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a b s t r a c t

Wereview thephysics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb
impurities affects both the nature of the ground state density profile and graphene’s transport properties.
We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile
of graphene in the presence of many randomly distributed impurities. Finally, we discuss graphene’s
transport properties due to scattering off charged impurities both at low and high carrier density.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene is a two-dimensional (2D) sheet of carbon whose
atoms arrange in a honeycomb latticewith nearest neighbor atoms
forming strong sp2 bonds. The electronic properties of thismaterial
are mostly determined by the pz orbitals with each carbon atom
contributing one electron to a Bloch band whose low-energy
properties are adequately described by a Dirac–Weyl effective
Hamiltonian. While the study of Dirac Fermions has emerged
in several contexts in theoretical condensed matter physics, its
experimental realization about three years ago, in the form of
gated graphene devices [1–3], where the carrier density can be
tuned continuously from electron-like carriers for positive bias to
hole-like carriers for negative gate voltage, has prompted a prolific
theoretical and experimental effort to understand the properties of
this novel material.
Most of the excitement surrounding graphene stems from one

of the following peculiar properties: (i) electrons and holes in
graphene have a gapless linear dispersion relation in contrast
to the parabolic dispersion of other more conventional electron
gases; (ii) the carriers in graphene are chiral — a property that
has striking consequences such as the ‘‘half-integer’’ quantumHall
Effect [2,3]; and (iii) carriers in graphene live at an exposed almost
perfect 2D surface that is amenable to surface probes [4–8] and
surface manipulation [9,10]. In addition, we note that there is the
potential of mass producing graphene through epitaxial growth
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methods [11], and that graphene has remarkable mechanical
properties [12,13] which only further enhance the interest.
In this perspective, we look at one important aspect of graphene

which is the influence of disorder on its ground state and
transport properties. We demonstrate that for graphene, charged
(i.e. Coulomb) impurities behave qualitatively different from
neutral impurities [14–16] and dominate graphene’s transport
properties at low carrier density. The importance of the Coulomb
nature of graphene impuritieswas highlighted byAndo [17],where
by calculating the intraband contribution to the polarizability and
absorbing the interband (i.e. electron–hole) contribution into a
redefinition of the dielectric constant [18] he showed that charged
impurities could explain the conductivity being linear in density,
as was seen in experiments [1,19]. Similar conclusions were
obtained by Nomura and MacDonald [20] using a ‘‘complete
screening’’ model (i.e. rs → ∞, see definition below), Cheianov
and Fal’ko using a numerical Thomas–Fermi approximation [21]
and in Ref. [22] using the full Random Phase Approximation
(RPA). Analytic expressions for the RPA polarizability function
calculated first in Ref. [23] and then in Refs. [24–26] revealed
that for momentum transferred on the Fermi circle (i.e. q =
|k − k′| = 2kF sin θ/2 ≤ 2kF) the graphene dielectric function
calculated using the RPA was identical to the much simpler
Thomas–Fermi approximation at T = 0 (see Fig. 1). This then
made it possible to calculate the RPA Boltzmann conductivity
analytically [27], and the dependence of graphene’s conductivity
on the fine-structure constant rs ≡ e2/(h̄vFκ)was recently verified
experimentally [10]. The importance of Coulomb scattering in
explaining the observed graphene transport properties soon
prompted an interest in investigating the properties of a single
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Fig. 1. The main panel shows different dielectric functions used in the literature,
including the ‘‘Complete Screening’’ (CS), ‘‘Thomas–Fermi’’ (TF) and ‘‘RandomPhase
Approximation’’ (RPA). The inset is a blow-up at q = 2kF to show where the ‘‘Step
Approximation’’ (SA) used in Ref. [27] differs from the exact result.

charged impurity embedded in graphene. Katsnelson [28] studied
this problem using a Fermi–Thomas approximation, followed by
studies in Refs. [29–35] which were mostly interested in effects
beyond the RPA such as determining the critical impurity charge
for which the Coulomb impurity forms bound states and the
screening properties of graphene in the supercritical regime.
It was understood by Refs. [22,36] that as one approached

the Dirac point, one would soon encounter a situation where
the gate voltage induced carrier density would be smaller than
the fluctuation of carrier density induced by the charged im-
purities thereby breaking the graphene landscape into puddles
of electrons and holes. Solving numerically for the conductiv-
ity using a finite-sized Kubo formalism for a limited range of
impurity concentrations, Ref. [36] concluded that the Coulomb
disorder model gave a universal minimum conductivity whose
value did not depend on the charged impurity concentration,
but that was larger than that expected for clean Dirac Fermions
[28,37–40], while Ref. [22] argued that this would give rise to a
non-universal minimum conductivity whose value depended on
the concentration of charged impurities. Ref. [27] developed a
mean-field approach to understand the properties of graphene
at the Dirac point by calculating an effective carrier density self-
consistently. This theory made quantitative predictions about the
dependence of the minimum conductivity and rms carrier den-
sity on the charged impurity concentration and substrate di-
electric constant, and in particular argued that cleaner graphene
samples would have larger minimum conductivity. Ref. [41] then
studied the ground state properties of graphene by minimiz-
ing an energy functional comprising kinetic energy, Hartree, ex-
change [25,42,43] and correlation [25,43,44] contributions in the
presence of Coulomb disorder. This work made quantitative pre-
dictions about properties of the carrier density distribution, both at
and away from the Dirac point, and enabled Ref. [45] to develop an
effective medium theory to calculate the graphene’s conductivity
through these inhomogeneous puddles, capturing quantitatively
the minimum conductivity plateau that is seen in experiments
[1,19,46]. We mention that underlying the existence of this min-
imum conductivity plateau is the high transmission of graphene
p–n junctions, which has been the subject of theoretical [47,48]
and experimental [49–51] studies. For the purposes of this paper
we do not discuss quantum interference effects (see Ref. [52] and
references therein) or the strongly interacting regime (see Ref. [53]
and references therein).
The remainder of this paper is structured as follows. In

Section 2 we discuss the problem of the screening of a single
Coulomb impurity in the sub-critical regime as a useful toy model
to understand the many-impurity problem that we address in
Section 3, where we study the case of many Coulomb impurities
that are uncorrelated and distributed uniformly in order to study
the ground state properties of graphene. In Section 4.1, we review
the high-density Boltzmann transport theory, and discuss the
Effective Medium Theory (EMT) in Section 4.2. In Sections 5–7
we briefly review the experimental situation, discuss graphene’s
minimum conductivity, and recent theoretical work not covered
in this review. We then conclude in Section 8.

2. Screening of a single Coulomb impurity

Following Ref. [28], one can construct the Thomas–Fermi
screening of a single charged impurity. The goal is to calculate the
screened Coulomb potential Vs(r) = V0(r) + Vind(r), where the
bare potential V0 = h̄vFrs[r2 + d2]−1/2 and the induced potential
is given by

Vind(r) = (h̄vFrs)
∫
dr′
n(r ′)− n̄
|r− r′|

, (1)

where we can imagine tuning the back gate to ensure charge
neutrality n̄ = 0. If one further assumes that the local carrier
density is given by the Fermi–Thomas condition, n[V (r)] =
−V (r)2/[π(h̄vF)2], one can write down a (one-dimensional) self-
consistency equation for Ṽs = Vs/h̄vFrs:

Ṽs(r) =
1

√
r2 + d2

−
4r2s
π

∫
dr ′

r ′

r + r ′
K
[
4rr ′

(r + r ′)2

]
Ṽ 2s (r

′), (2)

where K [x] is the complete elliptic integral of the first kind.
The screened potential induced for this single impurity using
this method was discussed in Ref. [28]. This formalism can be
generalized using the method developed in Ref. [41] to include
the effects of exchange. The ground state carrier density can be
obtained from the Thomas–Fermi–Dirac (TFD) energy functional

E[n] = h̄vF

[
2
√
π

3

∫
d2rsgn(n)|n|3/2

+
rs
2

∫
d2r

∫
d2r ′
n(r)n(r′)
|r− r′|

+
Exc[n]
h̄vF

+ rs

∫
d2rVD(r)n(r)−

λ

h̄vF

∫
d2rn(r)

]
(3)

where the first term in Eq. (3) is the kinetic energy, the second
term is the Hartree part of the Coulomb interaction, the third
term is the exchange-correlation energy and the fourth term is
the energy due to disorder, where VD is the disorder potential
and the last term is added to set the average carrier density,
〈n〉, through the chemical potential λ. The correlation term is
much smaller than the exchange and, to very good approximation
[25,43,44], is proportional to the exchange. Therefore, hereafter,
we neglect the correlation contribution by assuming δExc/δn =
Σ(n), whereΣ(n) is the Hartree–Fock self-energy [25,43,42]. The
energy functional equation (3) is quite general and can be tailored
by properly choosing VD and its coupling to n(r), to consider
different sources of disorder. For the single-impurity problem, the
solution can also be cast as a one-dimensional integral equation:

Vs(r)
h̄vF
=

rs
√
r2 + d2

+ 4rs

∫
dr ′

r ′

r + r ′
K
[
4rr ′

(r + r ′)2

]
n(r ′)

= −sgn(n)
√
π |n(r)|

[
1+

1
4
ln
(

4Λ
√
π |n(r)|

)
+ rs

(
2C + 1
2π

+
1
8

)]
, (4)

whereΛ = 1/(0.25 nm) is the band energy cutoff and C ≈ 0.916.
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3. Ground state properties at the Dirac point

The single-impurity problem discussed in the previous section
is a much simpler problem because rotational symmetry makes
the problem one dimensional. Adding many impurities also brings
further complications:while the carrier density induced by a single
impurity is negligible, this is not the case for many impurities,
where although the average density can be tuned to zero via an
external gate potential, the scale of the density fluctuations is set
by the impurity concentration [22]. As shown in Fig. 1, the RPA
screening properties of graphene are very different at the Dirac
point (i.e. kF → 0) and at finite density; therefore, theoretical
frameworks constructed to work at the Dirac point are bound to
fail when there are such large density fluctuations. In this section,
we present two different approaches to describe the Dirac point.
The first is a mean-field theory where an effective density n∗
is obtained by solving self-consistently for the density induced
by the fluctuations of the screened impurity potential (that itself
depends on the density). The second is a generalization of the
energy functional method discussed above for a single impurity to
the much more complicated case of many Coulomb impurities.

3.1. Self-consistent approximation (SCA)

For any microscopic single-impurity potential φ(r, n), the
probability distribution, P(V ), of the total potential, V , is P(V ) =
〈δ(V −

∑Nimp
i=1 φ(ri, n))〉ri , where 〈· · ·〉ri is the average over all

possible disorder configurations. Assuming that the impurities’
positions are uncorrelated, one can compute expressions for all
moments of the induced disorder potential [54,55]. For example,
the connected moment 〈V k〉c = nimp

∫
d2r[φ(r, n)]k. The

self-consistent approximation involves obtaining the effective
carrier density n∗ by equating the second moment of the
disorder potential with the square of the corresponding Fermi
energy 〈V 2〉c = (EF[n∗])2 = π(h̄vF)2n∗. This self-consistent
approximation then allows us to compute any correlation function
at the Dirac point, although closed form analytic results are often
elusive. To make analytical progress, one can map

〈V (r)V (0)〉 = nimp

∫
dq[φ(q, n∗)]2eiq·r (5a)

≈
nimp(h̄vF)2K0[rs, d

√
n∗]

2π(ξ [rs, d
√
n∗])2

exp
[
−nimpr2

2(ξ [rs, d
√
n∗])2

]
, (5b)

where analytic expressions for K0 and ξ were reported in Ref. [56].
A numerical evaluation of Eq. (5a) and the Gaussian approximation
Eq. (5b) is shown in Fig. 2. Within the Gaussian approximation one
finds that nrms =

√
〈V 4〉/[π(h̄vF)2] ≈ n∗

√
3+ [nimpπξ 2]−1 ≈√

3n∗, where in the last equation we further assume that
nimpπξ 2 ∼ r−4s � 1. This result for nrms is particularly usefulwhen
comparing the self-consistent approximation with other methods.

3.2. Energy Functional Minimization (EFM)

To study graphene’s transport properties for a distribution of
charged impurities, we use Eq. (3), taking VD to be the potential
generated by a random 2D distribution C(r) of impurity charges
placed at a distance d from the graphene layer of size L ×
L. We assume C(r) to be on average zero and uncorrelated,
and perform our calculations on a 200 nm × 200 nm square
sample with a 1 nm spatial discretization. Close to the Dirac
point, for a single-disorder realization, we find that the carrier
density breaks up into electron–hole puddles. Since we are
interested in disorder averaged quantities, we examine several
Fig. 2. Spatial correlation function for the screened potential at the Dirac point for
rs = 0.8 and d = 1 nm. Red diamonds are the results obtained by minimizing
graphene’s energy functional (Section 3.2). The lines are the SCA results using
Eq. (5a), blue lines, and its Gaussian approximation, Eq. (5b). All the results are
normalized via the value of 〈V (0)V (0)〉 for nimp = 1012 cm−2 .

disorder realizations (500–1000) and denote disordered averaged
quantities by angled brackets. To characterize the density profile,
we calculate the disorder averaged density–density correlation
function 〈δn(r)δn(0)〉, from which we can extract the root mean
square nrms =

√
〈δn(0)δn(0)〉, and the typical correlation length,

ξ , defined in this section as the full width at half maximum
(FWHM) of 〈δn(r)δn(0)〉. We find [41], for typical graphene
samples, that nrms ≈ 〈n〉 for dopings as high as 1012 cm−2
and that close to the Dirac point, for nimp . 1010 cm−2, nrms
including exchange is three times smaller than without. We find
the correlation length ξ to be of the order of 10 nm; see Fig. 3.
This value suggests that the electron–hole puddles are quite small.
However, a closer inspection reveals that, close to the Dirac
point, the density profile is characterized by two distinct types
of inhomogeneities [45]: wide regions (i.e. big puddles spanning
the system size) of low density containing a number of electrons
(holes) of order nrmsL2; and few narrow regions, whose size is
correctly estimated by ξ , of high density containing a number of
carriers of order 2. This picture is confirmed by the results shown
in Fig. 4, in which the disorder averaged area fraction, A0, over
which |n(r) − 〈n〉| < nrms/10 is plotted as a function of nimp. We
see that A0 is of order 1/3, and we also find that the area fraction
over which |n(r) − 〈n〉| is less than 1/5 of nrms is close to 50% for
nimp . 1011 cm−2. The combination of the relatively high density
in the peaks/dips and the fact that in the low-density regions n(r)
varies over scales much bigger than 10 nm guarantees that the
inequality

√
πn[|∇n|/n]−1 � 1 is satisfied over the majority of

the graphene sample and therefore justifies the use of the EFM
theory. EFM should be a reasonable quantitative theory for existing
graphene samples at all values of the carrier density.

3.3. Comparison of SCA and EFM

Here we compare the results from the Self-Consistent Approx-
imation (SCA) of Section 3.1 and the Energy Functional Minimiza-
tion (EFM) formalism discussed in Section 3.2. Fig. 2 shows the
disordered averaged spatial correlation function at the Dirac point
for the screened disorder potential V = VD+(1/2)

∫
d2r ′n(r′)/|r−

r′|, where the (red) diamonds are obtained by minimizing Eq. (3).
The solid (blue) line shows the same quantity calculated using
the self-consistent approximation (SCA). The EFM approach and
the SCA give a similar behavior for 〈V (r)V (0)〉, characterized by
an algebraic, ∝ 1/r3, decay at large distances. The green solid
line shows a Gaussian approximation which captures much of the
quantitative details of the screened disorder potential correlation
function, but not the power-law 1/r3 decay.
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Fig. 3. Density correlation length ξ at theDirac point as function of nimp for rs = 0.8
and two different values of d. Results with (without) exchange are shown by solid
(dashed) lines.

Fig. 4. Area fraction, A0 , over which is |n(r)− 〈n〉| < nrms/10 as a function of nimp
at the Dirac point for rs = 0.8. Results with (without) exchange are shown by solid
(dashed) lines.

Fig. 5. Results for nrms as a function of nimp at the Dirac point for rs = 0.8. The red
dashed lines are the results obtained minimizing graphene’s energy functional and
the solid lines are the SCA results.

In Figs. 5–7, nrms at the Dirac point is shown as function of
nimp, rs and d, respectively. The red dashed lines show the results
obtained using the EFM theory including exchange, and the solid
blue lines are the results obtained using the SCA theory. In general
the SCA gives values of nrms smaller than the EFM theory but in
general there is good semi-quantitative agreement, especially at
low rs and nimp.
Fig. 6. Results for nrms as a function of rs at the Dirac point for two values of nimp
and d = 1 nm. The red dashed lines are the results obtainedminimizing graphene’s
energy functional and the solid lines are the SCA results.

Fig. 7. Results for nrms as a function of d at the Dirac point for nimp = 1012 cm−2
and rs = 0.8. The red dashed lines are the results obtained minimizing graphene’s
energy functional and the solid lines are the SCA results.

4. Graphene conductivity

4.1. High density: Boltzmann transport theory

In this section we investigate the graphene transport for large
carrier densities (n � ni), where the system is homogeneous. We
show in detail the microscopic transport properties at high carrier
density using the Boltzmann transport theory [57]. We calculate
the conductivity σ (or mobility µ = σ/ne) in the presence of
randomly distributed Coulomb impurity charges near the surface
with the electron–impurity interaction being screened by the 2D
electron gas in the random phase approximation (RPA). Even
though the screened Coulomb scattering is the most important
scattering mechanism in our calculation, there are additional
scattering mechanisms (i.e. neutral point defects) unrelated to
the charged impurity scattering for very high mobility samples.
Point defects gives rise to a constant conductivity in contrast to
charged impurity scattering which produces a conductivity linear
in n/ni. Our formalism can include both effects, where zero range
scatterers are treated with an effective point defect density of
np. For the purpose of this calculation, we neglect all phonon
scattering effects, whichwere considered recentlywith the finding
that acoustic phonon scattering gives rise to a resistivity that is
linear in temperature [58].
We start by assuming graphene to be a homogeneous 2D carrier

system of electrons (or holes) with a carrier density n induced
by the external gate voltage. The low-energy band Hamiltonian
for homogeneous graphene is well approximated by a 2D Dirac
equation for massless particles,

H = h̄vF (σxkx + σyky), (6)
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where vF is the 2D Fermi velocity, σx and σy are Pauli spinors and
k is themomentum relative to the Dirac points. The corresponding
eigenstates are given by the plane waveψsk(r) = 1

√
A
exp(ik ·r)Fsk,

where A is the area of the system, s = ±1 indicate the conduction
(+1) and valence (−1) bands, respectively, and F Ďsk =

1
√
2
(eiθk , s)

with θk = tan(ky/kx) being the polar angle of the momentum
h̄k. The corresponding energy of graphene for the 2D wave vector
k is given by εsk = sh̄vF |k|, and the density of states (DOS) is
given by D(ε) = g|ε|/(2π h̄2 v2F ), where g = gsgv is the total
degeneracy (gs = 2, gv = 2 being the spin and valley degeneracies,
respectively).
When the external force is weak and the displacement of the

distribution function from the thermal equilibrium value is small,
we can use a linearized Boltzmann equation within the relaxation
time approximation. In this case the conductivity for graphene can
be written as

σ =
e2v2F
2

∫
dεkD(εk)τ (εk)

(
−
∂ f (εk)
∂εk

)
. (7)

Note that f (εk) is the Fermi distribution function, f (εk) =
{1+ exp[(εk−λ)]/kBT }−1, where the finite temperature chemical
potential λ(T ) is determined self-consistently to conserve the total
number of electrons. At T = 0, f (ε) is a step function at the Fermi
energy EF ≡ λ (T = 0), and we then recover the Einstein relation

σ =
e2v2F
2 D(EF )τ (EF ). In Eq. (7), τ(εsk) is the relaxation time or the

transport scattering time of the collision, and it is given by

1
τ(εsk)

=
2π
h̄

∑
a

n(a)i

∫
d2k′

(2π)2
|〈V (a)sk,sk′〉|

2

×[1− cos θkk′ ]δ (εsk − εsk′) , (8)

where θkk′ is the scattering angle between the scattering in- and
out-wave vectors k and k′, 〈V (a)sk,s′k′〉 is the matrix element of
the scattering potential associated with impurity disorder in the
graphene environment, and n(a)i is the number of impurities per
unit area of the ath kind of impurity. Note that, since we consider
elastic impurity scattering, interband processes (s 6= s′) are not
permitted.
The matrix element of the scattering potential of randomly

distributed screened impurity charge centers in graphene is given
by

|〈V (a)sk,sk′〉|
2
=

∣∣∣∣Vi(q, d)ε(q)

∣∣∣∣2 1+ cos θ2
(9)

where q = |k− k′|, θ ≡ θkk′ , and Vi(q, d) = 2πe2 exp(−qd)/(κq)
is the Fourier transform of the 2D Coulomb potential in an effective
background lattice dielectric constant κ , where d is the location
of the charged impurity measured from the graphene sheet. The
factor (1 + cos θ)/2 arises from the sublattice symmetry (overlap
of wave function) [17].
In Eq. (9), ε(q) ≡ ε(q, T ) is the 2D finite temperature static

RPA dielectric (screening) function appropriate for graphene, given
by ε(q, T ) = 1 + vc(q)[1 − G(q)]Π(q, T ), where Π(q, T )
is the graphene irreducible finite-temperature polarizability
function [58], vc(q) is the Coulomb interaction, and G(q) is the
local field correction. In the RPA, G(q) = 0 and in the Hubbard

approximation (HA), G(q) = 1/(gsgv)× (q/
√
q2 + k2F ) [59].

In Fig. 8we show the calculated graphene conductivities limited
by screened charged impurities. The RPA screening used in our
calculation is the main approximation. We also show results
for the HA screening [59], which includes local field corrections
approximately. We note that since the graphene is a weakly
interacting system (rs < 1) the correlation effects are not strong.
Fig. 8. Calculated graphene conductivity as a function of carrier density (n/ni ,
where ni is the impurity density) limited by Coulomb scattering. RPA (HA) indicates
the result with the RPA (HA) screened Coulomb scattering, and ‘‘no screening’’
indicates the results with bare Coulomb scattering. Note that the calculated
conductivity with unscreened Coulomb potential is less than 4e2/h for the given
density range. In the inset the effect of remote scatters is shown. Here d is the
distance between the 2D graphene layer and the 2D impurity layer.

We emphasize that in order to get quantitative agreement with
experiments, the screening effects must be included. Using the
unscreened dielectric function would result in conductivity less
than 4e2/h for the entire range of gate voltages used in the
experiment. Our main result with screened Coulomb impurities is
the quantitative agreement with experiments in the regimewhere
the conductivity is linear in density. In the inset we show the effect
of remote scatterers which are located at a distance d from the
interface. Themain effect of remote impurity scatterings is that the
conductivity deviates from the linear behavior with density and
increases with both the distance d and n/ni.
For very high mobility samples, one finds a sub-linear

conductivity instead of the linear behavior with density. Such
high-quality samples presumably have a small charge impurity
concentration ni, and it is therefore likely that point defects here
play a more dominant role. Point defects gives rise to a constant
conductivity in contrast to charged impurity scattering which
produces a conductivity that is linear in n/ni. In the presence
of both the long-ranged charged impurity and the short-ranged
neutral impurity, the total scattering time becomes 1/τt =
1/τi + 1/τ0, where τi (τ0) is the scattering time due to charged
Coulomb (short-ranged) impurities. Shown in Fig. 9 is the graphene
conductivity calculated including both charge impurity and zero
range point defect scattering for different ratios of the point
scatterer impurity density np and the charge impurity density ni.
For small np/ni we find the linear conductivity that is seen in
most experiments, and for large np/ni we see the flattening out
of the conductivity curve (which in the literature [3] has been
referred to as the sub-linear conductivity). We believe this high-
density flattening of the graphene conductivity is a non-universal
crossover behavior arising from the competition between two
kinds of scatterers. In general this crossover occurs when two
scattering potentials are equivalent, that is, niV 2i ≈ npV

2
0 .

In the inset of Fig. 9 we show our calculated mobility in the
presence of both charged impurities and short-ranged impurities.
As the scattering limited by the short-ranged impurity dominates
over that by the long-ranged impurity (e.g. npV 20 � niV 2i ) the
mobility is no longer dependent on the charged impurity and
approaches its limiting value,

µ =
e
4h̄
(h̄vF )2

n
1
npV 20

. (10)
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Fig. 9. Graphene conductivity calculated using a combination of short- and long-
range scatterers. In this calculation, we use np/ni = 0, 0.01, 0.02 (top to bottom). In
the inset we show the graphene mobility as a function of dielectric constant (κ) of
the substrate for different carrier densities n = 0.1, 1, 5 × 1012 cm−2 (from top to
bottom) in the presence of both long-ranged charged impurity (ni = 2×1011 cm−2)
and short-ranged neutral impurity (np = 0.4× 1010 cm−2). V0 = 1 keV Å

2 is used
in this calculation, which corresponds to the Coulomb potential of electron density
n = 1012 cm−2 .

The limiting mobility depends only on the neutral impurity
concentration np and carrier density.
Finally, in Fig. 10 we show the calculated temperature

dependent conductivity for different temperatures as a function
of density. We note that there are two independent sources
of temperature dependent resistivity in our calculation. One
comes from the energy averaging defined in Eq. (7), and the
other is the explicit temperature dependence of the dielectric
function ε(q, T )which produces a temperature dependent τ(ε, T ).
Fig. 10 shows that in the high-density limit the conductivity
decreases as the temperature increases, but in the low-density
limit the conductivity shows non-monotonic behavior, i.e. σ(T )
has a local minimum at a finite temperature and increases as
the temperature increases. Thus, we find that the calculated
conductivity shows a non-monotonicity in the low-density limit,
i.e., at low temperatures the conductivity shows metallic behavior
and at high temperatures it shows insulating behavior. The non-
monotonicity of the temperature dependent σ(T ) is understood
to arise from temperature dependent screening [60]. We mention
that for T & 100 K, phonons contribute to the temperature
dependence of graphene conductivity [58,61].

4.2. Low density: Effective medium theory

At low density the fluctuations in carrier density become larger
than the average density. To understand the transport properties
of this inhomogeneous system, Ref. [45] developed an effective
medium theory where graphene’s conductivity is found by solving
an integral equation:∫
dn
σ [n] − σEMT
σ [n] + σEMT

P[n] = 0 (11)

where P[n] is the density distribution function and σ [n] is the
(local) Boltzmann conductivity discussed in Section 4.1. For the
purpose of this section, we take σB[n] = (2e2/G[rs]h)n/nimp,
where G[rs] was derived in Ref. [27] and is shown in Fig. 11. The
quantitatively accurate theory using P[n] derived from the EFM of
Section 3.2 was developed in Ref. [45]. Here we derive analytical
results obtained by using model distribution functions for P[n],
which as discussed in Ref. [45] show quantitative agreement with
Fig. 10. Calculated conductivity for different temperatures T = 0, 200, 300, 500 K
(top to bottom) as a function of densitywith an impurity densityni = 5×1011 cm−2 .

Fig. 11. The main panel shows G[rs] that parameterizes the inverse scattering
time in the Boltzmann theory. The analytic form of G[rs] can be found in Ref. [27].
The dashed line shows the experimentally relevant regime for graphene on SiO2
substrates. The inset shows the samplemobility as a function of substrate dielectric
constant κs for nimp = 2 × 1011 cm−2 . Changing κs by a factor of 2 increases the
mobility by 50%.

the numerical theory only for small rs and low nimp. To illustrate
this method, we first consider P[n] to be a Gaussian distribution.
Requiring that

∫
n2P[n] = n2rms fixes all the free parameters.

Solving Eq. (11) then gives z exp−z
2
(πErfi[z] − Ei[z2]) =

√
π/2,

where Erfi is the imaginary error function, Ei is the exponential
integral function and z = σEMT/(

√
2σB[nrms]) ≈ 0.405, giving

σEMT ≈ 0.9925 σSCA, where we use the results of Section 3.1
that σSCA = σB[n∗] and nrms ≈

√
3n∗. The development of

an effective medium theory for graphene [45] now allows us to
reinterpret the results of Ref. [27] as equivalent to the assumption
that P[n] is Gaussian with density fluctuations determined by the
self-consistency condition E2F = 〈V

2
D〉.

We can explore other functional forms for P[n]. For a Lorentzian
P[n] = (nL/π)/(n2L+n

2), one can solve Eq. (11) analytically, giving
σEMT = σB[nL]. If one identifies thewidth of the Lorentzianwith the
self-consistent carrier density nL = n∗, then this provides another
way to understand the self-consistent transport result. Subsequent
to the results of Ref. [45], Fogler developed an effective medium
theory using P[n] = (1/

√
2 nrms) exp[−

√
2|n|/nrms], where,

similar to the Gaussian distribution case, requiring normalization
and setting 〈n2〉 = n2rms fixes all the free parameters. Solving
Eq. (11) gives zez0[z] = 1/2, where 0 is the Gamma function and
z =

√
2σEMT/σB[nrms] ≈ 0.610. Again, approximating nrms ≈√

3n∗, we find σEMT ≈ 0.75 σSCA, which is different from the
numerical results obtained in Ref. [62]. While these analytical
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approximations are useful in providing a qualitative understanding
of graphene transport, quantitative differences remain between
these and the full numerical solution [45], especially at large
impurity concentrations and large rs (see e.g. Fig. 6).

4.3. Suspended graphene

One of the direct consequences of charged impurity scattering
in graphene is the prediction [22] that the elimination of charged
impurities from the graphene environment, for example, by
suspending graphene, without any substrate would lead to amuch
enhanced carrier mobility. Recently, Bolotin et al. [63,64] managed
to remove charged impurities from the graphene environment by
suspending graphene without any substrate (and simply current-
annealing away any remnant impurities on the graphene surface).
This immediately led to an order of magnitude increase (to µ ∼
105 cm2/V s) in the graphene mobility as predicted theoretically.
Recent theoretical work [65] shows excellent agreement with the
transport measurements on suspended graphene [63,64,66], with
both the reduced impurity density and themodified screening (due
to the elimination of the substrate) contributing to the graphene
conductivity. Since phonon scattering effects in graphene areweak
up to room temperature [58], the enhanced graphene mobility
arising from the elimination of charged impurities may lead to
very high (>105 cm2/V s) graphene mobilities even at room
temperature.

5. Discussion of experiments

One of the very first puzzles in graphene transport ex-
periments [1] was that the conductivity was linear in carrier
density, whereas existing theory [39] predicted constant conduc-
tivity at high density. As discussed in Section 1, the linear in den-
sity relationship emerges naturally from the Boltzmann transport
theory of charged impurities [17,20–22,27], and to our knowl-
edge, no other theory produces this linear behavior without a
fine-tuning of parameters to make the scattering mimic Coulomb
impurities. Moreover, three recent experiments have rigorously
verified the high-density predictions of the Boltzmann transport
theory. In Ref. [19], the sample mobility was correlated with the
shift of the Dirac point and plateau width showing qualitative
and semi-quantitative agreement with the theory presented here.
Ref. [46] were able to directly measure the effect of Coulomb scat-
terers by intentionally adding potassium ions to graphene in ultra-
high vacuum, observing qualitatively all the predictions of the
(self-consistent) Boltzmann theory. Finally, Ref. [10] was able to
tune graphene’s fine structure constant by depositing ice on top of
graphene, and thereby precisely testing predictions of the Boltz-
mann theory. Results from this experiment are shown in Fig. 12.
Since the dielectric constant of the SiO2 substrate and that of ice
are known, there are no adjustable parameters in the theoretical
curve.

6. The minimum conductivity puzzle

As described above in Section 4.2, our recent theoretical
work [27,45] provides a satisfactory explanation for the minimum
conductivity phenomenon in graphene near the charge neutrality
(i.e. Dirac) point. In particular, early theoretical work [28,37–40]
predicted a universal T = 0minimumconductivityσmin = 4e2/πh
at the graphene Dirac point in clean disorder-free systems. The
inclusion of a disorder induced quantum anti-localization effect,
assuming no intervalley scattering, leads to a theoretical infinite
minimum conductivity at the Dirac point, whereas the presence
of inter-valley scattering localizes the system leading to zero
conductivity at the Dirac point. This confusing theoretical picture
Fig. 12. Data taken from Ref. [10] show the effect of dielectric screening on
graphene. The data points show the difference in graphene conductivity before
and after depositing ice, while the solid line shows the theory with no adjustable
parameters. The non-monotonic behavior is a consequence of the competing
effects of dielectric screening on Coulomb and short-range scatterers, whereas the
quantitative agreement is a stringent test of the Boltzmann theory. The inset, also
taken from Ref. [10], shows the raw experimental data.

stands in stark contrast to the experimental reality, where the
graphene conductivity is approximately a constant (as a function
of gate voltage or carrier density) around the Dirac point, with this
constant minimum conductivity plateau having a non-universal
sample dependent value (∼ 4e2/h− 20e2/h).
It was first suggested in Ref. [22] that the minimum conductiv-

ity phenomenon is closely related to the break-up of the graphene
landscape into inhomogeneous puddles of electrons and holes
around the Dirac point due to the effect of the charged impu-
rities in the environment. This physical idea was further devel-
oped into a quantitatively successful theory (see Section 4.2) in
Refs. [27,45], where it was shown that a self-consistent treatment
of the impurity induced electron–hole puddles coupled with the
Boltzmann transport theory provides an excellent description of
the non-universal behavior of the minimum conductivity around
the Dirac point. In particular, the sample dependence of the min-
imum conductivity arises from the different impurity disorder in
different samples.
Quantum effective field theories of graphene’s minimum

conductivity, which predict a universal minimum conductivity,
are inapplicable to real graphene samples because real graphene
is dominated by disorder induced inhomogeneity near the Dirac
point, which is outside the scope of the quantum field theories.
Although the self-consistent effective medium theory developed
by us [27,45] gives reasonable agreement with the experimental
observations, the key conceptual question of what happens at
T = 0 as disorder also goes to zero still remains open.
Such a scenario is of course experimentally irrelevant (since
experiments are performed at finite temperatures in disordered
systems), but the theoretical question of the conductivity crossover
from the inhomogeneous Boltzmann regime of Refs. [27,45] to
the homogeneous quantum transport regime is an interesting
open question. Recent attempts to understand such crossover
phenomena include several complementary theoretical avenues
(see Refs. [52,53,67] and references therein).

7. Recent work

Among recent relevant work not discussed in this review we
mention a detailed calculation of the temperature dependent
graphene conductivity due to electron–phonon scattering [58], a
detailed calculation of the temperature dependent graphene con-
ductivity due to the temperature dependence of the screening of
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charged impurity scattering [60], a calculation of graphene den-
sity of states as modified by impurity scattering [68], a consid-
eration of percolation induced localization transition in graphene
nanoribbons [56], a theory of charged impurity screening in
graphene bilayers [69], and a prediction of graphene magnetore-
sistance induced by a parallel magnetic field through the spin-
polarization dependence of screening [70].

8. Conclusion

We have developed here a theory for Coulomb impurities
on graphene. As we have shown, Coulomb impurities behave
qualitatively different from short-range scatterers such as point
defects or missing atoms. Away from the Dirac point, the physics
is well described by a semi-classical Boltzmann transport theory,
while at the Dirac point density fluctuations dominate, breaking
the system into puddles of electrons and holes. We have shown
how these inhomogeneities can be characterized by a mean-field
self-consistent theory and by numerically minimizing graphene’s
energy functional, and that an effective medium theory can be
employed to describe the low-density transport properties giving
semi-quantitative agreement with experimental results.
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