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Screening and collective modes in gapped bilayer graphene
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We study the static and dynamic screening of gapped AB-stacked bilayer graphene. Unlike previous works
we use the full 4-band model instead of the simplified 2-band model. We find that there are important qualitative
differences between the dielectric screening function obtained using the simplified 2-band model and the 4-band
model. In particular, within the 4-band model, in the presence of a band gap, the static screening exhibits Kohn
anomalies that are absent within the simplified 2-band model. Moreover, using the 4-band model, we examine the
effect of trigonal warping on the screening properties of bilayer graphene. We also find that the plasmon modes
have a qualitatively different character in the 4-band model compared to the ones obtained using the simplified
2-band model.
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Bilayer graphene1 has many unique electronic properties
that make it an extremely interesting system. AB-stacked
bilayer graphene (BLG) is formed by two Bernal stacked
layers of graphene.2–4 When placed on an insulating substrate
the electrons in BLG form an ideal two-dimensional electron
gas (2DEG) with a very high room-temperature mobility,
in particular when boron nitride is used as a substrate.5 In
pristine BLG the conduction and valence bands touch at
points, charge neutrality points (CNPs), at the corners of the
Brillouin zone. At very low energy around these points the
bands are approximately parabolic. However, by applying a
perpendicular electric field a band gap (!) can be opened
and tuned.6 Moreover, recent experiments7 have shown strong
evidence that at low temperatures and dopings the electrons
in BLG might be in a spontaneously broken symmetry state.8

All these facts make BLG an extremely interesting system
both from a fundamental point of view and for its possible
technological applications. As a consequence the accurate
knowledge of the electronic properties of BLG is of great
interest.

One of the most important physical quantities for character-
izing the electronic properties of a system is the dielectric func-
tion ε(q,ω). This quantity determines the effective, screened,
Coulomb interaction among the electrons in the system and
is therefore essential for the calculation of all the electronic
properties. There is strong evidence that in most BLG samples
charge impurities close to the surface of the substrate, or placed
between the substrate and the BLG layer, are the dominant
source of scattering.4 In this situation the knowledge of the
static dielectric function, ε(q,ω = 0), is essential to calculate
the dc conductivity.9 Moreover, in the case of magnetic
adatoms placed on BLG, the static polarizability determines
the effective Ruderman-Kittel-Kasuya-Yoshida (RKKY) inter-
action between the magnetic adatoms. The dynamic dielectric
function determines the optical properties of the system and the
collective electronic modes, plasmons. It is therefore evident
that the knowledge of the correct form of ε(q,ω) is necessary
to characterize the electronic properties of BLG. Previous
works10,11 have studied the case of gapless BLG (and gapless
single and multilayer systems12). In the presence of a gap
some of the symmetries that simplify the calculation of the
response functions in gapless BLG disappear. In part for this

reason the only results available13 for the dielectric function
in gapped BLG were obtained using a simplified effective
low-energy 2-band model.14,15 This model neglects features of
the band structure of BLG that can strongly affect the response
function, especially when ! "= 0. In particular, it neglects the
fact that in the presence of a band gap the bands, at low energy,
acquire a characteristic “sombrero” shape;14 see Fig. 1(a). To
describe these effects it is necessary to use a refined 2-band
model14,15 or the full 4-band model. In this work we obtain
ε(q,ω) for gapped AB-stacked bilayer graphene using the full
4-band model and the random phase approximation (RPA).
Some of the qualitative differences for ε(q,ω) between the
full 4-band model and the simplified 2-band model can be
recovered using the refined 2-band model. However, there are
features of ε(q,ω) (especially at large k, ω, and n) obtained
using the full 4-band model that are qualitatively different
from ε(q,ω) obtained using either the simplified or the refined
2-band model. In the remainder, unless specified, by 2-band
model we refer to the simplified one.

The 4-band continuum model Hamiltonian for BLG is
H0 = −

∑
k $

†
kh(k)$k where$†

k ($k) is the 4-component cre-
ation (annihilation) operator $†

k = (a†
k,1,b

†
k,1,a

†
k,2,b

†
k,2) [$k =

(ak,1,bk,1,ak,2,bk,2)] with a
†
k,i (ak,i), b

†
k,i (bk,i) the creation

(annihilation) operator for an electron with wave vector k in
layer i on sublattice A and B, respectively, and h(k) is the
matrix

h(k) = !

2
τz + h̄vF (kxσx + kyσy) − γ1

2
(σxτx + σyτy)

+ 3
2
γ3a[kx(σxτx − σyτy) − ky(σxτy + σyτx)]. (1)

In Eq. (1) σ ’s, τ ’s are 2×2 Pauli matrices representing the
sublattice and layer degrees freedom, respectively, vF is the
Fermi velocity at the Dirac point of a single graphene layer,
γ1, γ3 are the interlayer hopping parameters,16 a = 1.42 Å is
the in-plane carbon-carbon distance, and ! is the band gap
at k = 0. γ3 "= 0 induces trigonal warping. For concreteness,
we assume vF = 106 m/s, γ1 = 0.35 eV, and γ3 = (3/4)γ1 =
0.26 eV; however the main features of our results do not depend
on the precise values chosen for these parameters.

The Coulomb interactions are described by the Hamiltonian
Hi = (1/2A)

∑
q[V+(q)ρ̂qρ̂−q + V−(q)d̂qd̂−q], where A is the
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FIG. 1. (Color online) (a) Lowest conduction band for! = γ1/2,

γ1/3, 0. The solid (dash-dotted) curves are obtained using the
4-band (2-band) model. The horizontal dashed lines indicate the 4-
band Fermi energy for doping n = 1012 cm−2 for ! = γ1/2, γ1/3, 0
from top to bottom. (b) Chirality factors, |(U †

kUk′ )λλ|2, evaluated for
|k| = |k′| = kF for the 2-band model at ! = 0, γ1/2, denoted by
the black solid and dashed lines, respectively, and the 4-band model
for ! = γ1/2, 0. θ is the angle between k and k′. For the case
! = γ1/2 in the 4-band model there are three possible intraband
overlap scenarios we can consider: (i) k and k′ both lie on the
Fermi surface at wave vector kF+, (ii) k and k′ both lie on the Fermi
surface at wave vector kF−, (iii) k lies on the Fermi surface at wave
vector kF+ while k′ lies on the Fermi surface at kF−. (c) +(q,0) for
n = 1012 cm−2 without trigonal warping. Solid (dashed) curves are
the results obtained using the 4-band (2-band) model. (d) Contour
plot of polarizability, +(q,n,ω = 0), as a function of q and doping n

for ! = 1/2γ1.

sample area, ρ̂q (d̂q) the operator for the sum (difference) of the
densities ρ̂q,i in the two layers, V±(q) = [VS(q) ± VD(q)]/2
with VS(q) = 2πe2/(εq) the Coulomb interaction between
electrons in the same layer and VD = 2πe2(e−qd )/(εq) the
Coulomb interaction between electrons in different layers,
d = 3.35 Å the distance between the two layers, and ε the
background dielectric constant. We assume α ≡ e2/εh̄vF =
0.5 and temperature T = 0. As long as q & 1/d the dielectric
function that enters the calculation of most of the electronic
quantities is the one associated with the sum of the densities in
the two layers, ε(q,ω) ≡ ε(q,ω)ρρ . Within the random phase
approximation

ε(q,ω)ρρ = 1 − V+(q)+(q,ω)ρρ, (2)

where

+(q,ω)ρρ = g
∑

λ,λ′

∫
dk

(2π )2

nλ,k − nλ′,k+q

h̄ω + ελ,k − ελ′,k+q + iη

× |(U †
kUk+q)λ,λ′ |2 (3)

is the polarizability (in the remainder of this paper the subscript
ρρ will be understood). In Eq. (3) g = gsgv = 4 is the total
spin (gs) and valley (gv) degeneracy, λ, λ′ are the band
indices, nλ,k (ελ,k) is the Fermi-Dirac distribution function
(energy) for a particle in band λ with wave vector k, and
Uk is the unitary matrix that diagonalizes the Hamiltonian

H0. From Fig. 1(b) we see that the intraband wave-function
overlap |(U †

kUk+q)λ,λ|2 for the 4-band model is quite different
from the one for the 2-band model, especially when ! "= 0.
Below we present our results, obtained using Eqs. (2) and (3)
and evaluating the integral on the right-hand side of Eq. (3)
numerically using an adaptive integration routine.17

In Fig. 1(c) the results for the static polarizability
+(q,ω = 0) are shown for fixed doping n = 1012 cm−2 and
different values of !. We see that for ! "= 0 the results
obtained with the 4-band model are very different from the
ones obtained with the 2-band model. In the 2-band model
+(q,0) exhibits a Kohn anomaly only for q = 2kF (kF being
the Fermi wave vector), whereas in the 4-band model (and the
refined 2-band model) +(q,0) exhibits Kohn anomalies also
for values of q < 2kF . This is due to the fact that in the 4-band
model, at low energies, the lowest bands, for ! "= 0, acquire
a typical nonmonotonic sombrero shape. As a consequence
in the 4-band model, for ! "= 0, for fixed n (!) when ! >
!c ≡ h̄vF

√
πn [|n| < nc ≡ !2/(πh̄2v2

F )] the Fermi surface
is multiply connected. Neglecting trigonal warping for n < nc

the Fermi surface is formed by two circumferences, of radii
kF± = (1/h̄vF )

√
ε2
F +!2/4±

√
ε2
F (γ 2

1 +!2)−!2/4, respectively, with
εF = (1/2)√(h̄4v4

Fπ
2n2+!2γ 2

1 )/(γ 2
1 +!2) [see inset of Fig. 1(b)]. In

this situation we can expect additional Kohn anomalies for
values of q joining points on the same connected part of
the Fermi surface and on disconnected parts of the Fermi
surface. For γ1 = 350 meV and n = 1012 cm−2 we have that
!c ≈ γ1/3. For ! = !c the Fermi energy just touches the
top of the sombrero. In this case we only have one additional
Kohn anomaly for q = kF in addition to the q = 2kF one; see
Fig. 1(c). For ! > !c the Fermi energy cuts the sombrero
region and so we have Kohn anomalies for q = kF+ − kF−
and q = 2kF− in addition to the one for q = 2kF+ as shown
in Fig. 1(c). One might expect to observe an anomaly also
for q = kF+ + kF−; however the points on the Fermi surface
connected by this value of q have Fermi velocities with the
same sign and therefore the anomaly is suppressed. Figure 1(d)
shows the dependence of +(q,0) on q and n for ! = γ1/2.
From this figure we see the evolution of the Kohn anomalies
with doping; in particular we can observe the merging of some
of the anomalies for specific values of the doping.

We now consider the effects on +(q,0) of trigonal warping.
As shown by the left panels of Fig. 2, in the presence of trigonal
warping the energy bands become anisotropic.14,15 In partic-
ular, at low energies the lowest bands exhibit 4 degenerate
minima. The modifications of the fermionic energy bands due
to the trigonal warping are reflected in the polarizability, as
shown by the right panels of Fig. 2. +(q,0) becomes strongly
anisotropic; the number and position of the Kohn anomalies
become dependent on the direction of q.

The dynamic dielectric function ε(q,ω) for fixed doping
n = 1012 cm−2 and ! < !c, ! = !c, ! > !c for the case
in which γ3 = 0 (no trigonal warping) is shown in Fig. 3.
The white lines show the plasmon dispersion; the black solid
(dashed) lines show the boundaries of the intraband (interband)
particle-hole continuum. We see that as ! crosses !c the
dispersion of the plasmon mode outside the particle-hole
continuum is not modified qualitatively. The plasmon mode
inside the particle-hole continuum on the other hand is
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FIG. 2. (Color online) Left column: Equipotential lines for the
lowest energy band within the 4-band model with γ3 = 3γ1/4
and ! = 0, 1/3γ1, 1/2γ1 from top to bottom. Right column:
+(q,0) for n = 1012 cm−2, trigonal warping γ3 = 3γ1/4, and ! = 0,

1/3γ1, 1/2γ1 from the top panel to bottom one. kF,γ3=0 is kF+ in the
limit γ3 = 0.

qualitatively very different for ! < !c and ! > !c, an effect
that is not captured by the 2-band model.13

In the presence of trigonal warping ε(q,ω) becomes
strongly anisotropic and this is particularly evident when the
Fermi energy cuts the sombrero region. Figure 4 shows the
results for ε(q,ω) for different directions of q obtained taking
into account trigonal warping. From the figure the strong
anisotropy of ε(q,ω) when γ3 "= 0 is evident. In particular,
we see that the plasmon mode inside the p-h continuum is
very different for different directions of q.

For the case with no trigonal warping in the long-
wavelength limit q & ω/vF using the 4-band model for the
polarizability, up to order q2, we have

+(q,ω) = gq2

4πω2

[
kF+

∂εk

∂k

∣∣∣∣
kF+

− kF−
∂εk

∂k

∣∣∣∣
kF−

]
. (4)

We notice that in Eq. (4) there is a term proportional to kF− that
is absent in the 2-band model. Replacing this expression in the
equation for the RPA ε(q,ω) we find the plasmon dispersion

ω =
[
g

2
h̄vFαq

(
kF+

∂εk

∂k

∣∣∣∣
kF+

− kF−
∂εk

∂k

∣∣∣∣
kF−

)]1/2

. (5)

FIG. 3. (Color online) The left (right) column shows the real
(imaginary) part of εRPA(q,ω) for ! = 0, ! = γ1/3, ! = γ1/2 from
top to bottom. The plasmon dispersion is denoted by white curves.
The boundaries for the intraband (interband) particle-hole continuum
are indicated with black solid (dashed) curves.

FIG. 4. (Color online) The left (right) column shows the real
(imaginary) part of εRPA(q,ω) with ! = γ1/2 for θ = 0◦, 15◦, 30◦.
The white curves denote the plasmon dispersion; the black curves
denote the boundaries of the particle-hole continuum. kF,γ3=0 is kF+
in the limit γ3 = 0.
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FIG. 5. (Color online) (a) Plasmon dispersion for ! = γ1/2
obtained using the full 4-band model, and the 2-band model for
n = 2.7 × 1012 cm−2. (b) Ratio ω4−band/ω2−band as a function of
doping for different values of !. For ! "= 0 and n → 0 the ratio
ω4−band/ω2−band diverges.

This dispersion is very general and is valid both for n < nc

and n > nc, in the latter case kF− = 0. From Eq. (5) using the
appropriate expressions for kF+, kF−, and εk we find

ω(q) =

√
qge2γ 2

1

εF ε
F (n̂,!̂), (6)

where n̂ ≡ h̄2v2
Fπn/γ 2

1 , !̂ ≡ !/γ1, and, for the 2-band
model, εF = γ1[n̂2 + !̂2/4]1/2, F (n̂,!̂) = n̂, whereas for the
4-band model in the sombrero region, εF = γ1[(n̂2 + !̂2)/
(1 + !̂2)]1/2/2, F (n̂,!̂) = [n̂(!̂4+ 2!̂2 − n̂2)/(!̂4 + 2!̂2 −
n̂2 + 1)]1/2/2, and outside the sombrero region, εF =
γ1{2 + !̂2 + 4n̂ − 2[1 + 4n̂(1 + !̂2)]1/2}1/2/2, F (n̂,!̂) =
{(n̂/2)[1 − (1 + !̂2)]/[1 + 4n̂(1 + !̂2)]1/2}1/2. In Fig. 5(a)
we compare the results for the plasmon dispersion obtained
numerically using the 4-band model with the ones given by
Eq. (6) for the gapped case ! = γ1/2 for a given value of n.
We see that the 2-band results differ substantially from the
4-band results. At low densities (n < nc) this is due to the fact
that the 2-band model does not capture the nonmonotonic band
structure, i.e., the fact that in the 2-band model in Eq. (5) there
is no term kF−∂εk/∂k|kF− . For n > nc this is due to the fact
that in the 4-band model the dispersion is much closer to linear

than parabolic as assumed in the 2-band model, in analogy to
what happens in the gapless case.11 As a consequence for very
large n we have ω4−band/ω2−band ∝ n−1/4. This is summarized
in Fig. 5(b), which shows the ratio ω4−band/ω2−band between
the plasmon frequency obtained within the 4-band and the
2-band model as a function of n for different values of !.
Notice that in the long-wavelength limit this ratio [see Eq. (6)]
is independent of q and is a function only of n and !.

In conclusion, we have obtained the static and dielectric
screening of gapped BLG using the full 4-band model. We
find that the static screening obtained using the 4-band model
is qualitatively different from the one obtained from the 2-band
model. In particular in the 4-band model, when the gap is
nonzero, the static polarizability exhibits Kohn anomalies that
are not present in the simplified 2-band model. For the dynamic
screening we have found that the plasmon frequency within the
4-band model is substantially different from the one obtained
within the 2-band model especially at low densities when
! "= 0. We have also characterized the strong anisotropic prop-
erties of the static and dynamic screening due to the trigonal
warping. We find that in the presence of trigonal warping in
gapped BLG the number of Kohn anomalies depends not only
on the doping and the band gap but also on the direction of the
momentum. Our results, in particular the identification of addi-
tional Kohn anomalies and the strong anisotropic nature of the
screening in the presence of trigonal warping, have important
implications for understanding of the phonon spectrum and the
nature of the RKKY interaction in gapped BLG, and are there-
fore expected to have clear experimental signatures. Moreover
our results apply also to the case in which a gap opens due to
the realization of a spontaneously broken symmetry state and
could then be used to identify and characterize such a state.
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