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Inhomogeneity and nonlinear screening in gapped bilayer graphene
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We demonstrate that for gapped bilayer graphene, the nonlinear nature of the screening of an external
disorder potential and the resulting inhomogeneity of the electron liquid are crucial for describing the electronic
compressibility. In particular, traditional diagrammatic methods of many-body theory do not include this
inhomogeneity and therefore fail to reproduce experimental data accurately, particularly at low carrier densities.
In contrast, a direct calculation of the charge landscape via a numerical Thomas-Fermi energy functional method
along with the appropriate bulk averaging procedure captures all the essential physics, including the interplay
between the band gap and the inhomogeneity.
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I. INTRODUCTION

Measurements of the electronic compressibility provide
a way of characterizing the electron gas in both three-
dimensional and two-dimensional materials, and information
about the nature of interactions between the electrons and
the influence of the environment on the electron liquid can
be gained. Therefore, it is highly important to have a clear
theoretical understanding of experimental measurements of
the compressibility. The compressibility K is given by1 K =
1
n2

dn
dµ

where n is the excess carrier density and µ is the chemical

potential and so the key calculation is that of dµ
dn

. Recently, the
compressibility of both monolayer2 and bilayer3 graphene has
been examined with capacitance probes,4–6 scanning single
electron transistor (SET) microscopy,7,8 and scanning tunnel-
ing microscopy (STM).9–12 In STM, the fine spatial resolution
of recent studies has shown a high degree of inhomogeneity in
the charge landscape of graphene systems, and revealed that the
material used as the substrate has a significant impact on this
inhomogeneity.11 When the overall excess electronic density
is close to zero (the so-called “charge-neutrality point”), the
electron liquid breaks up into “puddles” of electrons and
holes, presumably to screen an external potential generated by
disorder of some kind. Theoretical studies of graphene systems
with charged impurities13 and corrugations or ripples14 have
shown that either of these mechanisms may contribute to the
observed inhomogeneity.

Also, gapped electronic systems are highly important
in many device applications, and bilayer graphene is an
attractive material in this context since the band gap and
carrier density can be controlled dynamically via gating.2,3,15

Therefore a clear understanding of the interplay between the
inhomogeneity which is intrinsic to all graphene systems and
the gapped nature of gated bilayer graphene is essential. In this
paper we present a full analysis of this issue via the theoretical
consideration of the compressibility and comparison with
recent experimental work.4 Consistent with experimental
findings (which are described in detail in Ref. 2), we take
the disorder to be arising from random quenched charged
impurities in the environment of the bilayer graphene (BLG)
with a two-dimensional (2D) impurity density of ni separated
from the graphene layers by an average distance d. In Sec. III

we apply the standard diagrammatic perturbation theory which
is widely used to describe electron-impurity scattering in
condensed matter systems. We show that this theoretical
technique does not give the correct qualitative picture in
the gapped regime when the inhomogeneity is strong. We
contend that this failure is due to the fact that this theory
cannot incorporate the effects of the inhomogeneous charge
distribution or the nonlinear nature of the screening. In Sec. IV
we present a functional approach to calculate dµ

dn
based on and

extending the Thomas-Fermi theory (TFT) of Ref. 13, that
is able to take into account the effect on the compressibility
of the interplay of disorder and band gap in the theoretically
challenging regime when the band gap is of the same order, or
smaller, than the strength of the disorder.

We shall show that there are in fact two different criteria
for assessing when the inhomogeneity is too strong for
perturbative theories to be valid. The first is when the
proportion of the graphene which is in the insulating (and
hence incompressible) state becomes significant. The second
is when the average fluctuations characterized by the root mean
square of the density distribution becomes large compared
to the average carrier density. This situation is qualitatively
different in monolayer graphene1,16–18 where there is no
band gap and hence the screening nonlinearity has a much
smaller effect on the compressibility since there is no mixed
phase.

II. THE CLEAN LIMIT

In this section we give an overview of the single particle
physics of bilayer graphene in order to remind the reader of
the most important points and to define our notation. The band
structure of bilayer graphene can be approximated via a four-
component Hamiltonian which describes the wave function
amplitude on each of the four lattice sites in the unit cell.3 In
this representation, there are two branches in the conduction
and valence bands, with one branch separated from the other
by the inter-layer coupling energy γ1 ≈ 0.4 eV. In the strongly
inhomogeneous regime, the split bands may become partially
occupied even at low average carrier density and therefore
we keep all four bands in our analysis. The band structure
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is given by

Eαk = να

√√√√
v2

F k2 + γ 2
1

2
+ u2

4
+ bα

√
γ 4

1

4
+ v2

F k2
(
γ 2

1 + u2
)
,

(1)

where u is the band gap at k = 0, ν = +1 in the conduction
band and ν = −1 in the valence band, b = +1 in the split
branches and b = −1 in the low-energy branches, vF is
the Fermi velocity associated with monolayer graphene, and

h̄ = 1. These bands are each fourfold degenerate due to the
presence of spin and the two valleys in the Brillouin zone. The
actual band gap15 is given by ũ = uγ1/

√
u2 + γ 2

1 . This band
structure is illustrated in Fig. 1(a) for the ungapped case and
two different band gaps. The quartic (or “sombrero”) shape
of the low-energy branches is clearly visible in the gapped
examples.

The compressibility associated with these bands can be
calculated analytically by relating the density to the Fermi
energy and computing the derivative.1 The full expression is

dµ

dn
= γ1u√

γ 2
1 + u2

δ(n) + v2
Fπ

2






v2
Fπ |n|√
γ 2

1 +u2

1√
v4

Fπ
2|n|2+u2γ 2

1

, v2
Fπ |n| < u2

1− γ 2
1 +u2

2

√

v2
F
π |n|(γ 2

1 +u2)+
γ 4

1
4√

v2
Fπ |n|+ u2

4 + γ 2
1
2 −

√

v2
Fπ |n|(γ 2

1 +u2)+ γ 4
1
4

, u2 ! v2
Fπ |n| < 2γ 2

1 + u2

1√
2v2

Fπ |n|−u2
, v2

Fπ |n| " 2γ 2
1 + u2,

(2)

where v2
Fπn is the Fermi energy measured in terms of the

density. Note that the first term implies that the electron liquid
is incompressible at n = 0. There are three different cases
because of the changes in the topology of the Fermi surface.
At n ≈ 0 the Fermi surface is ring shaped, but when the
Fermi energy reaches the top of the sombrero part of the band
structure (i.e., µ = u), this changes to a disk and hence there
is a step in the value of dµ

dn
. Then, at much higher density

(∼2 × 1013 cm−2) the split band becomes occupied, and there
are now two Fermi surfaces so that there is a second jump
in dµ

dn
. The clean dµ

dn
is shown in Fig. 1(b) for the three cases

corresponding to the band structures in Fig. 1(a).

III. DIAGRAMMATIC PERTURBATION THEORY

In this section we discuss perturbative methods for de-
scribing the electron-impurity interaction. Inherent in this

-100

-50

 0

 50

 100

-0.1 -0.05  0  0.05  0.1

E 
 (m

eV
)

ka

(a)

u
u~

 0

 1

 2

 3

 0  2  4  6  8  10

dµ
/d
n 

 (e
V

 n
m

2 )

Density  (1012cm-2)

(b)

FIG. 1. (a) The low-energy conduction and valence bands of
bilayer graphene with and without a gate-induced band gap.
(b) The clean dµ

dn
given by Eq. (2). For both panels the dotted lines

are u = 0, the solid lines are u = 100 meV, and the dashed lines are
u = 200 meV. The wave vector is measured in units of the lattice
constant a.

approach19 is an average over disorder realizations which ex-
plicitly restores translational symmetry to the theory. We shall
show that this approximation is not valid in the situation we
discuss because it removes the possibility for inhomogeneity
to form as a consequence of the electron-impurity scattering.
In order to show that this failure is not an artifact of the
specific level of approximation in the theory, we also apply the
perturbation expansion keeping two different sets of diagrams,
sum the infinite series associated with them, and find the same
qualitative features in the predicted dµ

dn
which do not match the

experimental results.
In order to obtain dµ

dn
in this microscopic theory, the crucial

feature which distinguishes the disordered case from the clean
case is the presence of the electron-impurity self-energy in the
electron Green’s function. We compute this self-energy within
two different approximations19,20—the Born approximation
(BA) and the self-consistent Born approximation (SCBA). In
the BA the self-energy is

&BA
α (k,E) = ni

∑

k′,α′

|V (k − k′)|2Fαα′(k,k′)
E − Eα′k′ + iη

, (3)

where Fαα′(k,k′) is the wave function overlap of the initial
and final states in the scattering process, Eαk is the energy
of an electron with wave vector k in band α from Eq. (1), η
is a positive infinitesimal, and V (k) is the screened impurity
potential

V (k) = 2πe2

κ(k + qs)
e−kd , qs = 2πe2

κ
ρ0(µ), (4)

with qs being the screening wave vector in the static random
phase approximation, ρ0 is the density of states of the clean
system, and κ the dielectric constant. Note that the assumption
of a homogeneous charge landscape also enters in the use of
qs as the screening wave vector. The SCBA takes into account
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the full Green’s function for propagation between scattering
events and for which the self-energy is given by

&SCBA
α (k,E) = ni

∑

k′,α′

|V (k − k′)|2Fαα′(k,k′)
E − Eα′k′ − &α′(k′,E)

. (5)

Note the self-consistent inclusion of the self-energy in the
Green’s function on the right-hand side. Once the self-energy
has been obtained, the electron Green’s function Gα(k,E) =
[E − Eαk − &α(k,E)]−1 can be straightforwardly computed.
The density of states dn

dµ
is then related to the imaginary part

of the Green’s function, since

ρ(E) ≡ dn

dµ
= −gsgv

π

∑

α

∫
d2k
4π2

ImGα(k,E), (6)

where gs = gv = 2 are the spin and valley degeneracies,
respectively.

In Fig. 2 we show the calculated dµ
dn

for the clean case,1

the BA, and the SCBA as a function of the carrier density.
The right-hand panels show the same data on a logarithmic
scale to emphasize the low-density features. In the ungapped
case shown in Fig. 2(a), the BA and SCBA give essentially the
same result as the clean limit. When a band gap is present, as in
Figs. 2(b) to 2(d), the clean limit shows a clear step occurring
at the density ñ = u2/(v2

Fπ ) which marks the density where
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FIG. 2. (Color online) dµ

dn
for three different values of the band

gap and impurity density for the diagrammatic perturbation theories.
The points in panel (b) are taken from Fig. 2 of Ref. 4. Throughout,
dµ

dn
is given in units of eV nm2.

the chemical potential leaves the sombrero region of the band
structure and the topology of the Fermi surface changes from a
ring to a disk.3 For n ( ñ the BA and SCBA are similar to the
clean limit, but for low-to-moderate density n # ñ the strong
modification of the density of states (DOS) near the band
edge21 implies that dµ

dn
is enhanced relative to the clean system

but is still a decreasing function as n becomes small. There is
also a sharp divergence in the BA and SCBA for very small n
which is not observed experimentally.4,5 Additional structure
for n < ñ in the BA comes from the nontrivial shape of the
DOS near µ = u in that approximation, which is smoothed
out by the self consistency of the SCBA.21

In Fig. 2(b) we also show experimental data for the
gapped regime. Note that the data in Ref. 4 is a capacitance
measurement, and in order to extract dµ

dn
we need accurate

knowledge of experimental parameters, such as the impurity
density, the gate-induced band gap, the stray capacitance,
and the dielectric environment, all of which are known only
approximately. Therefore the experimental data shown here
does not correspond to the parameters used in the calculation
and hence we cannot expect quantitative agreement. Other
experiments5,6 show the same qualitative features as in Ref. 4
although direct comparison to these data is not possible
since the low-density dµ

dn
is obscured by the specifics of

the experimental setup used in these measurements. We see
in Fig. 2(b) that a broad peak forms in the experimental
data at low density in complete qualitative contrast to the
BA and SCBA theoretical results. Therefore, these theories
utterly fail to capture the essential physics of the gapped
system at low densities. This is, however, not unexpected
since the low density regime is completely dominated by the
charged impurity induced random puddles of compressible
and incompressible regions.

IV. THOMAS-FERMI THEORY

We now describe the TFT for the inhomogeneous system.
In this approach, the carrier density landscape is obtained
by minimizing a Thomas-Fermi energy functional of the
spatially varying density n(r) that includes a term due to
the presence of disorder. The TFT is similar in spirit to the
density functional theory (DFT)22–24 but in TFT the kinetic
energy operator is also replaced by a functional EK [n].
This simplification makes the TFT valid only when the
density profile varies on length scales larger than the Fermi
wavelength, i.e., when |∇n/n| < kF , where kF =

√
π |n|

is the Fermi wave vector. This approach has been very
successful in the context of transport calculations2 which
provides strong phenomenological support for the use of this
theory. Specifically for bilayer graphene, the puddle length
scale is ∼20 nm and the density of carriers in the puddles
is ∼1012 cm−2 so that this inequality is marginally satisfied.
However, we can also justify this approximation by pointing
out that the root mean square of the density distribution is much
larger than its average. At the charge-neutrality point (CNP)
the average density n = 0 cannot be taken as a measure of the
typical carrier density inside the puddles and a better estimate
is given by nrms. As a consequence, at low dopings (close to the
CNP) nrms should be used instead of n in the inequality above.
Given that nrms ∼ ni we then conclude that the TFT is valid at
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all densities so long as ni is not too small (ni > 1011 cm−2).
A full DFT for the disordered problem has been completed
for monolayer graphene25 and shows very similar results to
the TFT applied in the same context.16 However, the DFT
is much more demanding of computational resources, and
therefore it is not possible to simulate large lattice sizes or
complete a comprehensive average over disorder realizations
in a reasonable timescale. Moreover, given the difficulty to
quantitatively compare the theoretical and experimental results
(since parameters, such as the impurity density and stray

capacitance, are not known accurately) and the complete
failure of the diagrammatic methods to even achieve a gross
qualitative description of the experimental results at low
carrier density, our main motivation is to show that a functional
method like the TFT is able to capture the qualitative features
of the compressibility observed in experiments. The functional
approach described below, notwithstanding the specifics of
the TFT, is more than adequate to describe the compressibility
of gapped systems in which the band gap is comparable to or
smaller than the disorder strength.

The TFT energy functional is given by

E[n] = EK [n(r)] + e2

2κ

∫
dr′

∫
dr

n(r)n(r′)
|r − r′|

+ e2

κ

∫
drVD(r)n(r) − µ

∫
drn(r), (7)

where e2VD/κ is the bare disorder potential which is assumed to be due to the Coulomb interaction with random charged
impurities with no spatial correlation and an equal probability of being positively or negatively charged. The first term is the
kinetic energy where

εK [n(r)] ≡ δEK

δn
=






1
2

√
v4

Fπ
2|n|2+γ 2

1 u2

γ 2
1 +u2 , v2

Fπ |n| < u2

√
v2

Fπ |n| + γ 2
1
2 + u2

4 −
√

v2
Fπ |n|

(
γ 2

1 + u2
)
+ γ 4

1
4 , u2 ! v2

Fπ |n| < 2γ 2
1 + u2

1
2

√
2v2

Fπ |n| − u2, 2γ 2
1 + u2 ! v2

Fπ |n|

(8)

is the ground state kinetic energy per excess carrier. The second
term is the Hartree part of the electron-electron interaction, the
third term is the contribution due to the disorder potential, and
in the fourth term µ is the chemical potential. We neglect
exchange and correlation terms26 since, as we shall show
below, dµ

dn
at low density is predominantly determined by

the proportion of the sample which is incompressible and the
inclusion of these terms will not change this. The ground state
density landscape is identified by the equation δE/δn = 0.
Taking this variational derivative of E[n], we find

δE

δn
= εK [n(r)] + e2

2κ

∫
dr′ n(r′)

|r − r′|
+ e2

2κ
VD(r) − µ. (9)

Within our formalism it is fairly easy to assume the presence
of spatial correlations among the impurities, and the presence
of correlations has important effects on the transport properties
of BLG;27–29 however they do not modify the qualitative effects
that the disorder has on the compressibility.

Assuming that the clean dµ
dn

is valid locally, in Fig. 3 we
show the spatial profile of the density distribution (left column)
and dµ

dn
(right column) for a single realization of disorder

with ni = 3 × 1011 cm−2 for the gapless regime (first row)
and the gapped case with u = 40 meV and three values of
the global charge density. The white regions are the parts of
the graphene where the local density is zero and hence the
graphene is incompressible. It is immediately noticeable that
in the presence of a band gap (second row) there are large
incompressible regions which are not present in the gapless
case (even at zero excess carrier density), and these regions
persist even when the average charge density 〈n〉 is significant
(〈n〉 ≈ 2 × 1012 cm−2, third row) and are still just visible when

〈n〉 ≈ 4 × 1012 cm−2 (fourth row). More accurate functional
methods than the TFT will not give substantially different
values for the ratio of the sample that is covered by insulating
(incompressible) regions, which we shall show is the dominant
factor in determining dµ

dn
at low density. All these methods can

do is to give slightly different values of n and density profiles
inside metallic regions, both of which have very little influence
on dµ

dn
for the situation of interest.

By considering many disorder realizations we can calculate
disorder averaged quantities and, in particular, the probability
distribution function of the local carrier density P (n). This
function can then be used to compute the average density
〈n〉 =

∫
n′P (n′)dn′. As shown in Fig. 4(a), P (n) is trimodal for

〈n〉 = 0 in the gapped regime: it exhibits a large peak shown by
an arrow at n = 0 that quantifies the fraction of the sample oc-
cupied by insulating regions and two smaller and broader peaks
centered around values of n which are determined by the non-
linear screening of the disorder potential and which therefore
depend on both u and ni . Figure 4(a) also shows that P (n) has
a jump for n = ñ. As the doping increases, the fraction of the
sample area covered by insulating regions P (n = 0) decreases
as shown in Fig. 4(b). Notice the factor of 103 difference in
the vertical scale between Figs. 4(a) and 4(b). The evolution
of P (n) with 〈n〉 is shown in Fig. 4(c). For finite doping, the
distribution becomes asymmetric in n and becomes unimodal
only at relatively large doping. In the unimodal regime, P (n)
is approximated closely by a Gaussian centered around 〈n〉.

Experimental probes, such as the capacitance measure-
ments and scanning SET microscopy, simultaneously probe
an area of the sample which is significantly larger than the
puddles size as predicted in the TFT and measured by STM.9–12
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FIG. 3. (Color online) (Left column) Spatial density profile, and
(Right column) spatial dµ

dn
profile for a single disorder realization. The

units of the color bars are 1012 cm−2 for the density and eV nm2 for
dµ

dn
, and ni = 3 × 1011 cm−2 throughout. The incompressible regions

where n = 0 are shown in white. The first row has u = 0 and 〈n〉 =
0; the second row has u = 40 meV and 〈n〉 = 0; the third row has
u = 40 meV and 〈n〉 ≈ 2 × 1012 cm−2; and the fourth row has u =
40 meV and 〈n〉 ≈ 4 × 1012 cm−2.

Therefore, an averaging procedure must be implemented to
replicate dµ

dn
as a function of 〈n〉 as measured in those

experiments. By disorder averaging the TFT results, we obtain
the dependence of the average chemical potential 〈µ〉 (which
is identical to µ in Eq. (7)) with respect to the average density
〈n〉. Because of the nonlinear screening, the relation between µ
and 〈n〉 is also modified by the value of the gap and the strength
of the disorder, as shown in Fig. 4(d). Thus, the TFT results
clearly show the inhomogeneous nature of the carrier density
landscape in BLG in the presence of disorder. Using the TFT
we calculate the average 〈 dµ

dn
〉 = d〈µ〉

d〈n〉 which closely simulates
the way in which 〈dµ/dn〉 is obtained in both capacitance
measurements4–6 and in SET spectroscopy.7,8

Figure 5(a) shows the calculated dµ
dn

using the TFT for the
same four sets of parameters as in Fig. 2. We immediately
see that it exhibits qualitatively different behavior from the
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magnitude larger than the y scale used. (b) P (n = 0) for parameters
corresponding to Figs. 2(b) to 2(d). A dotted line at P (0) = 0.1
provided as a guide to the eye. (c) Evolution of P (n) with 〈n〉 for
u = 40 meV and ni = 3 × 1011 cm−2. (d) µ as a function of doping.
The legend in (d) also applies to panels (a) and (c).

BA and SCBA, and at low density it shows a broad peak
in qualitative agreement with the experimental data. We
stress that (as mentioned above) the data in Ref. 4 is the
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FIG. 5. (Color online) (a) The predicted dµ
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in the TFT.

(b) As in (a), but on a logarithmic scale to emphasize the low-density
regime. (c) The density fluctuation due to disorder for the same
parameters as in (a). The dotted line at nnrms/n = 0.5 is included
as a guide to the eye.
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only appropriate data for direct comparison with our theories,
but that since various parameters of the experimental system
are unknown, we cannot expect quantitative agreement be-
tween our calculations and the measured data. Comparison of
Fig. 2 with Figs. 5(a) and 4(b) shows that the deviation of the
perturbation theory from the TFT occurs when P (0) > 0.1,
indicating that the presence of insulating, incompressible
regions is the dominating feature of the compressibility at
low density. In Fig. 5(c) we show our TFT calculated density
fluctuation characterized by the root-mean-square value nrms
as a function of density. This clearly establishes that, when a
band gap is present and as the fluctuations (i.e., inhomogeneity)
become large with decreasing average density, the calculated
TFT results for dµ

dn
start deviating substantially from the

many-body perturbative ensemble averaged results, and when
nrms/n ≈ 0.5, one must carry out the nonlinear screening
theory to obtain the qualitatively correct features for the
compressibility.

V. DISCUSSION

Therefore, we identify two different reasons for the
failure of the standard diagrammatic methods in gapped
inhomogeneous systems. The first is the presence of strong
inhomogeneity characterized by the parameter nrms/n. When
nrms/n > a with a ∼ 1, the ground state cannot be as-
sumed to be homogeneous and therefore implicit translational
invariance incorporated in the disorder averaging step of
the diagrammatic theory fails to qualitatively describe the
experimental situation. The exact value of a depends on the
experimental quantity under consideration and the details of
the experimental conditions. The second reason for failure
is the existence of a random mixed inhomogeneous state
where insulating (incompressible) and metallic (compressible)
regions coexist in the presence of a band gap of the order of or
smaller than the disorder strength. The diagrammatic methods
fail because they cannot account for this mixed state. For the
compressibility, comparison of Fig. 4(b) with Fig. 2 shows
that the critical fraction of the sample area to be covered by
insulating regions for the perturbative theories to give strong
qualitative disagreement with the experiments is P (0) > 0.1.
Thus, disorder has a much stronger qualitative effect at low
carrier densities for gapped bilayer graphene4,8 than for the
monolayer7 since BLG, by virtue of being a gapped system,

can be in the random mixed state which is not accessible for
ungapped systems.

In conclusion, we have demonstrated that the nonlinear
nature of the screening of an external disorder potential in
gapped bilayer graphene and the resulting charge inhomo-
geneity are crucial in understanding the ground state electronic
properties for a wide range of experimentally relevant carrier
densities. In particular, standard many-body diagrammatic
techniques assume that the density profile is homogeneous in
both the screening and the Green’s function, and therefore give
qualitatively incorrect predictions for the compressibility in the
presence of an external band gap. In contrast, the TFT retains
the inhomogeneity and nonlinear screening of the density
distribution in the energy functional E[n(r)] and therefore
captures the essential physics of the system. We emphasize
that this particular averaging procedure discussed in Sec. IV,
simulating the experimental conditions, is simply inaccessible
to any type of theories invoking a homogeneous charge
landscape to obtain many-body self-energy or broadening.
We also point out that although we have presented results
where the disorder potential is induced by random charged
impurities, our general conclusion will remain valid for any
form of disorder which produces a scalar potential perturbation
to the clean Hamiltonian, such as corrugations in the graphene
sheet.14 Finally, although we have described calculation of
the compressibility (and equivalently dµ

dn
) the general logic of

our argument applies to other observable quantities also. For
instance, application of the Kubo formula for transport with
Green’s functions derived in the same way as in Sec. III will
suffer from similar problems in the inhomogeneous regime.
In this example, an effective medium theory30 or a full
quantum transport analysis that explicitly takes into account
the inhomogeneities31 should be used instead.
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