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We study the “‘hybrid” heterostructure formed by one sheet of single-layer graphene (SLG) and one
sheet of bilayer graphene (BLG) separated by a thin film of dielectric material. In general, it is expected
that interlayer interactions can drive the system to a spontaneously broken-symmetry state characterized
by interlayer phase coherence. The peculiarity of the SLG-BLG heterostructure is that the electrons in
the two layers have different chiralities. We find that this difference causes the spontaneously broken-
symmetry state to be N-fold degenerate. Moreover, we find that some of the degenerate states are chiral
superfluid states, topologically distinct from the usual layer ferromagnetism. The chiral nature of the
ground state opens the possibility to realize protected midgap states. The N-fold degeneracy of the ground
state makes the physics of SLG-BLG hybrid systems analogous to the physics of *He, in particular given
the recent discovery of chiral superfluid states in this system.
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Graphene [1] and bilayer graphene [2] are ideal two-
dimensional electronic systems [3,4] in which the conduc-
tion and valence bands touch at single points, charge
neutrality points, at the corners of the Brillouin zone
(BZ). Around these points, the low-energy electronic states
are well described as massless Dirac fermions with Berry
phase 7 in single layer graphene (SLG) and as massive
chiral fermions with Berry phase 27 in bilayer graphene
(BLG). Recently, the use of hexagonal boron nitride (BN)
films [5] has allowed the realization of graphene hetero-
structures [6,7] in which the graphene layers are only few
nanometers apart and still electrically isolated [8-12]. In
this situation, interlayer interactions can drive the system
into an interlayer phase coherent ground state [13-16].
This state can be thought of as an exciton condensate
[17,18] of electrons in one layer and holes in the other
layer, as a superfluid state [19], or by treating the layer
degree of freedom as a spin degree of freedom (pseudo-
spin) as a ferromagnetic state. Experimental evidence
suggests that the interlayer phase coherent state has been
realized in quantum Hall bilayers [20-26] and very
recently [12] in symmetric double-layer graphene systems.
The experimental capability to realize high-quality
graphene-BN heterostructures has made it possible to
study the effects of interactions between fermionic quasi-
particles having qualitatively different dispersion and
chirality. This can be realized by creating heterostructures
in which one layer is SLG and the other is BLG.

In this Letter, we study the nature of the interlayer
broken-symmetry state for SLG-BN-BLG systems. We
find that the difference in the dispersion and chirality
between the two layers profoundly modifies the nature of
the ground state. In particular, we find that due to the
difference of chirality (i) the interlayer broken-symmetry
state is N-fold degenerate (N =2 or 4 depending on
the nature, long-range or short-range, of the interlayer
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interaction) and (ii) one of the degenerate states is always
chiral, i.e., characterized by a complex order parameter
whose phase depends on the momentum direction. The
N-fold degeneracy of the ground state raises the possibility
that in SLG-BLG systems a state could be realized analo-
gous to states realized in *He [27,28]. Moreover, the chiral
nature of one of the ground states makes possible the
realization of protected midgap states in the presence of
vortices in the exciton condensate [29-31].

The heterostructure that we study is shown schemati-
cally in Fig. 1. The two layers are connected to separate
gates (V5, —Vg) so that their doping can be controlled
independently and can be adjusted to have the p-type
Fermi surface (FS) in one layer nested with the n-type
FS in the other, a condition that favors the instability
toward the formation of the exciton condensate. Let
V, = Vg + Vgs be the bias voltage for which the FSs in
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FIG. 1 (color online). (a) SLG and BLG are gated individually
at voltages V3 and —VE, V, = Vi + VE. At low energies and
low voltages, the most relevant bands are the BLG conduction
band and the SLG valence band. (b) By inversion of the voltages
(— V5 and V5), the most relevant bands become the SLG
conduction band and the BLG valence band.
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BLG and SLG are nested. At low energies, the band
structure of SLG is well described by two inequivalent
valleys (at the K and K’ points in the BZ) around which
the fermionic dispersion is linear. In BLG, the low-energy
conduction and valence bands also touch at the points K
K', but around these points the dispersion is nearly para-
bolic with an effective mass m = 0.03m, [3,4]. For this
experimental setup, the effective low-energy band struc-
ture is formed by the conduction band of BLG and the
valence band of SLG [or vice versa as shown in Fig. 1(b)].

The low-energy physics of the SLG-BLG system is
described by the Hamiltonian H = H , + H ;,, where,
in the limit of vanishing interlayer tunneling, the noninter-
acting Hamiltonian H , = Zk)osk,(,cltygck,g with o =1,
2 representing the layer degree of freedom treated as a
pseudospin. c]t,u_ (ck,,) 1s the creation (annihilation) op-
erator for a fermion with momentum k in layer o.
Assuming, for concreteness, that the gate voltages are
such that the Fermi energy lies in the conduction band
for BLG (o = 1) and in the valence band for SLG (o = 2),
we have gy, = —VE + [Pvik? + (vi/2) — [(y}/4) +
n*v2k*y21Y21Y2 and ey, = V5 — hupk to which corre-
spond the eigenstates ¢y = (1/+/2)(1, e™%)7 and
Yo = ﬁ(l, —e/M%)T " respectively, where m = 2 for
BLG and n = 1 for SLG are the integers that specify the
chirality of the two layers and = +1(—1) for states
around the K (K') point. Below we consider the states
around the K point only as the K’ point follows similar
analysis; vy =~ 10° m/s is the Fermi velocity of SLG
close to the Dirac point, y; = 400 meV, and 6, =
arctan(k,/k,). The form of H , that we use is valid as
long as V3| < 140 meV and 3 meV =< [VE]| < 200 meV
[4,32]. For the interacting part of J{, we have

1
Hiw =72 2 ValolOirq = 0o (Or—q = b0)

o kk',q

t t
X Ck+q,(TCk’—q,0'Ck/,o'ck,U'
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where A denotes the area of the heterostructure, V:f Vo)
refers to the interlayer (intralayer) interaction, and f(6) —
0,) = %[1 + 200 £,(0, — 0,) = %[1 + ¢l0x=0)]
are factors that arise from the wave function overlap
between states ¥y o, ¥p o

To decouple the interactions, we use the Hartree-Fock
approximation and obtain the mean-field Hamiltonian

HMF = Z cltyU'(A?(T?ro" - Ak ’ 7-0'0'/)Ck,a"’ (2)

k,o,0’

where [A° A = (A*, AY, A?)] are the mean fields and
[7%, 7 = (7%, 7, 77)] are the 2 X 2 identity and Pauli ma-
trices acting in the layer pseudospin space. Because of the
asymmetry of the band dispersion between the two layers,
the field A) does not vanish, unlike that in symmetric
double-layer systems. The transverse components of the
pseudospin field A, form a complex order parameter
A} = A} —iA}, whose magnitude |Ajf| measures the
strength of the particle-hole condensate. The mean fields
are given by the following self-consistent equations:

AR = (e + &x1)/2
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L

AL = %%vg_pmekp)[é—i(np -] ®
where g = 4 is the total spin and valley degeneracy and € is
the dielectric constant of the embedding media. The
[(27e?®)/€]gd term is specific to the interlayer Coulomb
interaction in the direct channel; n, = 1/[exp(e, /ksT) +
1] are the occupation numbers at temperature T of the
renormalized bands with band energies ef = Al *+ E),
where Ey = [(Af()z + |A|%|2]1/2 and Fl(akfp)’ F2(6k7p)a
F d(ﬂk_p) (with 6 _, = 6 — 6,,) are angle-dependent chi-
ral factors. Specifically, the intralayer chiral factors have the
expressions  F (60 _p) =4(cos26y_, +cosfy_, +2) and
Fy(0x—p) = i(COSZQk,p — cosfy _p) for SLG-BLG, whereas
the interlayer chiral factor can be written in a general form as

Fd(ﬁk,p) — %(e*inﬁk,p + Y + ei(m*n)ﬁk,p + eimﬂk,p)' (6)

In the SLG-SLG structure, m = n = 1, and in the hybrid
SLG-BLG structure m # nwithm = 2 and n = 1.

To understand the consequence of the difference in the
chiral factor F¥(f_,) on the gap equation between the
symmetric SLG-SLG heterostructure and the asymmetric
SLG-BLG, let us write the general solution of the gap
equation (5) as A} = |Al],e’%*i® with the chirality
J=0,%1,%2,... and an arbitrary global phase ¢.
Without loss of generality, we assume A, Af, and the
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magnitude IAIJ(-l to be angle independent (it is straightfor-
ward to verify that this assumption is consistent with the
self-consistent mean-field equations). The gap equation (5)
becomes

1 .
8¢l = 5 SV F O pe
P

x ['Aj'f oy )] )

P
In the case of short-range interactions, Vl‘f = const, from
Eq. (7) we have that in symmetric systems, such as SLG-
SLG, in which m = n, for J = 0, because of the form of
the chiral factor, the effective interaction is twice stronger
than that for J # 0 and therefore the nonchiral J = 0 state
has a critical temperature higher than that of chiral J # 0
states. On the contrary, for asymmetric systems in which
m # n, such as SLG-BLG, the chiral factor (6) ensures that
the effective interaction is the same for all the four states
J = —n,0, m — n, m. As a consequence, for heterostruc-
tures such as SLG-BLG in which m # n, in the presence of
short-range interactions, the J = —n, 0, m — n, m states
satisfy the same gap equation and, therefore, at the mean-
field level, the interlayer phase coherent ground state is
fourfold degenerate.

In many cases of interest, we expect that the interactions
are not short range but still “central,” i.e., depending only on
the magnitude |k — p|. In this case, the parts on the right
hand side of Eq. (7) that are odd in 6y, vanish after
integrating over the angle and the gap equation takes the form

1 d |A1J)-|J - +
1Akl _ﬁzvk*p E, (np —nyp)
P

X %[cos((n + )0 —p) +cos(JOx_p)
+cos((m —n—J)0x_p) + cos((m — J)fx_p)]. (8)

Equation (8) shows that for symmetric heterostructures, i.e.,
m = n, in the case of central interactions the J = 0 state
again has the highest effective pairing strength and therefore
the highest critical temperature [13]. On the other hand, for
asymmetric heterostructures in which m = 2n the states
J=0and J =n (J = 0and J = —n for the other valley)
have the same and the strongest pairing strength and there-
fore the ground state is twofold degenerate. Similarly, we find
that the free energy is the same for each of the degenerate
states.

For the SLG-BLG heterostructure, in the presence
of Coulomb interactions, Vii_ = [(27e?)/€][ (e~ k—pld)/

|k —pl]; we therefore find that the ground state is twofold
degenerate: around the K (K') point, the nonchiral J = 0
interlayer phase coherent state (layer-ferromagnetic state)
is degenerate with the chiral J =1 (J = —1) state; see
Fig. 2. By inversion of the gate voltage V,, the values of J
at the K and K’ points are interchanged. We find that the

by K

K’

FIG. 2 (color online). Pseudospin configuration on the Fermi
surface in the broken-symmetry state for a hybrid SLG-BLG
graphene heterostructure around the K point (top) and the K’
point (bottom). Here, we have chosen ¢ = 0. Top: the J =0
state (Af, Ay) = [AF[(1,0) and the chiral J=1 state
(A%, AY) = |A{|(cosby, — sindy) are degenerate around the K
point. Bottom: the J = 0 state and the chiral J = —1 state
(A%, AY) = |A(cosby, + sindy) are degenerate around the K’
point.

nature, chiral or not chiral, of the ground state strongly
affects the dynamical density-density response function for
frequencies @ = 2|A;-| (Supplemental Material [33] and
Ref. [34]) and therefore that optical measurements should
be able to distinguish between the two degenerate states.

We emphasize that the degeneracy and chirality of the
phase coherent states are due to presence of the chiral
factor F? in the gap equation [Eq. (5)] and do not depend
on the details of the band structures of the two layers.

The fact that one of the possible interlayer phase coherent
states is chiral opens the possibility to create topologically
protected midgap states [30,31,35] at the center of vortices
that can be created in the exciton condensate via the axial
gauge field [29]. To see this, we observe that we can
separate the mean-field Hamiltonian into two parts H yp =
Hy + H, with H | = Zk,a',o’clt,a(AgT?;U—’)Ck,o“’ H, =
—Zk,,,’(,/cltyg(Ak *Teo!)Cko'-  Since H, and H,
commute, the eigenvalues of HH y are given by the sum
of the eigenvalues of HH | and H ,. HH, has a symmetric
spectrum {* E, } that in the chiral J = 1 state, due to the
Px — ipy structure of the order parameter, in the presence of
a vortex in the exciton condensate, guarantees the existence
of topologically protected midgap states bound to the vortex
with energy A?( [30,35,36].

From Fig. 3, we see that at T = 0 for typical parameter
values the peak value A = |A IJ(- | ax Of the order parameter
magnitude is = 0.075y; = 30 meV. Figure 4(a) shows the
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FIG. 3 (color online). Parts (a)=(c) show |Ail, Af, A,
respectively, as a function of k [ky = y,/(hvg)], for T =0,
d=1nm, @ =1, and V, = 0.37y,. In (b) and (c), the dashed
lines show A and Aﬁ respectively in the noninteracting case.
(d) The solid (dashed) lines show the renormalized (noninteract-
ing) bands.

dependence of A on V, for both SLG-BLG and SLG-SLG
at d =1 nm and a = 1, where a = ¢?/(ehvy). We find
that at low bias (V,/d <60 meV/nm) A is larger in the
hybrid SLG-BLG heterostructures. Compared to the sym-
metric SLG-SLG structure, in the SLG-BLG structure the
density of states (DOS) in one of the layers (BLG) is higher
than in the SLG-SLG structure, and the interlayer chiral
factor F d(Gk_p) oscillates more rapidly. The first effect
favors the formation of the exciton condensate and there-
fore enhances A whereas the second effect tends to sup-
press it. We can then understand the scaling with V,, of the
ratio (A,) between A for SLG-BLG and for SLG-SLG
[inset of Fig. 4(a)] as a result of the competition of two
effects: the DOS effect dominates at low V, and the fast
oscillation of F¢ (6 —p) takes over at high V,. Figure 4(b)
also shows that in the weak coupling regime (o < 1) the
interlayer coherence can be stronger in SLG-BLG than in
SLG-SLG.

The value of A, for typical values of V, = 0.3y, sug-
gests a mean-field critical temperature 7, =< 300 K. This

(a) 0.1 T T T T T T 7 (b) 0.4
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FIG. 4 (color online). A = |Ai |,y as a function of V, (a) and
a (b) in the hybrid SLG-BLG structure and the symmetric SLG-
SLG structure for T = 0and d = 1 nm. In (a), « = 1, and in (b),
V, = 0.27,. The insets show the ratio (A,) between A in SLG-
BLG and A in SLG-SLG.

value is an overestimate. Because the system is
two dimensional and the broken symmetry is U(1), T. is
reduced to the Berezinskii-Kosterlitz-Thouless tempera-
ture (Tgkr), above which we have the proliferation of
unbound vortices and antivortices of the condensate. In
addition, thermal and quantum phase fluctuations [37],
screening [16,38-46], and disorder [47,48] can consider-
ably reduce T,.. An accurate estimate of 7, is beyond the
reach of theory also due to the uncertainties about the
experimental conditions. However, the degeneracy and
chirality of the ground state are robust and independent
of the exact value of T,.. Screening and disorder are
expected to be the dominant factors in suppressing 7.
[12]. Screening in general will preserve the central nature
of the interaction and therefore will not affect the degen-
eracy and chirality of the phase coherent state. Similarly,
the presence of disorder will renormalize the order parame-
ter and therefore 7, but also does not affect our main
findings. To show this, let us denote by a tilde the
disorder-renormalized fields. For Alf we find

AL Al M FU0,_p)U,(k — p)Us(k — p)A,
koK XZ —(iw, — A2 + (A2)2 + |AL]2
p n p p p
)

where n; is the impurity density, U,, is the disorder poten-
tial in layer o, and w, are the Matsubara frequencies.
Equation (9) shows that the chiral factor F¢ appears
in the same way as in the gap equation valid in the clean
limit. This guarantees that even in the presence of disorder,
the chiral and the nonchiral solutions are degenerate,
considering that for almost all cases of interest
Uo‘(ak—p) = Uo‘(_ek—p)-

Considering that we find that in SLG-BLG the mean-
field 7, value for unscreened Coulomb interaction is of the
same order as that in SLG-SLG and that screening, disor-
der, thermal, and quantum fluctuations are expected to
affect T, similarly in the two systems, we conclude that
in realistic setups 7, for SLG-BLG should be of the same
order as that for SLG-SLG. Recent results [12] show hints
of an exciton condensate for SLG-SLG in current experi-
mental conditions. We can then conclude that the com-
bined effects of screening and disorder in SLG-SLG and
SLG-BLG heterostructures might suppress 7. but should
not prevent the experimental observation of the predicted
interlayer phase coherent states.

In conclusion, we have shown that in hybrid hetero-
structures in which the electrons in different layers have
different chirality (m in one layer and »n in the other) the
interlayer phase coherent state is fourfold degenerate for
short-range interactions and twofold degenerate for long-
range central interactions when m = 2n. Moreover, we
find that one of the degenerate states is always a chiral
superfluid state, a fact that implies the presence of pro-
tected midgap states in the presence of vortices in the
exciton condensate. We also find that these properties of
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the ground state are robust and are not affected by effects
such as screening and disorder that on the other hand can
strongly suppress T, for the formation of the interlayer
phase coherent state.
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