bθ)
Ic(Bθ)

should al-

ways decrease with Bθ, a result at odds with

10



the experimental observations.

Multi-level Landau-Zener transitions
This simple analysis shows that the naive

treatment based on the assumptions of well-
isolated long junction modes is not adequate.
This is not surprising if we consider that for
the JJs studied, due to their large width, the
ABSs are not well separated, see Fig S16,
and that upon applying a Zeeman field, a
high-transparency long junction mode will shift
in energy and cross many other mid-gap An-
dreev bound states, as shown in Fig S17. For
ABSs spectra like the ones shown in Fig S17,
we have a complex multi-level Landau-Zener
(MLZ) problem. With many coupled energy
levels evolving over some time interval, the
MLZ problem quickly becomes computationally
prohibitive.

0.6 0.8 1.0 1.2 1.4
 ( )

0.2

0.0

0.2

E 
(

)

Figure S16: Andreev bound state spec-
trum without Zeeman splitting. JJ An-
dreev bound state spectrum with parameters
defined in Table 1 and Zeeman splitting ∆Z,n =
0.

Spectra like the ones shown in Fig. S16, S17
do not show a clear trend for the dependence
on Bθ of the gaps Γ(ϕ = π): the gaps at ϕ = π
between occupied and unoccupied ABSs appear
always to be small for high-transparency, wide,
JJs like the ones studied. This suggests that
the dependence on Bθ of the effective Pπ might
be attributed to the evolution of the overlaps
between the Andreev bound states involved in
Landau-Zener processes. To qualitatively eval-
uate the multi-mode coupling in the junction,

0.6 0.8 1.0 1.2 1.4
 ( )

0.2

0.0

0.2

E 
(

)

Figure S17: Andreev bound state spec-
trum with Zeeman splitting. JJ Andreev
bound state spectrum with parameters defined
in Table 1 and Zeeman splitting ∆Z,n = 0.3∆
in the 0◦ direction.

we calculate the overlap:

Omn = |⟨ψm (ϕf ) |ψn (ϕi)⟩|2 (10)

for 0 < ϕi < π and π < ϕf < 2π and where
|ψn⟩ is the Andreev bound state with eigenen-
ergy En. To determine whether long junction
modes couple to short junction modes, we pick
En corresponding to an occupied long junction
mode and calculate Omn for all 0 < Em < ∆.
The collection of overlaps form a distribution of
values between 0 and 1. In the absence of a Zee-
man field, the occupied long junction mode has
a large overlap with only one unoccupied mode
with large δ, and a very small overlap with all
the other modes. A bi-modal distribution of
overlaps like this will have a large kurtosis. A
large kurtosis indicates that occupied long junc-
tion modes have a high probability of transi-
tioning, for ϕ ≈ π, to unoccupied long junc-
tion modes and so contribute to I4π. A small
kurtosis indicates that occupied long junction
modes are equally likely to transition to most
of the low-energy, unoccupied modes present at
ϕ ≈ π, and therefore have a large likelihood of
tunneling to one of the several ”short junction”
modes, modes with small δ, and not contribute
to I4π.
We find that the kurtosis in part, depends

on the values of ϕi and ϕf chosen. Despite
such dependence, the kurtosis can be used to
obtain qualitatively how an in-plane magnetic
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field affects I4π and, therefore, the reappear-
ance of odd-Shapiro steps. For instance, the
dependence of the kurtosis on the direction θ
of the magnetic field appears to explain qual-
itatively the dependence on θ of Bco/Bc mea-
sured in JJ2. To understand such dependence,
we can consider the continuum model Hamil-
tonian, h(kx, ky), for the normal region of the
JJ:

h(kx, ky) =
ℏ2k2

2m
− EF + λsoc (−kxσy + kyσx)

+
∆

(x)
Z

2
σx +

∆
(y)
Z

2
σy. (11)

For wide junctions, long junction modes have
Fermi momenta mostly along the y-direction.
Taking k⃗long junction ≈ (0, ky), we see that for
the long junction modes the SOC polarizes the
spins in the x-direction making the energy of
these modes sensitive to the direction of the
Zeeman splitting ∆Z . Thus, in general, for
wide junctions with strong SOC, the Andreev
bound state spectrum will be affected differ-
ently by an in-plane magnetic field in the x- and
y-direction. By calculating the ABS spectrum
for different directions, and the corresponding
eigenstates, we are able to obtain the depen-
dence of the kurtosis on θ.
Fig. S18 shows the values obtained for the

kurtosis for different values of ϕf (keeping fixed
ϕi) for a junction with large SOC. The blue lines
show the results for the case when Bθ = 0. In
this case, the kurtosis is very high, suggesting
that the long junction modes undergo Landau-
Zener transitions that contribute to I4π. The
orange and green lines show the results ob-
tained when Bθ ̸= 0 such that the Zeeman en-
ergy is ∆Z = 0.3∆ and θ = 90◦, orange lines,
θ = 0◦, green lines. We see that Bθ ̸= 0 sup-
presses the kurtosis indicating an increase of
the mixing of long junction modes and short-
junction modes, resulting in a suppression of
I4π. In agreement with the experiment, specif-
ically the data shown in Fig. 4, the results
of Fig. S18 show that the kurtosis is larger
when θ = 90◦ than θ = 0◦, suggesting that,
when the anisotropic suppression of Ic with B
is taken into account, an in-plane field along the

θ = 0◦ direction causes a larger suppression of
I4π, than an in-plane field along the θ = 90◦,
the direction of the current.

Figure S18: Kurtosis versus ϕf for ϕi =
0.6π. Kurtosis of the wavefunction overlap dis-
tribution as a function of final state ϕf , where
thick faded lines show the calculated kurto-
sis and dashed curves are third-order polyno-
mial fits. Blue lines: ∆Z = 0. Orange lines:
∆Z = 0.3∆, θ = 90◦. Green lines: ∆Z = 0.3∆,
θ = 0◦.
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Brüne, C.; Gould, C.; Oiwa, A.;
Ishibashi, K.; Tarucha, S.; Buhmann, H.;
Molenkamp, L. W. 4π-periodic Joseph-
son supercurrent in HgTe-based topolog-
ical Josephson junctions. Nature Commu-
nications 2016, 7, 10303.

(5) Groth, C. W.; Wimmer, M.;
Akhmerov, A. R.; Waintal, X. Kwant: A
software package for quantum transport.
New Journal of Physics 2014,

(6) Dartiailh, M. C.; Cuozzo, J. J.;
Elfeky, B. H.; Mayer, W.; Yuan, J.; Wick-
ramasinghe, K. S.; Rossi, E.; Shabani, J.
Missing Shapiro steps in topologically
trivial Josephson junction on InAs quan-
tum well. Nature Communications 2021,
12, 78.

(7) Billangeon, P.-M.; Pierre, F.; Bouch-
iat, H.; Deblock, R. ac Josephson Ef-
fect and Resonant Cooper Pair Tunneling

Emission of a Single Cooper Pair Tran-
sistor. Physical Review Letters 2007, 98,
216802.

(8) Domı́nguez, F.; Hassler, F.; Platero, G.
Dynamical detection of Majorana
fermions in current-biased nanowires.
Physical Review B 2012, 86, 140503.

(9) Domı́nguez, F.; Kashuba, O.; Boc-
quillon, E.; Wiedenmann, J.; Dea-
con, R. S.; Klapwijk, T. M.; Platero, G.;
Molenkamp, L. W.; Trauzettel, B.; Han-
kiewicz, E. M. Josephson junction dynam-
ics in the presence of 2π - and 4π -periodic
supercurrents. Physical Review B 2017,
95, 195430.

(10) Picó-Cortés, J.; Domı́nguez, F.;
Platero, G. Signatures of a 4π -periodic
supercurrent in the voltage response of
capacitively shunted topological Joseph-
son junctions. Physical Review B 2017,
96, 125438.

(11) San-Jose, P.; Prada, E.; Aguado, R.
ac Josephson Effect in Finite-Length
Nanowire Junctions with Majorana
Modes. Physical Review Letters 2012,
108, 257001.

(12) Averin, D.; Bardas, A. ac Josephson ef-
fect in a single quantum channel. Physical
Review Letters 1995,

13


